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Finite difference modelling of the full acoustic wave equation in 
Matlab 

Hugh D. Geiger and Pat F. Daley 

ABSTRACT 
Two subroutines have been added to the Matlab AFD (acoustic finite difference) 

package to permit acoustic wavefield modeling in variable density and variable velocity 
media. A centered finite difference scheme using a 5 point approximation has been 
chosen to closely approximate the full acoutic wave equation modeling used to generate 
the original Marmousi data set. Sampling of the wavefield in both time and space is an 
important consideration for accuracy, stability, and efficiency. A minimum of 10 spatial 
samples per wavelength and preferably 20 are required to eliminate phase and group 
velocity dispersion (commonly referred to as grid dispersion), while “Bording’s 
conjecture” can be applied to determine the time sampling interval required for stability. 
Given these considerations, we show that the original Marmousi dataset likely contains 
significant grid dispersion. 

INTRODUCTION 
Standard finite-difference methods for the scalar wave equation have been 

implemented as part of the CREWES Matlab toolbox by Youzwishen and Margrave 
(1999) and Margrave (2000). These implementations handle a variable-velocity 
subsurface and a variety of simple boundary conditions. An obvious extension is to 
incorporate variable density. There are two motivations for this work. Our primary 
motivation was to gain further insight into the Marmousi acoustic synthetic dataset. A 
secondary purpose was to create Matlab code suitable for generation of synthetic 
datasets. 

 The Marmousi dataset (Versteeg and Grau, 1991) was created using a second-order 
finite-difference scheme. We are currently using the Marmousi dataset to test prestack 
shot-record depth-migration imaging algorithms based on recursive Kirchhoff 
extrapolators (Geiger et al. 2003). Good imaging requires attention to a number of 
factors, including preprocessing of the data to zero-phase with maximum bandwidth and 
source modeling for forward wavefield extrapolation. In Marmousi, realistic source and 
receiver arrays combine with a free-surface and hard water bottom to create an unknown 
source wavelet. By duplicating the Marmousi waterbottom and simplifying the 
subsurface beneath to constant velocity, we can isolate the Marmousi shot wavelet as 
well as the shot array and ghosting effects that largely determine the directional 
amplitudes of the propagating source wavefield. 

As is well known in the literature (e.g. Levander, 1989), standard finite differences are 
not ideal for generation of accurate synthetic acoustic wavefields. They suffer from grid 
dispersion and grid anisotropy. These effects can be reduced with a corresponding 
computational cost. Good overviews of stability and accuracy methods for standard 
finite-differences can be found in Bording and Lines (1997) and Carcione et al. (2002). 
Over the last two decades, alternatives to standard finite differences have been developed 
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that are significantly more accurate. A simple option is to introduce a more symmetric 
operator for the Laplacian in the scalar wave equation or its equivalent in the acoustic 
wave equation (Cole, 1994; Fomel and Claerbout, 1997). Even higher accuracy can be 
obtained with non-standard finite-difference schemes (Micken, 1984; Cole, 2000). 
Recently, CREWES researchers have focused on modeling of isotropic and anisotropic 
elastic media (Bale, 2002a; Manning and Margrave, 1999, 2002). 

In this paper, we derive the standard finite-difference equations for the acoustic wave 
equation. A similar derivation can be found in Zakaria et al. (2000), and a more 
generalized treatment in course notes by Li (2002). We then look briefly at accuracy and 
stability, and show that the Marmousi data set suffers from grid dispersion. This is not a 
new result – it was noted by Versteeg in his PhD thesis on Marmousi (1991) as a 
necessary compromise in order to gain computational efficiency. It does suggest, 
however, that Marmousi might not be an ideal dataset for comparison of imaging 
algorithms, especially if the parameters governing preprocessing and shot modeling are 
not published along with the images. 

2-D STANDARD FINITE-DIFFERENCE THEORY 

The wave equation for acoustic pressure ( ), tφ x  at position x  and time t is given by 
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where ( )ρ x  is the static density, ( )K x  is the adiabatic compression modulus, 

( )2 2,vi t t∂ ∂x  represents a point source of volume injection per unit volume, and 

( )( ) ( )( )1 ,v tρ∇ ⋅ x f x  represents a point source of force per unit volume. Henceforth, we 

limit the discussion to the 2-D case where ( ),x z=x . 

In most situations, we are interested in solving the homogeneous case where the 
source terms on the RHS of equation (1) are zero. Where a source is required, Wapenaar 
and Berkhout (1989) show that the first term on the RHS acts as a monopole, while the 
second term acts as a dipole that can be synthesized from the monopole response. A 
monopole is a useful physical source, representing, for example, the marine airguns in the 
Marmousi source arrays. For these reasons, we consider only the monopole source.  

Ignoring the dipole source and multiplying through by density gives 
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where ( )1 2c K ρ=  is now the speed of wave propagation in the media (the acoustic 

velocity), and 2 2( )i t t∂ ∂  is the time derivative of the rate at which volume is added to the 
fluid outside some small fixed region enclosing the delta function source ( )sδ −x x  
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located at sx . Equation (2) is a more useful form for finite difference derivation, given 
that the subsurface parameters are typically specified by spatially varying grids of 
velocity and density. 

It is reasonably straightforward to implement equation (2) as a second-order finite-
difference scheme. On a uniform 2D grid with coordinates ix i x= ∆  and jz j z= ∆ , and 

time sampling nt n t= ∆  the acoustic pressure can be specified as ,( , , ) n
i jx z tφ φ φ= =  and 

the static density as ,( , ) i jx zρ ρ ρ= = . The time derivative is calculated as the standard 
second-order finite difference scheme: 

 ( )2 1 1

2 2 2

( ) 2 ( ) ( ) 2n n nt t t t t t
t t t
φ φ φ φ φ φ φ+ −∂ + ∆ − + −∆ − +

= =
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In the homogeneous case, one can solve for the wavefield at time 1nt +  by combining 
equations (2) and (3) 
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Now all that remains is to consider the operator 
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Equation (5) is the divergence of the vector field ,
n
i jφ∇  with variable coefficients ,1 i jρ . 

The divergence can be calculated for the area surrounding the point ( , )i jx z using second-
order centered finite differences, with both the vector field and the variable coefficient 
specified at the boundaries of the area: 
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The gradient of the pressure is now expanded as a centered finite difference: 
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which can be rearranged to yield 
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Equation (8) agrees with equation (7.14) of Zhilin Li’s teaching notes (2002). If density is 
constant, equation (8) reduces to the standard second-order form for the Laplacian with 
weights (1,-2,1) in each spatial dimension. Equation (8) suggests that the finite-difference 
scheme for the divergence is of the same second-order form. Later, we use this 
observation to conclude that Bording’s conjecture for stability of finite difference 
schemes for the scalar wave equation (Lines et al., 1999) applies equally well to the 
acoustic wave equation. 

For variable density, the value of ( ) 1 2,
1

i j
ρ

+
 is calculated as the harmonic average of 

densities at adjacent points 
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A simple expressions for a finite-difference algorithm can be obtained by combining 
equations (7) and (9) with the additional ,i jρ  term from equation (4), yielding 
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Equation (10) has been coded as matlab function ‘ders2_5pt.m’. 
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The wavefield at time 1nt +  is calculated by equation (4), repeated here with the 
‘ders2_5pt.m’ term in square brackets: 

 1 2 2 1
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Equation (11) has been coded as the matlab function ‘afd_snap_acoustic.m’. 

The acoustic finite difference functions are designed to integrate with other functions 
and programs in the CREWES Matlab AFD toolbox ‘finitedif’ (Youzwishen and 
Margrave, 1999). The x and z grid spacing are assumed to be equal. The only additional 
parameter required is a grid of spatially-varying densities sampled at the same spacing as 
the velocity (and wavefield computation) grid. Given that reflectivity arises from 
impedance contrasts (the product of velocity and density), these additional routines can 
be used to create constant velocity or v(z) synthetics with complicated subsurface 
reflectivity, just by creating sharp density contrasts at the desired location of the 
reflectors. 

Boundary conditions are not investigated in detail in this study. A discussion on finite 
difference methods for reflecting and nonreflecting (absorbing) boundary conditions can 
be found in Bording and Lines (1997). The reflecting condition is the simplest, and often 
chosen to model a free surface (pressure release) at the upper boundary. A line of 
fictitious nodes are placed above the top of the model. These nodes are given initial 
values of zero and kept zero for all model times. A comparison of finite difference model 
results with analytic results suggests that this places the true effective free surface at node 
location 2z−∆ , which can have a subtle but significant effect on traveltimes and 
amplitudes when compared against expected analytic results for ghosted source and 
receiver arrays (e.g. Marmousi). Youzwishen and Margrave (1999) implement absorbing 
boundary conditions for the scalar wave equation with the Matlab routine 
‘afd_bc_outer.m’. We make the weak assumption of constant density at the boundary so 
that we can apply this routine to the variable density case. 

ACCURACY AND STABILITY TESTS 
To ensure accurate and stable finite-difference calculations, the general method is to 

choose spatial sampling to avoid grid dispersion, and then chose temporal sampling to 
avoid numerical instability (Kelly and Marfurt, 1990, Mufti, 1990, as discussed in Lines 
et al. 1999). Here, we look specifically at the parameters used to model the Marmousi 
dataset, with velocities varying between 1500m/s and 5500m/s and a spatial sampling 
interval of 4m. 

Equations for phase and group velocity dispersion can be found in Levander (1989). 
These were coded in Matlab to produce Figures 1a and 1b. Using a maximum Marmousi 
velocity of v = 5500m/s, grid spacing h = 4m, and 2D stability criteria 1 2v t h∆ ≤  
suggests a time sampling of 0.0005t s∆ =  for stability. Wavefield sampling is 6.25 grid 
samples per wavelength at 1500 m/s and 60Hz maximum frequency. These figures 
suggest that there is significant phase and grid velocity dispersion (commonly referred to 
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as grid dispersion) in the shallow portion of the Marmousi dataset, as noted by Versteeg 
(1991). 

Figure 2 was generated using an impulse in a constant velocity medium (2000m/s) 
with an upper free surface. The finite difference responses are compared against the 
analytic response computed using 2D Green’s functions for grid sampling of 4m, 2m, 1m, 
and 0.5m corresponding to wavefield sampling of 8, 17, 34, and 70 samples per 
wavelength at maximum frequencyof 60Hz. There is noticeable grid dispersion at 8 
samples per wavelength (Figure 2a), much less at 17 samples per wavelength (Figure 2b), 
and effectively none at 34 and 70 samples per wavelength (Figures 2c and 2d). Note that 
some of the time delay arises because the effective free-surface is at a depth of 2z−∆ , a 
factor not taken into account with the analytic response. Applying these results to the 
Marmousi dataset, we suggest that a grid sampling of 1m (corresponding to 25 samples 
per wavelength at minimum velocity of v = 1500m/s and maximum frequency of f = 
60Hz) would produce much more accurate data. 

In additional tests (not shown here), we compared our algorithm to Peter Mannings 
elastic finite difference code (Manning, 1999), run with an S-wave velocity of zero. For 
the simple synthetics tested, the results were almost identical. 

In Figure 3, an original shot record from Marmousi (shot 41, Figure 3a), is compared 
with a shot record generated using the Matlab finite difference code (Figure 3b). Figure 
3c shows a portion of the near offset trace. The match is reasonably good, but not exact, 
suggesting that our acoustic finite-difference algorithm is not identical to the one used to 
generate the original data. However, the match is sufficiently close that we have 
confidence that our modeled results of near surface Marmousi wavefields will provide 
insight into the selection of preprocessing parameters and guide accurate modeling of the 
shot wavefield (see companion paper by Geiger et al. 2003). 

CONCLUSIONS 
In this paper, we derived the standard finite-difference equations for the acoustic wave 

equation with variable velocity and density. The equations were coded into two Matlab 
functions for use with the CREWES Matlab AFD toolbox ‘finitedif’. Our primary 
motivation was to gain further insight into the Marmousi acoustic synthetic dataset as an 
aid to accurate prestack wave-equation depth imaging. An analysis of stability and 
accuracy suggests that the Marmousi data suffers from grid dispersion, and that a more 
accurate dataset could be produced with a grid sampling of 1m, corresponding to ~25 
samples per wavelength at the minimum velocity and maximum frequency. Although we 
were not able to duplicate the Marmousi results exactly, we are confident that the new 
finite difference code can be used to generate simple synthetics that duplicate the 
waterbottom and free-surface ghosting effects in the Marmousi dataset. These synthetics 
provide insight into the selection of preprocessing parameters and guide accurate 
modeling of the shot wavefield. 
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FIGURES 
 

a) b)  

FIG. 1: Using maximum Marmousi velocity of v = 5500m/s, grid spacing h = 4m, and 2D stability 
criteria 1 2v t h∆ ≤  suggests a time sampling of 0.0005t s∆ =  for stability. Wavefield 
sampling is 6.25 grid samples per wavelength at 1500 m/s and 60Hz maximum frequency. Note 
the significant phase and grid velocity dispersion.  

a)
FD response dh=4.0m, dt=1ms (blue), normalized theoretical (red)

b)
FD response dh=2.0m, dt=0.5ms (blue), normalized theoretical (red)

  

c)
FD response dh=1.0m, dt=0.2ms (blue), normalized theoretical (red)

d)
FD response dh=0.5m, dt=0.1ms (blue), normalized theoretical (red)

 

FIG. 2. The finite difference response in constant velocity medium (2000 m/s) for a direct and 
free-surface reflected wavelet with grid samping of a) 4m (8 samples per wavelength), b) 2m (17),  
c) 1m (34) and d) 0.5m (70). The finite difference response (blue) overlies the ideal 2D analytic 
response (red). At 8 grid samples per wavelength, there is significant dispersion as the wavefield 
propagates. Some of the time delay is from the effective free-surface at 2z−∆ , not accounted 
for in the analytic response. Grid sampling of ~20 samples per wavelength is recommended. 
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a)  

b)  

c)  

FIG 3. a) The original Marmousi data set for shot 41. b) Shot 41 generated using the Matlab finite 
difference routines for the acoustic wave equation. c) Portion of near trace showing that the 
match, although good, is not exact 


