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A fast, discrete Gabor transform via a partition of unity 
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Margrave 

ABSTRACT 

A partition of unity on the d -dimensional integer lattice dZ  is used to create a 
generalized discrete Gabor transform, with analysis and synthesis windows of smooth, 
desirable characteristics. Factorizing the partition of unity allows for different choices of 
analysis and synthesis windows, a transformation on general lattices in the time and 
frequence domains is considered, and an approximate partition of unity via Gaussians 
gives an approximate inverse. Speed, implementation issues, and practical choices for 
partitions of unity useful in applications are discussed. 

INTRODUCTION 
The Gabor transform is a mathematical transformation of functions that provides a 

joint time/frequency representation of a given signal, as well as a means to recover the 
signal from this time/frequency representation. Although Denis Gabor’s original 
motivation for introducing this transformation lay in quantum mechanics (see [5]), the 
technique which bears his name has proven to be useful in a variety of signal processing 
contexts, including image processing, acoustics, medical imaging, electrical engineering, 
and others. For instance, the authors of this paper have a particular interest in seismic 
data processing and have used Gabor transforms to good effect (see for example, 
references [8], [9], [10] and [12]).  

Briefly, the Gabor transform is computed by comparing a signal with translations and 
modulations of a single analysis window, thereby deriving the Gabor coefficients via an 
inner product. The reconstruction of the signal is computed by summing certain 
translations and modulations of a fixed synthesis (dual) window, weighted by the 
previously computed Gabor coefficients. Since the windows are localized in space, the 
inner product only detects a localized portion of the original signal, and thus the Gabor 
coefficents depend only locally on the signal information. The Gabor transform may be 
thought of as a windowed, or short-time, Fourier transform.  

Not only is the Gabor representation of a signal useful for analysing a signal, it also 
provides a convenient means to modify the signal in the time/frequency domain. For 
instance, adjusting the magnitude of the Gabor coefficients in a prescribed manner is a 
simple way to implement a time-varying filter; reconstruction of the modified signal 
using the inverse Gabor transform completes the implementation. A full exploration of 
these filtering techniues leads to the theory of Gabor multipliers (see for instance [2]), 
although we are not directly concerned with them in this paper. Another motivation for 
using the Gabor transform is that it provides a representation where the physics of the 
process being modeled is clear, and proper filters may bedesigned.  
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FIG.1. A Gabor window and its canonical dual. 

In our seismic work, for instance, we have successfully implemented such time-variant 
filters to create commericially viable seismic data processing techniques, including 
deconvolution, forward and inverse Q-filtering, wavefield extrapolation, and wave 
propagation. In exploration seismology, data sets of a size on the order of tens of 
gigabytes are not uncommon; thus speed and robustness of any processing algorithm are 
critically important. This provides the motivation for the results presented in the present 
paper.  

Here, we are concerned with the theoretcal issues that arise in a practical 
implementation of the Gabor transform. First of all, all our signals are sampled: that is, 
we are analysing functions in space 2 ( )dl Z  and so we are primarily interested in the 
discrete transform. Second, we want to make a choice of windows which will allow us to 
create a fast algorithm for the transform, with a fast inverse, while minimizing the 
appearance of artifacts in the final output. For instance, one often sees in the literature 
examples of Gabor windows and duals such as the pair illustrated in Figure 1; while the 
first (top) window is smooth and localized, the dual is objectionable both because of its 
many singular points, and because it is much less localized than the first window. In fact, 
we wish to be able to choose both analysis and synthesis windows so that we reduce 
artifacts, and so that the physics of the processes we are modeling in the time/frequency 
domain remain clear in this representatios. Often, this means we want both windows to be 
smooth and well-localized.  

The principal new result of this paper is the observation that a simple choice of 
windows g  and γ  as factors of a partition of unity results in an exact reconstruction 
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form for f ; that is, g  and γ  so chosen gives directly the transformand inverse that 
recovers the original signal; the inverse frame operator is never required. Moreover, 
rather than translating a single window all over signal space, it can be preferable to start 
with a collection of windows { }ng  and define a generalized Gabor transform; we still 
obtain exact inverses. Another major result of the paper is that we may translate and 
modulate over very general lattices in both the time and frequency domain, provided the 
partition of unity condition holds. Finally, if g  and γ  are factors of an approximate 
partition of unity, then the reconstruction is approximately exact.  

The structure of the paper is as follows. In the following section, we review briefly the 
typical implementation of the discrete Gabor transform, using translations and 
modulations of a fixed window along a rectangular lattice. Section 3 moves away from 
translations of a single window, introducing a general collection of windows that cover 
signal space, and indicating the advantage of such an approach (namely, speed and 
reduction of processing artifacts). This is the starting point for the partition of unity 
approach to the Gabor transform. Section 4 moves away from a rectangular lattice in the 
frequency domain, again with the motivation being the removal of artifacts. Section 5 is 
the core of the paper, where we introduce the Gabor transform based on a partition of 
unity, and prove the key result on reconstruction of the signal from its Gabor transform. 
Section 6 discusses speed of the algorithm and its inverse, while Section 7 presents some 
common errors that can occur in implementation. Sections 8 and 9 discuss special cases 
of the partition of unity idea applied to the discrete Gabor transform on general lattices, 
and with Gaussian windows. Section 10 is a summary, and we have left to the appendices 
some examples of practical windows we have used in a variety of applications, with 
desirable properties for signal processing, and a proof of the modulation theorem in 
Section 4.   

THE STANDARD GABOR TRANSFORM 
The typical form of the Gabor transform is as follows: one begins with a Hilbert space 

2 ( )L X  of square integrable functions on some measure space X , and a single function 
g  in 2 ( )L X , then defines modulations and translations of g  as  

 mn m ng M T g= ,  

where nT  is translation by some amount indexed by n , and nM  is modulation, or 
multiplication by a complex exponential with some frequency indexed by m . The actual 
choice of index sets for m n,  and indeed for the exact definition of translation and 
modulation, depends on the particular space X .  

From this choice of g , for any function (signal) f  in 2 ( )L X , one defines the Gabor 
coefficients of f , relative to g , as  
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 ( )mn mnV f f g= , ,  

where mnf g,  is the standard inner product on 2 ( )L X . The frame operator S , for given 
window g , is defined as  

 mn mn
m n

Sf f g g
,

= ,∑  

where the sum is not necessarily over all possible indices m n, , but perhaps some 
specified, select, subset of indices. When the frame operator is invertible, there is a 
canonical dual window given by 1c S gγ −= , For instance, in Figure 1 we see a typical 
window and its canonical dual. With the dual, one also defines translations and dilations 
as  

 c c
mn m nM Tγ γ= .  

From these functions, one recovers f  as the sum  

 ( ) c
mn mn

m n

f V f γ
,

= ,∑  

where the sum is over the same subset as in the defining sum for S .  

In general, any function 2 ( )L Xγ ∈  coud be used in an attempt to reconstruct f , so 
one can define a reconstruction operator R Rγ=  for any function γ  as  

 ( )mn mn
m n

Rf V f γ
,

= .∑  

Once again, this is a sum over some subset of possible indices m n, . One challenge in 
Gabor theory is to find windows g  and γ  with suitable properties for signal processing, 
that also allow for perfect reconstructions, Rf f= .  

In applications, the measure space X  is usually a d -dimensional cube of points,  

 1 2[0 1 1] [0 1 1] [0 1 1]dX …L …L … …L= , , − × , , − × × , , − ,  

and the measure is just counting measure; the Hilbert space of square summable 
functions is usually denoted 2 ( )l X . Translations in X  are just the operators { }nT n X: ∈  
with  

 ( )( ) ( )nT f x f x n= − ,  

where the difference x n−  is computed using modulo arithmetic, or by assuming f  is 
zero-extended outside the cube. Modulations are given as operators { }nM m X: ∈ , with  
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1 1 2 2

1 2
2( )( ) ( )

x mx m x m d d
L L Ld

i …
mM f x f x e π + + +

= .  

The Gabor coefficients  

 ( )mn mnV f f g= ,  

could be computed for all indices m n,  in X , but in practice these are only computed for 
some fixed sublattice in X . The question of which sublattice leads directly to questions 
of over- and under-sampling.  

We point out three important limitations in this standard implementation. First, only 
one window g  gets translated to cover signal space; why not use several different 
windows? (Section 3) Second, a rectangular lattice specifes the collection of vectors used 
to sample in the frequency domains; one can use a more general lattice (Section 4). 
Finally, there may be many possible choices for the dual window that give an accurate 
reconstruction of f . We create a method toproduce “nice” windows by a factorization of 
a partition of unity (Section 5).  

 

 

FIG. 2. Regular window translated along signal space. 
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GENERAL WINDOWS 
The standard implementation of the discrete Gabor transform uses a single window 

function g , defined on discrete points, which is translated along the length of the signal, 
as in Figure 2. 

In practice, there are a few problems with this regular structure. First of all, in certain 
areas the signal may be changing rapidly, while in other areas it may have a more 
uniform character. It would be useful to use short windows in the first case, to accurately 
track those changes, and use larger windows in the second case. (Grossman’s work on the 
adaptive Gabor transform demonstrates this approach, see [10].) The second problem is 
that when applying a time-varying filter, typically we get edge effects near the sides of 
any window, and regularly spaced windows will give regularly spaced artifacts. It is 
important to point out, of course, that artifacts never appear if one only computes Gabor 
coefficients, and then inverts, as the numerical inversion is essentially exact. However, 
when modifying the Gabor coefficients before inverting (as when implementing a time-
varying filter, or applying a Gabor multiplier), there will be changes in the output signal; 
unwanted changes we loosely describe as artifacts. Any artifacts, particularly regularly-
spaced artifacts, can be confusing or annoying to the person viewing the Gabor 
coefficients and can obfuscate the processed data. For instance, in image processing, one 
often observes artifacts that lie on a rectangular boundary (the jpeg effect, see [14]). 
Perhaps a more optimal tiling of the image space could be useful; for instance, the 
hexagonal tiling shown in Figure 3 corresponds to an optimal packing of discs in the 
plane. Even a non-periodic tiling might prove to be useful. In our seismic experiments, it 
is numerically troublesome to have artifacts that accumulate along the direction of wave 
propagation, so again, something other than regular, rectangular division of the image 
space is useful.  

 

FIG. 3. A hexagonal tiling of the plane. 
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Thus, we propose generating a Gabor transform using a collection of windows { }ng , 
and duals { }nγ  which appropriately cover signal space, as in Figure 4. Although the 
functions ng  are not related to each other by translation, we may still define the 
modulation appropriately, as  

 mn m ng M g=  

and form Gabor coefficients of signal f  as  

 ( )mn mnV f f g= , ,  

and similarly for the reconstruction operator, using the general collection of dual 
windows { }nγ  rather than a collection of translates. 

The next section shows how we avoid rectangular lattices in the frequency domain, 
and Section 5 pulls this all together to create a general Gabor transform. 

 

FIG. 4. A collection of four non-uniform windows covering signal space. 
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MODULATION FUNCTIONS AND INTEGER LATTICES 
In the Gabor transform, the window functions are modified by modulation functions 

which, in one dimension, are simply complex exponential functions of the form  

 2( ) for alli jP j e jπ α
α = ∈ ,Z  

for some fixed parameter α . In applications, it is common to choose only periodic 
modulation functions, obtained by setting parameter α  to be a rational number, say 

m Mα = / . In higher dimensions, one may take a product of several one dimensional 
modulaton functions, and obtain functions  

 1 1 1 2 2 2 22 2( ) d d dim j Mim j M im j M
mP j e e …e ππ π // /=  

for all 1 2( )dj j j … j= , ,  in dZ , where 1 2( )dm m m …m= , ,  is an index in dZ  and 1 dM …M  
is some fixed choice of integer denominators. It is convenient to fix a diagonal matrix B  
with integer entries  

 

1

2

0 0
0 0

0 0 d

M …
M …

B

… M

 
 
 
 
 
 
 
 
 
  

= ,
# # % #

 

and then express the above modulation function via the standard inner product on dZ  as  

 
12 ( )( ) for alli B m j d

mP j e jπ − ⋅= ∈ .Z  

In this form, it is clear that each modulation function is periodic in each component of j , 
and the “vector of frequencies” represented by function mP  is the vector 1B m− . Less 
obvious, but also true, is that there are only finitely many different functions mP  (as two 
different indices m m′,  can give the functions m mP P ′= ), and a sum of the different mP  
gives a delta function.  

However, this is too restrictive a class of modulation functions, as essentially it 
restricts us to sampling in the frequency domain with a simple rectangular lattice, in this 
case the set of points 

1 2

1 1 1
dM M M× × × ."Z Z Z  Just as in the time domain, we wished to 

moved away from rectangular sample lattices, so here too we may do so in the frequency 
domain.1 The key is using a more general form for matrix B  and considering the lattices 
these matrices generate.  

A lattice is, roughly speaking, a regularly spaced collection of points in Euclidean 
space dR ; more precisely, it is a discrete subgroup of dR  under the operation of vector 

                                                 
1Our approach to lattices is quite a bit different than the symplectic case as considered by 
Grochenig, [7]. 
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addition. The standard example of a discrete lattice is the subset dZ  of points in 
Euclidean space with integer coordinates. For the Gabor transform, we are interested in 
more general lattices that “fill out space,” which is to say, are not confined to some 
hyperplane in dR , yet the points don’t “bunch up” into a dense set; such lattices may 
always be represented as the image of the standard lattice dZ  under a linear 
transformation. That is, there is an invertible d d×  matrix ( )dA M∈ R  with the lattice 
given as the set  

 { }d dA Az z= : ∈ .Z Z  

Figure 5 shows a portion of a typical lattice in the plane.  

 

FIG. 5. A non-rectangular lattice in the plane. 

In the discussion on modulation functions, the diagonal matrix B  defines a lattice of 
frequencies, namely the set  

 1 1{ }d dB B z z− −= : ∈ .Z Z  

The matrix B  also defines a lattice of periodicity for the modulation functions,  

 { }d dB Bz z= : ∈ ,Z Z  

which (since B  is integer), is a subset of the standard lattice dZ  in dR . By lattice of 
periodicity, we simply mean that if indices j  and j′  differ by some integer multiple of 
B  (i.e. dj j B′ − ∈ Z ), then mP  takes the same values there, ( ) ( )m mP j P j′ = .  

To generalize the frequency sampling to non-rectangular lattices, fix B  to be any 
invertible d d×  matrix with integer entries, and for any index dm∈Z , define modulation 
function mP  by  

 
12 ( )( ) for alli B m j d

mP j e jπ − ⋅= , ∈ .Z  

We also define two equivalence relations on the lattice dZ  by  
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 iff dm m m m B′ ′− ∈ ,∼ Z  

and  

 iff dm m m m B∗ ∗′ ′− ∈ ,∼ Z  

where B∗  is the transpose of matrix B .  

The following proposition is easily proved in the case where B  diagonal; the proof for 
general B  is deferred to an appendix.  

Proposition 1. Let B  be an invertible d d×  matrix with integer entries, defining 
equivalence relations ∼  and ∗∼ , and modulation functions { }d

mP m: ∈Z  as above. Then  

1. each function mP  is periodic, with ( ) ( )m mj j P j P j∗ ′ ′⇒ =∼ ;  

2. m mP P ′=  if and only if m m′∼ ;  

3. there are exactly det B| |  different modulation functions mP , which are uniquely 
indexed by some finite cube  

 1 2[0 1] [0 1] [0 1] d
dM … M … M … … M= , , − × , , − × × , , − ⊂ ;Z  

4. the finite sum of distinct modulation functions  

 m
m M

P P
∈

= ∑  

is a delta function, with  

 
det( ) if

( )
0 otherwise

dB j B
P j

∗| | ∈
= 

,

Z
 

 

In the following sections, there may be only one fixed modulation matrix B , but in 
general, the matrix may vary with the choice of window function.  

THE DISCRETE GABOR TRANSFORM ON A PARTITION OF UNITY 

A partition of unity is a collection of functions which sum to the constant function 
one; that is, a collection of functions { }nw  which sum as  

 ( ) 1 for all d
n

n
w j j= ∈ .∑ Z  

For typical signal processing applications, it will be useful to choose the nw  with 
particular characteristics; say smooth, non-negative, rapidly decreasing, and/or with a 
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well-behaved Fourier transform. In Appendix A, we list some examples of practical 
windows that we have used in a variety of signal processing applications. In the 
following, however, the only restriction we might make on each nw  is that it have 
compact (i.e. finite) support. Even this restriction may be dropped: see the remark at the 
end of the section.  

Given a partition of unity { }nw  on the set dZ , with each function nw  of compact 
support, choose for each index n  an invertible integer matrix nB  so that the lattice d

mB∗Z  
intersects the difference set 2  

 supp( ) supp( ) { supp( )}n n nw w j k j k w− ≡ − : , ∈  

only at the origin. That is, choose nB  with entries large enough so that the non-zero 
entries in the lattice d

mB∗Z  are far enough from the (finite) set of differences of pairs of 
elements in supp( )nw .  

Then, choose functions ng  and nγ  to form what we call a weighted factorization of 
the partition of unity; that is, ng  and nγ  are chosen with  

i) supp( ) supp( ) supp( )n n ng wγ= = ;  

ii) detn n n ng B wγ | |=  on the set dZ .  

For instance, with a non-negative partition of unity, one may choose  

 
1

det

det

p

n
n

n

p

n
n

n

wg
B

w
B

γ
−

 
=  | | 

 
=  | | 

 

for some real parameter 0 1p≤ ≤ . (In applications, the choice of p  is important in 
controlling the rate of roll-off for a window.)  

For each window index n , and for each integer vector dm∈Z , the modulated version 
of the window functions are denoted by mng  and mnγ  and are defined as  

 
1

1

2 ( )

2 ( )

( ) ( )

( ) ( )

n

n

i B m j
mn n

i B m j
mn n

g j g j e

j j e

π

πγ γ

−

−

⋅

⋅

=

=
 

for all vectors dj∈Z . The Gabor transform of function 2 ( )df l∈ Z  is defined as  

                                                 
2the Minkowski difference 
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 ( )mn mnV f f g= ,  

and the inverse tranform given by  

 ( )mn mn
m n

f V f γ
,

= .∑�  

By this careful choice of window functions, we have the following result. 

Proposition 2. With this choice of modulated window functions mng  and mnγ  
construction from a partition of unity, we have the exact reconstruction formula  

 mn mn
m n

f f g γ
,

= ,∑  

for all functions 2 ( )df l∈ Z . That is, the Gabor transform with windows ng  has an 
inverse transform with windows nγ .  

Proof. We compute  

 

1 1

1

2 ( ) 2 ( )

2 ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

n n

n

i B m k i B m j
mn mn n n

m n m n k

i B m j k
n n

n k m

f g j f k g k e j e

f k g k j e

π π

π

γ γ

γ

− −

−

− ⋅ ⋅

, , ,

⋅ −

,

, =

=

∑ ∑

∑ ∑
 

where the inner sum (over m ) we recognize as the sum of modulation functons, which is 
non-zero only when j k−  is in the lattice dB∗Z . The term ( ) ( )n ng k jγ  is non-zero only 
when j k−  is in the finite difference set  

 supp( ) supp( )n ngγ −  

which, by construction, is the same set as supp( ) supp( )n nw w− . But the intersection  

 ( )supp( ) supp( )d
n nB w w∗ ∩ −Z  

is just the origin, and so the above sum collapses to the non-zero term with j k= , and 
becomes  

 

( ) ( ) ( ) det

( ) ( )

( )

n n n
n

n
n

f j g j j B

f j w j

f j

γ= | |

=

= ,

∑

∑  

since the nw  sum to one.  
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Having chosen the analysis windows ng  with small support relative to matrix nB , the 
frame operator is also in a particularly simply form, as indicated in the following.  

Proposition 3. With window functions mg  chosen as above, the frame operator  

 mn mn
m n

Sf f g g
,

= ,∑  

is a multiplication operator on 2 ( )dl Z , by values  

 2( ) ( ) detn n
n

s j g j B= | | | | .∑  

Proof. We compute the pointwise values  

 12 ( ) ( )

( )( ) ( )

( ) ( ) ( ) n

mn mn
m n

i B m j k
n n

n k m

Sf j f g g j

f k g k g j e π −

,

⋅ −

,

= ,

=

∑

∑ ∑
 

which collapses, as in the previous proof, to the sum  

 
( ) ( ) ( ) det

( ) ( )

n n n
n

f j g j g j B

f j s j

= | |

=

∑
 

with 2( ) ( ) detn nn
s j g j B= | | | |∑ .  

There is a well-developed theory for the expansion of functions by non-orthogonal 
families of “basis” functions, namely frame theory, which is beyond the scope of this 
article (see for instance [1]). However, it is useful to insert thefollowing observation, 
which is relevant to frame theory.  

Corollary 4. A tight frame is obtained if and only if the functions nw′  defined by  

 2( ) ( ) detn n nj g j Bw =| | | |′  

form a partition of unity on dZ , times a fixed constant.  

Proof. This is a consequence of the observation that the frame is tight if and only if the 
frame operator S  is a scalar multiple of the identity; equivalently, that the multiplication 
operator S  with values ( )s j  is a constant function. Since ( ) ( )nn

s j jw= ′∑ , tightness is 
equivalent to the nw′  forming a partition of unity, up to scaling by some constant.  

It is worth observing that if the original partition of unity { }nw  is non-negative, the 
choice of analysis window  



Lamoureux et al. 

14 CREWES Research Report — Volume 15 (2003)  

 
1 2

det
n

n
n

wg
B

/
 

=  | | 
 

will give a tight frame. It is also interesting to observe that once an analysis window ng  
is chosen with suitably small support relative to d

nB∗Z , then any choice of dual window 
with small support (including the canonical dual 1c

n nS gγ −= ) gives rise to a partition of 
unity, as noted in the following proposition.  

Proposition 5. Suppose analysis windows ng  and matrix nB  are chosen such that 
supp( )ng  is finite, and the intersection  

 ( )supp( ) supp( )d
n n nB g g∗ ∩ −Z  

contains only the origin. If nγ ′  is any choice of dual windows, with support the same as 
the corresponding ng , that satisfies the reconstruction  

 2for all ( )d
mn mn

m n

f f g f lγ
,

′= , ∈ ,∑ Z  

then the functions  

 detn n ng Bw γ ′= | |′  

form a partition of unity for the set dZ .  

Proof. As in the calculation above, we have  

 

( ) ( )

( ) ( ) ( ) det

( ) ( )

mn mn
m n

n nn
n

n
n

f j f g j

f j j g j B

f j jw

γ

γ
,

′= ,

′= | |

= .′

∑

∑

∑

 

The only way this equality can hold for all f  is if the nw′  sum to one.  

For the canonical dual 1c
n nS gγ −= , since operator S  is simply an invertible 

multiplication operator, the support of c
nγ  is the same as the support of ng , and thus the 

canonical dual times detn ng B| |  forms a partition of unity { }nw′ . It is important to notice 
this is usually not the well-designed partition of unity { }nw  that we started out with, and 
the canonical dual does not necessarily have the nice properties, such as smoothness, that 
we designed in the factorization. Again, Figure 1 is a typical example of a poor canonical 
dual.  
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Thus, in standard Gabor theory, there often are partitions of unity lurking around in 
the background. Our approach in this paper can be summarized as saying that we begin 
with a well-designed partition of unity, and create well-behaved windows from this 
partition.  

Remark: In certain applications, it is convenient to chose some windows with non-finite 
support; for instance, in some filtering applications, it is useful to set n ng w=  and 1nγ ≡ . 
Technically, this doesn’t quite work, as one recovers (in the reconstruction) a 
periodization of the original signal. However, all is not lost: by a good choice of the 
frequency lattice, one can ensure the reconstruction is exact on the support of signal f , 
and just ignore the periodization that occurs outside the support. More precisely, in many 
applications, there is some reasonable finite set dF ⊂ Z  such that every signal f  of 
interest has support in F ; this set F  may be used to truncate the window nγ  to finite 
support. Givena partition of unity { }nw , we wish to chose a factorization with  

 det on setn n n nw g B Fγ= | | ,  

where for the moment, matrix nB  is unspecified. One can choose supports for the 
windows to lie in the finite set F , and also  

 supp( ) supp( ) supp( )n n ng w Fγ ∩ = ∩ .  

Now choose matrix nB  so that  

 ( )supp( ) supp( ) {0}d
n n nB gγ∗ ∩ − = .Z  

All the result above apply. Thus larger support are possible for nγ  or ng  than specified 
by the partition of unity. However, the price paid is that matrix nB  may have a large 
determinant, which means many modulation functions are required inanalysis and 
reconstruction.  

SPEED OF INVERSE 

The discrete Gabor transform may be implemented in a straightforward manner using 
the Fast Fourier Transform. The Gabor coefficients  

 
( )mn mn

n m

V f f g

f g P

= ,

= ,
 

are obtained by fixing n , and taking a discrete Fourier transform of the windowed signal 

nf g , over the frequencies determined by matrix 1( )nB − . Of course, for the fastest FFT 
implementation, nB  should be chosen to be a diagonal matrix with powers of 2  along the 
diagonal. With window function ng  of finite support, or more generally with signal f  of 
finite support, this truly gives a discrete, finite Fourier transform.  
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Other implementations of the forward Gabor transform use periodization techniques to 
speed up the transform computations. A MATLAB routine provided by Feichtinger [4] is 
particularly effective. Figure 6 shows a comparision of Feichtinger’s frame-based 
implementation to the direct method via the fast Fourier transform. Clearly, Feichtinger’s 
implementation is much faster than the direct method.  

 

FIG. 6. Comparison of speed: frame-based implementation, and direct method. 

For the inverse transform arising from a partition of unity, a direct implementation by 
the FFT is also possible. The reconstruction of signal f  is obtained from the Gabor 
coefficients mnV  as  

 
12 ( )

( ) ( )

( )

( )iFFT ( )( )

mn mn
m n

i B m j
n mn

n m

n m mn
n

f j V j

j V e

j V j

π

γ

γ

γ

−

,

 
 ⋅
 
 
 

=

=

= ;

∑

∑ ∑

∑

 

that is, for each index n , we take the inverse FFT of the coefficients mnV  (transforming 
over index m ), then take the pointwise product with nγ  to obtained a windowed slice of 
the output. Summing over each slice (indexed by n ) recovers the signal f . (Keep in 
mind, the index set for m  is some finite cube as determined by matrix nB , and in practice 
there are only finitely many windows as indexed by n , so this is all a finite calculation.)  
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FIG. 7. Inverse speed: frame-based implementation, and our method. 

This direct FFT implementation of the inverse transform is quite fast. Figure 7 
compares this method with code we obtained from Feichtinger. In this case, our POU 
technique allows for a significant speedup for computing the inverse transform; in 
particular, we never need to use the frame operator S  explicitly, and never need to 
compute its inverse. The total time for our method, combining both the forward and 
inverse transforms, is generally much faster, especially for long time series. 

Although we have not done a detailed analysis of why our method is faster, or whether 
there is room for improvement, it has allowed us to implement a practical method for 
Gabor deconvolution, a technique using Gabor multipliers to enhange the resolution of 
images in seismic data processing [13]. 

 

 

FIG. 8. Too few windows give a poor reconstruction. 
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FIG. 9. Windows across the edge give a proper reconstruction. 

IMPLEMENTATION ERRORS 

In many applications, the signal f  to be analyzed has compact support; that is, for 
sampled signals, only finitely many sample values are nonzero. It is convenient to choose 
windows with compact support, appropriately spread out, so that only finitely many 
Gabor coefficients mnf g,  are non-zero. Thus, complete information about the signal in 
Gabor space may be stored in finite number of coefficients – namely, coefficients for 
those (translated) windows whose support intersects with the support of the original 
signal. 

 

FIG. 10. Effective periodization of a signal in Gabor domain. 

However, a common implementation error is to use coefficients for a smaller set of 
windows, often those windows whose support is a subset of the support of the signal – 
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this is often for practical considerations in programming, where it is difficult to increase 
the size of the data array where the signal lives. This almost always leads to an “edge 
effect” type of error, when the signal is not properly reconstructed near the ends of the 
signal. Figure 8 shows a typical example, where a signal supported on interval [0 5],  is 
analyzed, and re-synthesized with raised cosine windows each of length 2. By not 
properly dealing with the edges, an error in reconstruction occurs. This type of error can 
occur even when no filtering is done.  

In Figure 9, two additional windows are included, and this gives the proper 
reconstruction of the signal. In general, the key to a successful implementation, including 
in higher dimensions, is to use all windows translated via the lattice whose support 
intersects with the support of the signal. For non-compactly supported windows, such as 
Gaussians, every window may intersect with the signal and thus any finite 
implementation introduces some error; with Gaussians, this error can be made arbitrarily 
small by including sufficiently many.  

Another potential source of error (or “edge effects”) again caused by a programmer’s 
insistence on not letting data arrays “get bigger than they need to be” is caused by the 
implicit periodization of a signal in the Gabor domain. When represented in the Gabor 
domain, a single windowed signal is equivalent to periodic version of the signal, 
repeating out to infinity. Performing a smoothing operation, such as a convolution, can 
cause a portion of the periodic signal to “leak” back into the windowed area; 
reconstruction would then include these leakages. Figure 10 shows a conceptualization of 
this effect. This type of error only occurs when filtering (or multiplication in the Gabor 
domain) has been implemented.  

The solution to this is, of course, to chose matrix B  with even larger entries; 
effectively, this increases the length of the period, and so leakage errors have further to 
travel before mapping back into the windowed area. More precisely, given the windowed 
signal in some interval [ ]m n, , one creates a zero pad by increasing the interval to 
[ ]m a n a− , + , and perform the FFT on this larger interval. (More data points corresponds 
to larger B .) Indeed, in some applications, it can be useful to use the whole support of 
signal f  as the analysis interval for each windowed signal — wraparound errors are 
almost never a problem then.  

THE DISCRETE GABOR TRANSFORM ON A LATTICE 
Notwithstanding our interest in general partitions of unity, it is useful to restrict to the 

case where the partition arises as a collection of translations of a single function. More 
precisely, we wish to analyze functions f  in 2 ( )dl Z , via translations and modulations of 
a given window function g  along some lattice, and resynthesize it with a dual function 
γ . To this end, fix g  and γ  as bounded functions on dhbbR , translation matrix 

(R)dA M∈  an invertible d d×  matrix with real entries, and inverse frequency matrix 
( )dB M∈ Z  an invertible d d×  matrix with integer entries.  
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We point out explicitly that here, the analysis and synthesis windows are more 
generally functions on Euclidean space (for instance, Gaussians), and one is permitted to 
translate them by arbitrary real vectors – typically, these windows and their translates are 
computed on the fly, and there is no need to restrict the translations to the standard lattice. 
Indeed, in many applications, it is advantageous to use these general forms for the 
window functions. In constrast, the function f  is defined on the regular lattice dZ , as it 
usually comes from sampled data in real applications. One must require some moderate 
conditions on the decay of g γ,  to ensure the sum of their translates converge; piecewise 
continuous with compact support, or integrable (in dR ) is sufficient for our purposes 
here. Also note the inverse frequency matrix B  need not be diagonal, as again there may 
be advantages to sampling on a non-standard frequency lattice. Integer entries for B , 
however, are required for the reconstruction theorem.  

The set of points { }dAn n: ∈Z  forms a discrete lattice in dR , while the set 
{ }dBm m: ∈Z  forms a sublattice of the discrete lattice dZ . A translate of function g  
along the lattice dAZ  is defined by  

 ( ) ( ) for all d
ng x g x An x= − , ∈ ,R  

while the modulation of ng  by frequencies 1B m−  is defined as  

 
12 ( )( ) ( ) for alli B m x d

mn ng x g x e xπ − ⋅= , ∈ .R  

The translations and modulation of the dual window γ  are defined similarly. (The order 
of operation of translation and modulation is important. We have fixed it here with 
translations first, but observe that in some applications, it is relevant whether one is 
measuring phase relative to the signal, or relative to the translated window.)  

The discrete Gabor transform (for given A B g, ,  and γ ) is defined as a map of 
functions 2 ( )df l∈ Z  to ( ) ( )d dV f l∞∈ ×Z Z  using the Gabor coefficients  

 
12 ( )( ) ( ) ( ) i B m k

mn mn
k

V f f g f k g k An e π −− ⋅= , = − ,∑  

where ,  denotes the usual inner product on 2 ( )dl Z . Since the inverse of matrix B  
occurs in the modulation, it is immediately clear that ( )mnV f  is periodic in m , with 
period B ; that is ( ) ( )mn m nV f V f′=  when m m′∼  (modulo dBZ ). Thus the Gabor 
transform is completely determined on the finite quotient set d dB/Z Z , and the 
reconstruction of f  may be defined by the sum  
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 ( )
d d

d

mn mn
m B

n

f V f γ
∈ / ,

∈

= .∑�
Z Z
Z

 

That is, the reconstruction of f  is obtained by taking a linear combination of translations 
and modulation mnγ  of the dual window function γ , using weights ( )mnV f , which come 
from the Gabor transform of f . The remarkable result is that this reconstruction depends 
only sparsely on the original function f ; that is, the matrix representing this linear 
transformation from f  to f�  has many zeroes — we only need sum over equivalence 
classes in the sublattice dB∗Z .  

Proposition 6. The reconstruction f�  satisfies  

 ( ) det( ) ( ) ( )
j j

f j B c j j f j
∗′

′ ′=| | ,∑
∼

�  

for all dj∈Z , where the sum is over all indices j′  equivalent to j  modulo dB∗Z , and c  
is the correlation function between the two functions gγ ,  over the lattice generated by 
A , given as  

 ( ) ( ) ( )
n

c j j j An g j Anγ′ ′, = − − .∑  

 

Proof. We compute:  
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1 1

1
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2 ( ) 2 ( )
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( ) ( ) ( )
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( ( ) ( ) ) ( )
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m n
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m n

i B n j i B m j

m n j

i B m j j

mn j

n j

f j V f j

V f j An e

f j g j An e j An e

f j g j An j An e

f j g j An j An P j j

π

π π

π

γ

γ

γ

γ

γ

−

− −

−

,

⋅

,

′− ⋅ ⋅
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  ′,

′,

=

= −

′ ′= − −

′ ′= − −

′ ′ ′= − − −

∑

∑

∑ ∑

∑∑

∑

�

 

where we recognize the last sum over m M∈  as a sum of modulation functions as in 
Proposition 1, and thus this sum is equal to det B| |  when dj j B∗′− ∈ Z , and zero 
otherwise. Thus, the sum over j′  collapses to a sum over those j′  equivalent to j  
modulo dB∗Z , and we write  
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( ) det ( ) ( ) ( )

det ( ) ( ) ( )

det ( ) ( )

n j j

nj j

j j

f j B f j g j An j An

B g j An j An f j

B c j j f j

γ

γ

∗

∗

∗

′,

′

′

′ ′=| | − −

 ′ ′=| | − −  
′ ′=| | ,

∑
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∑

∼

∼

∼
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where ( ) ( ) ( )
n

c j j j An g j Anγ′ ′, = − −∑  is the correlation function.  

Combining with the results in Section 5, we obtain the following.  

Corollary 7. If invertible integer matrix B  is chosen so that  

 ( )supp( ) supp( ) {0}dg Bγ ∗− ∩ =Z  

and the functions n n nw gγ=  form a partition of unity on dZ , then the reconstruction 
above satisfies  

 2det for all ( )df B f f l=| | ∈ .� Z  

 

Proof. As in the previous section, the correlation function  

 ( ) ( ) ( )
n

c j j j An g j Anγ′ ′, = − −∑  

is non-zero only when j j′−  is in the set supp( ) supp( )gγ − . In the sum for the 
reconstruction formula, we only get non-zero terms when j j′−  is in the lattice dB∗Z ; 
combined with the observation about where c  is non-zero, we conclude the sum 
collapses, and thus  

 ( ) det ( ) ( )f j B c j j f j=| | , .�  

With n ngγ  a partition of unity, these diagonal entries ( )c j j,  are exactly one, and thus  

 ( ) det ( )f j B f j=| | .�  

One easy way to obtain a partition of unity over lattice translations is simply to fix a non-
negative function dv : →R R  and symmetrize over the lattice dAZ . That is, we define  

 
Z

( )( ) for all
( )d

d

n

v xw x xin
v x An

∈

= .
−∑

R  

Provided the denominator is never zero, this gives rise to a partition of unity by 
translating along dAZ . A fatorization of the partition of unity may be obtained by setting  



A fast, discrete Gabor transform 

 CREWES Research Report — Volume 15 (2003) 23 

 
1

( ) ( )
( )

p

p

g x w x
w xγ −

=
=

 

for any real parameter 0 1p≤ ≤ .  

The constructions the appendix show other ways to obtain practical partitions of unity. 

GAUSSIANS AND THE GABOR TRANSFORM 
The original transform of Denis Gabor was defined using Gaussian windows on 

Euclidean space, for analysizing functions in 2 ( )dL R . These Gaussians, restricted to the 
discrete lattice dZ , are useful windows for implementing the discrete Gabor transform. 
For instance, the corresponding discrete correlation function is almost constant on the 
diagonal, and vanishes rapidly off the diagonal. Thus, while not exact, the reconstruction 
formula gives an approximate rescaling of the original signal f . Thefollowing provides a 
precise statement of these facts.  

Proposition 8. Suppose functions γ  and g  are Gaussians on dR ; that is, there are 
constants 0a a′, >  with  

 
( )
( )

ax x

a x x

x e
g x e
γ − ⋅

′− ⋅

=
=

 

for all dx∈R . For a a′,  sufficiently small, the correlation function is nearly constant on 
the diagonal.  

Proof. More precisely, we will prove for any 0ε > , we may choose a a′,  sufficiently 
small that  

 (1 ) ( ) (1 ) for all d
gC c j j C jγε ε,− ≤ , ≤ + , ∈ ,Z  

where C  is some normalizing constant. This result follows from the observation that the 
sum of integer translates of a one-dimensional Gaussian 

2axe−  is an even periodic 
function with cosine expansion  

 
2 2 2( ) 1 4(1 2 cos(2 ) 2 cos(4 ) )a x n a a

n
e C e x e x …π ππ π− − − / − /

∈

= + + + ;∑
Z

 

that is, the LHS is simply the convolution of a Gaussian with a comb of delta functions, 
so its Fourier transform over the real line is a dual Gaussian multiplied by the same comb 
of delta functions, which we can express as a sum of cosines with weights given by the 
dual Gaussian evaluated at integer locations. In this one dimensional case, given 1ε < , 
simply take a  small enough that 

213 cos(2 )ae xπ π ε− / <  to force almost constant. (Note: 
two times the exponential is enough to dominate the first non-constant term in the 
expansion, while the three is more than enough to dominate the first term and all the rest.) 
In the d-dimensional case on lattice dAZ , diagonalize matrix TA A , and reduce to a 
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product of one dimensional cases. The correlation function is simply a product of scaled 
versions of the above cosine expansion.  

Proposition 9. Suppose window functions gγ ,  are Gaussians on dR ; that is, there are 
constants 0a a′, >  with  

 
( )
( )

ax x

a x x

x e
g x e
γ − ⋅

′− ⋅

=
=

 

for all dx∈R . Then the correlation function ( )c j j′,  for the windows goes to zero 
rapidly as j j′−  gets large. That is, there exists constant C′  with  

 
2

( ) for all
aa

a a j j dc j j C e j j
′
′+

′− | − |′ ′ ′, ≤ , , ∈ .Z  

 

Proof. With j j′,  fixed, let ( ) ( )j aj a j a a′′ ′ ′ ′= + / +  denote the weighted average of j j′,  
and an easy computation shows  

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )aaa j x j x a j x j x a a j x j x j j j j
a a

′
′ ′ ′ ′ ′′ ′′ ′ ′− ⋅ − + − ⋅ − = + − ⋅ − + − ⋅ − .

′+
 

Thus  

 ( ) ( )( )( ) ( )( ) ( )
aa

a a j j j ja a j An j Anj An g j An e eγ
′
′+ ′ ′− − ⋅ −′ ′′ ′′− + − ⋅ −′− − =  

and summing over all n  gives the estimate  

 
2

( )
aa

a a j jc j j C e
′
′+

′− | − |′ ′, ≤  

where ( )( ) ( )
d

a a An An
n

C e ′− + ⋅
∈

′ = ∑ Z .  

Note, we can estimate C′  above by replacing the sum with an integral, and find that  

 2 1( )
det( )

dC
a a A
π /′ ≈ .

′+
 

We may now choose a a′,  small enough that the correlation function is nearly constant 

on the diagonal, then choose integer matrix B  “large enough” so that the term 
2aa

a a j jCe
′
′+

′− | − |  
is sufficiently small on the non-zero points in the sublattice dBZ .  

Proposition 10. Suppose the functions γ  and g  are Gaussians on dR ; that is, there are 
constants 0a a′, >  with  
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( )
( )

ax x

a x x

x e
g x e
γ − ⋅

′− ⋅

=
=

 

for all dx∈R . Then for a a′,  sufficiently small, and integer matrix B  sufficiently large, 
the reconstruction satisfies  

 detf B C f≈| | ⋅ ,�  

for some constant C . That is, we have an approximate reconstruction.  

Proof. With a a′,  sufficiently small, the diagonal terms in the expansion  

 ( ) det ( ) ( )
B

j j
f B c j j f j

∗′

′ ′=| | ,∑
∼

�  

are nearly constant, and introduce an error no larger than ( det )B Cε| | , times the size of 

f , as indicated in Proposition 6. The off-diagonal terms are bounded by 
2aa

a a j jC e
′
′+

′− | − |′ , 
with dj j B∗′− ∈ Z , so with B  large enough, these terms are small.  

SUMMARY 

We have shown that by using a partition of unity on the integer lattice dZ , we may 
define a generalized Gabor transform that provides a non-uniform time/frequency 
decomposition of a signal, which comes with an associated inverse transform. The Gabor 
coefficients depend only locally on the signal, as determined by the size and location of 
the support of the functions in the partition, while the size of the frequency lattice must 
be chosen complimentarily to the size of the support. By factoring the functions in the 
partition, we obtain directly the Gabor synthesis and analysis windows; with a good 
choice of functions in the partition (eg. smooth, non-negative, compact support), we 
obtain Gabor windows with similar characteristics, which are useful for practical signal 
processing tasks.  

We have used the partition of unity technique to extend the standard discrete Gabor 
transform to more general lattices in Euclidean space, and to the approximate case with 
Gaussian windows. The inverse transform is shown to be fast, and thus practical, and we 
have examined a number of other practical issues that arise in a real implementation of 
this generalized Gabor transform, in particular the reduction of artifacts. 
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A. APPENDIX: EXAMPLES OF PARTITIONS OF UNITY 
As discussed in the main section of this paper, a partition of unity is a collection of 

functions on dZ  which sum to the constant function one; that is, a collection of functions 
nw  with  

 ( ) 1 for all d
n

n
w z z= , ∈ .∑ Z  

 

It is worth pointing out that there is a general construction to obtain a partition of unity 
with useful characteristics: given any family of functions nφ  (with n  running over some 
index set, possibly infinite), we set  

 ( )( )
( )

n
n

nn

zw z
z

φ
φ ′′

= .
∑

 

Provided the denominator is never zero, nor infinite, the resulting functions nw  form a 
partition of unity. If the nφ  are chosen non-negative, then so are the nw ; if the nφ  each 
have compact support, then so do the nw ; and so on. That is, by choosing the nφ  with 
suitable characteristics, often the partition of unity has simliar characteristics, which can 
be important for typical signal processing applications. It is sometimes convenient to 
begin with one basic function 0φ  defined on Euclidean space dR  and define a family of 
functions by translation:  

 0( ) ( )n z z Anφ φ= − ,  

where A  is a fixed d d×  matrix and dn∈Z  the index vector; with the support of 0φ  
compatible with the norm of matrix A , a partition of unity is obtained by the 
normalization method mentioned above.  

There are of course many examples of partitions of unity built via simple constructions. 
In dimension one, translates of the boxcar function of length a  give the simplest 
partition, with  

 
1 1
2 21 for ( ) ( )

( )
0 otherwisen

n a z n a
w z

− ≤ < +
=  .

 

More generally, any doubly infinite, increasing sequence 1 0 1…k k k …− , , ,  of integers can be 
used to define a partition of unity with boxcar functions  
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 11 for
( )

0 otherwise
n n

n

k z k
w z +≤ <

=  .
 

A smoother choice of partition is obtained via translates of the raised cosine window, 
yielding functions  

 
1 (1 cos( )) for ( 1) ( 1)

( ) 2
0 otherwise

n

z a n a z n a
w z

π + / − < < += 
 ,

 

which also forms partition of unity on the set Z ; that is, translates of the cosine hump 
sum uniformly to one. (In fact, they sum to one even when extended to all real points R .) 
Each member in this family of functions has compact support, and is the restriction (to 
the integers) of a continuous function with continuous derivative, which has some 
advantages as a window function for signal processing.  

More generally, one may design a partition of unity using translates of a spline of class 
( )kC R ; that is, a smooth function on R  supported on some compact interval [ ]a a− , , 

constant one on the subinterval [ ]b b− ,  and chosen so the overlapping edges of translates 
sum to one. For instance, begin with the unique odd polynomial ( )p x  of degree 2 1k +  
that takes value (1) 1p = , with derivatives ( ) (1) 0kp ′ =  for 1 2k …k′ = , , . With parameters 

0a b> >  fixed, define the basic window function by  

 0

1 2(1 ( )) if
2

( ) 1 if
1 2(1 ( )) if
2

b a zp a z b
a b

w z b x b
b a zp b z a

a b

+ + + − ≤ ≤ − −
= − ≤ ≤
 + − + ≤ ≤ .

−

 

Translates of this window by multiples of a b+  forms a partition of unity for Z , and 
indeed for R  as well. (Our research team has named these “Lamoureux windows” 
although they are properly called splines.) A C∞  window may be formed by replacing 
the polynomial ( )p x  in the formulas above with a rescaled version of the hyperbolic 
tangent function, 2 1

( ) tanh( )x
x

p x
−

= . Figure 11 gives an example of a degree five 
Lamoureux window, with continuous second derivatives.   
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FIG. 11. A 2C  Lamoureux window, with 3 5( ) (15 10 3 ) 8p x x x x= − + / , 100 50a b, = , . 

In dimension d , a direct product of one-dimensional partitions over 1 da … a, ,Z Z , such 
as  

 1 2( ) ( ) ( ) ( )d dw x w x w x …w x= ,  

forms a discrete partition of unity over the d -dimensional lattice 1 da … a× ×Z Z . Other 
partitions, not of this form, may be defined: for instance, the hexagonal function shown in 
Figure 12 is given by symmetrizing afunction φ  of compact support in R  along a 
hexagonal lattice 6L  to obtain a basic window function 0w  as  

 
6

2
0

( )( ) for all
(( ) ( ))

l L

z zw z z
z l z l

ϕ
ϕ

∈

⋅
= , ∈ .

− ⋅ −∑
Z  

Translates of 0w  over the lattice 6L  gives a partition of unity. 
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FIG. 12. A partition of unity with hexagonal symmetry. 

Each of these examples is a partition of unity with compact support.  

B. APPENDIX: PROOF OF PROPOSITION 1 
In Section 4, we introduced the notion of frequency sampling on a non-rectangular 
lattice. Here we prove the key results leading to Proposition 1. Recall, B  is an invertible 
d d×  matrix with integer entries, for any index dm∈Z , we define modulation function 

mP  by  

 
12 ( )( ) for alli B m j d

mP j e jπ − ⋅= , ∈ ,Z  

and two equivalence relations are defined on the lattice dZ  by  

 iff dm m m m B′ ′− ∈ ,∼ Z  

and  

 iff dm m m m B∗ ∗′ ′− ∈ ,∼ Z  

where B∗  is the transpose of matrix B .  

As is well-known from group theory, the equivalence ∼  divides up the group dZ  into 
equivalence classes, and these classes form elements of the so-called quotient group, 
denoted d dB/Z Z . Since B  is invertible, the quotient is a finite abelian group, and thus a 
direct product of cyclic groups. In fact, one may determine this quotient group precisely 
as in the following:  

Proposition 11. Suppose ( )dB M∈ Z  is an invertible, d d×  matrix with integer entries. 
Then B  factors uniquely as B UZ= , where U Z,  are integer matrices, U  is upper 
triangular with positive diagonal, and Z  has determinant 1± . With  
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1

20

0 0 d

M …
M …

U

… M

 
 
 
 
 
 
 
 
 
  

∗ ∗
∗

= ,
# # % #

 

where 1 2 dM M …M, ,  are positive integers, then the cube  

 1 2[0 1 1] [0 1 1] [0 1 1] d
dM …M …M … …M= , , − × , , − × , , − ⊂ Z  

maps bijectively onto the quotient group d dB/Z Z .  

Proof. Column reduction of matrix B  over the ring of integers gives the factorization 
above; forcing the diagonal to be positive gives uniqueness. The cardinality of the 
quotient group d dB/Z Z  is given by a volume form, which is just 

1 2det( ) dB M M …M| |= ⋅ ⋅ , and agrees with the cardinality of the cube M . Thus, we need 
only verify the quotient map d d dB→ /Z Z Z  is injective on M . Since this map is a group 
homomorphism, it suffices to show the kernel of the quotient map, intersect M , is just 
the zero element. So, if m M∈  is equivalent to 0  mod dBZ , then m Bz=  for some 
element dz∈Z . By the factorization,  

 

1

20

0 0 d

M …
M …

m Zz

… M

 
 
 
 
 
 
 
 
 
  

∗ ∗
∗

=
# # % #

 

for some integer vector z . Starting at the last component in this equation, one sees that 
d d dm M z= , for some integer dz . Since 0 d dm M≤ < , one concludes that 0d dm z= = . 

For the next-to-last component, then 1 1 1 ( )d d d dm M z z− − −= + ∗ ; but since dz  was zero, this 
simplifies to 1 1 1d d dm M z− − −= . Once again, since 1 10 d dm M− −≤ < , one obtains 

1 1 0d dm z− −= = . Working back in this manner, one concludes all the components of m  
are zero, so 0m = , as desired.  

The cube 1 2[0 1] [0 1] [0 1]dM … M … M … … M= , , − × , , − × × , , −  above is precisely the 
cube that appears in Proposition 1. With this factorization, parts 1, 2, and 3 of 
Proposition 1 become clear (the periodicity comes from observing j j∗ ′∼  introduces a 
difference of an integer offset in the complex exponential 2 ie π , which exponentiate to no 
difference; similar for m m′∼ ). Part 4 is proved in the following.  

Proposition 12. Define function P  as  
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12 ( )( ) for vectors

d d

i B m j d

m B

P j e jπ − ⋅

∈ /

= , ∈ ,∑
Z Z

Z  

which the sum of modulation functions ( )mP j . Then  

 
det( ) if

( )
0 otherwise

dB j B
P j

∗| | ∈
= 

,

Z
 

where dB∗Z  is the discrete sublattice generated by the integer matrix B∗  obtained by 
transposing matrix B .  

Proof. As noted above, the sum over the quotient is well-defined, since the modulation 
functions m mP P ′,  are the same for vectors m m′,  equivalent mod dBZ . Also, observe that 
the function ( )P j  is constant on equivalence classes of j  mod dB∗Z , for if j j∗ ′∼ , then 
j j B z∗′ = +  for some integer vector z  and thus the corresponding exponentials agree, for  

 
1 1 1 1 12 ( ) 2 ( ) ( ) 2 ( ) ( ) ( ) 2 ( )i B m j i B m j B z i B m j BB m z i B m je e e e eπ π π π− − ∗ − − −′⋅ ⋅ + ⋅ ⋅ ⋅= = = ;  

Hence ( ) ( )P j P j′= .  

Now clearly, (0) 1P =∑ , where the sum of these ones is just the cardinality of the 
quotient group, which is exactly det( )B| | ; by periodicity, ( ) det( )P j B=| |  for all 

dj B∗∈ Z .  

To show the other j  evaluate to zero, we will show that ( ) 0P j ≠  implies dj B∗∈ Z . 
Fix j  with ( ) 0P j ≠ , and observe for all vectors m , by the factorization of B  as 
B UZ= , we have  

 1 1 1 1 1 1( ) ( ) ( ) ( ) ( )B m j Z U m j U m Z j U m z− − − − ∗ − −⋅ = ⋅ = ⋅ = ⋅ ,  

where we set 1( )z Z j∗ −= , an integer vector. Now, sum exponentials over vectors m  in 
the cube M  defined in the previous proposition, using the factorization for B , and 
expanding each m  as a linear combination of standard basis vectors 1 de …e, , we observe  
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k k

k k

i B m j

m M

i U m z

m M
d

i U e z m

m M k

d
i U e z m

m Mk

P j e

P j e

e

e

π

π

π

π

−

−

−

 
− 

 
 
 
 
 

⋅

∈

⋅

∈

⋅

∈ =

⋅

≤ <=

=

=

=

=

∑

∑

∑∏

∑∏

 

Now, from the upper triangular form for U , we know 1U −  is also upper triangular, with 
diagonal entries 1 21 1 1 dM M … M/ , / , , / . Looking at the 1k =  factor in the above product, we 
see 1

1 1 1( )U e z z M− ⋅ = / , the first component of vector z , divided by the integer 1M  on the 
diagonal of U . Since the factor  

 
11 11 1 1

1 1 1 1

2 ( )2 (( ) )

0 0

z
Mi mi U e z m

m M m M
e e ππ − ⋅

≤ < ≤ <

=∑ ∑  

is non-zero, the 1M -root of unity 
1
1

2 ( )z
Mie π  must the the trivial root (i.e. one), so 1z  is a 

multiple of 1M . Thus  

 

1

2

3

d

aM
z

z z

z

 
 
 
 
 
 
 
 
 
 
 
 
  

= .
#

 

Now, define 
0

0

a

j j B∗

 
 
 ′ = −
 
 
 

#
, so j′  is equivalent to j  mod dB∗Z , and hence ( )P j′  is 

non-zero as well. The corresponding vector z′  is thus  

 
2

1
3

0
0

( ) 0

0 d

a
z

z Z j z U z

z

∗ − ∗

   
   ′   

′ ′    = = − = .′
   
   
   ′   

# #
 

That is, this new vector z′  has a zero in the first component. As in the argument above, 
we now examine the factor for 2k = , with  
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21 22 2 2

2 2 2 2

2 ( )2 (( ) )

0 0

z
Mi mi U e z m

m M m M

e e ππ
′− ′⋅

≤ < ≤ <

=∑ ∑  

and since it is non-zero, we now conclude 2z′  is a multiple of 2M , and thus  

 
2

3

0

d

bM
z z

z

 
 
 

′  = .′
 
 
 ′ 

#
 

Continuing for each factor in the product, we eventually construct vector ( )dz , all of 
whose components are zero, and ( ) ( )( ) 0d dj Z z∗= =  which is equivalent to the original j  
(mod dB∗Z ), so we have that dj B∗∈ Z , as desired. 


