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ABSTRACT 
 

We consider a continuous version of Gabor multipliers: operators consisting of a 
short-time Fourier transform, followed by multiplication by a distribution on phase space 
(called the Gabor symbol), followed by an inverse short-time Fourier transform, allowing 
different localizing windows for the forward and inverse transforms. For a given pair of 
forward and inverse windows, which linear operators can be represented as a Gabor 
multiplier, and what is the relationship between the (non-classical) Kohn-Nirenberg 
symbol of such an operator and the corresponding Gabor symbol? These questions are 
answered completely for a special class of “compatible” window pairs. In addition, 
concrete examples are given of windows that, with respect to the representation of linear 
operators, are more general than standard Gaussian windows. The results in the paper 
help to justify techniques developed for seismic imaging that use Gabor multipliers to 
represent nonstationary filters and wavefield extrapolators. 

INTRODUCTION 
This paper is concerned with the representation of linear operators by Gabor 

multipliers. For us a Gabor multiplier is an operator of the form: a short-time Fourier 
transform, followed by multiplication by a distribution on phase space—called the Gabor 
symbol—followed by an inverse short-time Fourier transform. We explicitly allow the 
analysis window, upon which the forward short-time Fourier transform is based, to be 
different from the synthesis window, which serves as the basis for the inverse short-time 
Fourier transform.  

More precisely, we study the representation of general (i.e., non-classical) Kohn-
Nirenberg pseudodifferential operators—see for example [4]—by means of Gabor 
multipliers. As is well-known, the class of general Kohn-Nirenberg operators is simply 
all linear operators (essentially this is a version of the Schwartz kernel theorem—see (5) 
in Section 2.1). However, our aim is to analyze the correspondence between the Kohn-
Nirenberg symbol, which in the general setting is an arbitrary distribution, and the Gabor 
symbol, of a given operator, provided the latter exists. The Gabor symbol of an operator 
depends on a choice of analysis and synthesis windows; indeed for a fixed window pair, 
there may be a limited class of linear operators that may be represented as a Gabor 
multiplier.  

As far as we know the problem of representing Kohn-Nirenberg operators exactly by 
(our version of) Gabor multipliers is new, and in this paper we confine ourselves to the 
following two fundamental questions.  
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For a given pair of analysis and synthesis windows, which Kohn-Nirenberg operators 
may be represented as a Gabor multiplier?  

Are there explicit formulas relating the Gabor and Kohn-Nirenberg symbols?  

Much of the paper rests on a key technical notion of “compatible window pair”. For 
such windows we have a complete answer to both of the above questions. A common 
window choice for the short-time Fourier transform is a Gaussian, both as analysis and 
synthesis windows, and this serves as the prototype of a compatible window pair. One 
concrete result that emerges from our analysis of compatible windows is a new type of 
window, which we call an “extreme value” window—an analytic, rapidly decreasing 
window, with analytic, rapidly decreasing Fourier transform. It is more general than a 
Gaussian in the sense that the class of operators that can be represented as a Gabor 
multiplier based on Gaussian windows is a proper subset of the class that can be 
represented using extreme value windows.  

The basic questions that we address here are motivated by a particular application, 
seismic imaging, where pseudodifferential operators play an important role [6,7] and 
Gabor multipliers have been successfully implemented as an efficient and flexible 
method of seismic deconvolution [8]. These implementations rest on the fact that there 
exist efficient numerical schemes, described in [5], by which to evaluate discretized 
versions of Gabor multipliers. But something that has been lacking so far is a theoretical 
analysis of the relationship between the original operators—i.e. extrapolators or filters—
which are easily expressed as Kohn-Nirenberg operators, and the corresponding 
continuous Gabor multipliers that have been used to stand in for them. The results 
presented here serve to fill in the gap.  

There is an important issue concerning the evaluation of linear operators in practical 
applications that we do not address in the present paper, namely, to quantify the degree of 
approximation to a continuous Gabor multiplier that is attained by discretized versions of 
it. For results in this direction, see, for example,  Feichtinger and Nowak (2003) and [9].  

The paper is organized as follows. The mathematical framework in which we 
formulate the problems described above is made precise in Section 2.1, where we fix the 
basic notational conventions. Theorem 1 of Section refsec-schwartzkernel gives a 
straightforward way to express the Schwartz kernel of a linear operator in terms of its 
Gabor symbol, which in turn yields an expression for the Kohn-Nirenberg symbol in 
terms of the Gabor symbol. The converse problem of expressing the Gabor symbol in 
terms of the Kohn-Nirenberg symbol seems to be much more difficult, and takes up the 
bulk of the paper. Section 2.3 provides the basic motivation for our key technical 
definition of compatible windows in Section 3.1. An alternate definition of compatibility, 
proved in Theorem 2 of Section 3.2 to be equivalent to the original, leads to a sequence 
of technical results in Section 3.2 that lay the groundwork for our main Theorems. These 
are Theorem 3 and Theorem 4 of Section 3.3. In Section 3.4 we apply Theorem 4 to show 
that extreme value windows serve to represent a wider class of linear operators as Gabor 
multipliers than is possible with Gaussian windows. We discuss briefly in Section 3.5 a 
natural extension of the notion of compatibility to singular windows. Lastly, Section 4 
provides a short summary of the paper.  
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PRELIMINARIES 

Notation and conventions 
Our notation is mostly standard, with the exceptions that: (i) we use the version of the 

Fourier transform that has a factor of 2π  in the exponent, and (ii) we take tempered 
distributions to be continuous, conjugate linear, rather than linear, functionals on the 
space of Schwartz class functions. Generally speaking, we deal with functions and 
distributions on nR , where the value of n is fixed within a given context, and nR  is 
always the domain of integration, which we omit. We indicate a point in 2nR  by a pair 
(x,y) of points , nx y∈R , and integration over 2nR  is indicated by a pair of integral signs. 
For convenient reference, we have compiled in Table 1 a list of some of the function 
spaces and operators that we use repeatedly. 

We work within the basic framework of Ln, the space of continuous, linear operators  

 ': n nL →S S , 

making frequent use of the correspondence between Ln and '
2nS  [10]. More precisely, 

given a linear operator L∈Ln, there is a unique distribution '
2( ) nK K L= ∈S , its Schwartz 

kernel, that satisfies the equation 

 , ,K Lθ ϕ ϕ θ⊗ =  , nϕ θ∀ ∈S  (1) 

And conversely, given '
2nK ∈S , the equation (1) evidently determines a unique nL∈L . 

(Here ⊗  denotes the tensor product: ( , ) ( ) ( )f g x y f x g y⊗ = .) The adjoint of a linear 
operator nL∈L  is the linear operator *

nL ∈L  defined by the equation  

 * , ,L Lϕ θ θ ϕ=  , nϕ θ∀ ∈S  (2) 

In order for the operator ψT , listed in Table 1, to be well-behaved, some restrictions 
have to be placed on ψ ; in this regard we introduce the notion of a “tempered change of 
variables”, as follows. 

Definition 1. We say that a smooth, invertible map  

 : m mR Rψ → , 

is a tempered change of variables if each of the operators 1 1
* *, , ,ψ ψ ψ ψ− −T T T T  maps Sm into 

Sm. 

There is one tempered change of variables on R2n whose corresponding operator we 
assign a special notation:  
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 _ψT_ = T , where _( , ) ( , )x y x y xψ = − . (3) 

Given an arbitrary tempered distribution '
2( , ) nxσ ξ ∈S , we write ( , )X Dσ  for the 

operator defined by the formula  

 
2

( ) ( ) ( ) ( ) ( )n n
ix

X D X D x x de π ξ
σ σ ϕ σ ξ ϕ ξ ξ′ ⋅

, : → ; , = , .∫S S F  (4) 

(Here : n nX →R R  denotes the identity map, so that, for example, ( )X x xα α= . D  

stands for the differential operator 1
2

D
iπ

= ∂ .) We refer to ( , )X Dσ  as a Kohn-

Nirenberg pseudodifferential operator; the distribution ( , )xσ ξ  is its Kohn-Nirenberg 
symbol. 

In the context of classical pseudodifferential operators, where the symbol ( , )xσ ξ  is 
required to be smooth and of bounded growth, the integral on the right-hand side of (4) is 
inherently well-defined. A simple way to give the integral an unambiguous interpretation 
in the present much more general setting is to define ( , )X Dσ  in terms of its Schwartz 
kernel:  

 2( ( , ))K X Dσ σ= T_F . (5) 

Since each of the operators T_ and F2 carries '
2nS  bijectively onto itself, it is evident 

from the representation (5) that the class of Kohn-Nirenberg pseudodifferential operators 
on Rn is identical with nL  itself. Among the various ways to represent a linear operator, 
however, the Kohn-Nirenberg symbol and accompanying formal representation (4) are of 
particular interest since, from the physical point of view, they are natural both for partial 
differential operators and for nonstationary filters [4]. In other words, in applications one 
is sometimes given the Kohn-Nirenberg symbol of a linear operator directly. 

Note that the Kohn-Nirenberg symbol Lσ  and the Schwartz kernel K(L) of a linear 
operator ': n nL →S S  both belong to '

2nS . But there is a sense in which these are distinct 

versions of '
2nS , in that Lσ  is a distribution on phase space, mn n×R R , while K(L) is a 

distribution on the cross product n n×R R  of the underlying space with itself. Indeed, 
since it is sometimes useful to make this distinction between space and frequency, we 
reserve ξ  and η  for frequency variables, using other letters (such as x,y,τ,t,v,w) for 
spacial variables. 
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 Table 1. Notation 

 

Function and distribution spaces  
Sn  Schwartz class functions : n nϕ →R R   

'
nS   (conjugate linear) tempered distributions : nu →CS   

Pn  ∞C  functions : n nϕ →R R  such that αϕ∂  is bounded by a 

polynomial Pα  for every multi-index α  
  

Operators 
Description Symbol Action on functions Adjoint 

Composition with a 
change of variables 

: m mψ →R R   

ψT  ϕ ϕ ψ6 D  *
1 1det Jψ ψ ψ− −=T T

Fourier transform  

( )' '

: n n

n n

→

→

S SF
S S

 
l

2

( ) ( )

( )i x

x

e x dxπ ξ

ϕ ϕ ξ

ϕ− ⋅= ∫
6

  
1∗ −=F F   

Partial Fourier transform  

( )
2 2

' '
2 2

: n n

n n

→

→
1
S SF
S S

 
1

2

( ) ( )

( )i x

x y y

e x y dxπ ξ

ϕ ϕ ξ

ϕ− ⋅

, ,

= ,∫
F6

  
1

1 1
∗ −=F F   

Partial Fourier transform  

( )
2 2

' '
2 2

: n n

n n

→

→
2
S SF
S S

 
1

2

( ) ( )

( )i y

x y x

e x y dyπ η

ϕ ϕ η

ϕ− ⋅

, ,

= ,∫
F6

  
1

2 2
∗ −=F F   

Modulation  

( )' '

: n n

n n

ξ
→

→

S SM
S S

 
2( ) ( )i xx e xπ ξϕ ϕ⋅6   ξ ξ

∗
−=M M   

Translation  

( )' '

: n n

n n

→

→
x
S ST
S S

 
( ) ( )t t xϕ ϕ −6   

x x
∗

−=T T   

Multiplication by '
ma∈ S  : mNα → '

mP S
 

aϕ ϕ6   —  
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 The Schwartz kernel of a general Gabor multiplier 

If ng : →R C  is measurable and bounded by a polynomial, then the formula  

 ( )g xV x M T gξϕ ξ ϕ, = ,  

defines a short-time Fourier transform 2g n nV : →S P  with analysis window g. The basic 
theory of short-time Fourier transforms is described in [4]. For nγ ∈S , the range of Vγ  

lies in 2nS ; the adjoint Vγ
∗  of Vγ  is the map  

 2n nV V u u Vγ γ γϕ ϕ∗ ′ ′ ∗: → ; , = ,S S . 

If the distribution 2nu ′∈S  happens to be an 2L  function, then V uγ
∗  is given by the formula  

 ( ) ( ) ( )xV u t u x M T t dxdγ ξξ γ ξ∗ = , .∫∫  

 

Definition 2. Let ng : →R C  be measurable and bounded by a polynomial, and let 

nγ ∈S . If in addition 0g γ, ≠ , then we say that each of ( )g γ,  and ( )gγ ,  is a window 

pair on nR .  

It is a basic fact about the short-time Fourier transform that for any window pair 
( )g γ, , the map  

 1
g n nV V

g γγ
∗ : →

,
S S  (6) 

is the identity. Recall from Table 1 that we use the symbol aN  to denote multiplication 
by a.  

Definition 3. Given a window pair ( )g γ,  on nR  and a distribution 2na ′∈S , we call  

 1g
a a gV N V

g
γ

γγ
, ∗=

,
M  

a Gabor multiplier; we refer to the distribution a as its Gabor symbol.  

(Note that Feichtinger and Nowak [1] use the term “short-time Fourier transform 
multiplier” for a Gabor multiplier based on identical windows ( )g g, , while in 
Feichtinger and Nowak (2003) “Gabor multiplier” refers to a more general object than we 
have defined.) A Gabor multiplier, in the sense of Definition 3, is a linear operator 
belonging to nL . Its adjoint is also a Gabor multiplier, and the precise connection 
between the two works out as follows.  
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Proposition 4. For any window pair ( )g γ,  and any distribution 2na∈S , the adjoint of 

the Gabor multiplier g
a
γ,M  is g g

a a
γ γ∗, , 

 
 

=M M . 

Roughly speaking, the defining structure of a Gabor multiplier means that it carries an 
implicit diagonalization on phase space. From the theoretical point of view, this fact 
makes it desirable to express, if possible, a given linear operator nL∈L as a Gabor 
multiplier, the structure of the operator then being encoded in its Gabor symbol. It is also 
desirable to express an operator as a Gabor multiplier from the point of view of 
applications, since there exist fast computational methods to evaluate discretized Gabor 
multipliers [5]. 

The main problem that we are concerned with in the present paper is to express a 
given Kohn-Nirenberg pseudodifferential operator as a Gabor multiplier. Before 
considering the issue in detail, we deal briefly with the converse problem, of expressing a 
given Gabor multiplier as a pseudodifferential operator. In light of the expression (5) for 
the Schwartz kernel of a pseudodifferential operator, the latter problem is equivalent to 
computing the Schwartz kernel of a Gabor multiplier. This turns out to be relatively 
straightforward, and can be carried out in full generality. In stating the basic result we 
make use of the following notation. Let 4 2n nS : →S S  denote the map defined by  

 ( ) ( )S x x xρ ξ ρ ξ ξ, = , , ,− .  

The corresponding adjoint is the map  

 2 4n nS S u u Sϕ ϕ∗ ′ ′ ∗: → ; , = , .S S  

 

Theorem 1. An arbitrary Gabor multiplier g
a
γ,M  has Schwartz kernel  

 1( )g
a gV S a

g
γ

γγ
, ∗ ∗

⊗= .
,

K M  (7) 

 

Proof. Note that  

 1g
a ga V V

g
γ

γϕ θ ϕ θ
γ

, , = ,
,

M  

and  

 2 2( ) ( ) ( ) ( ) ( )it i
gV V x t e g t x dt e x dπ ξ π τ ξ

γϕ θ ξ ϕ θ τ γ τ τ− ⋅ − ⋅, = − −∫ ∫  

 2 2( ) ( ) ( ) ( )it it e g t x e x d dtπ ξ π τ ξϕ θ τ γ τ τ⋅ − ⋅= − −∫∫  
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 2 ( ) ( ) ( ) ( )i te x g t x t d dtπ τ ξγ τ θ ϕ τ τ− ⋅= − − ⊗ ,∫∫  (8) 

 2 ( ) ( )
( ) ( ) ( )i t
x xe T g t t d dtπ τ ξ ξ γ τ θ ϕ τ τ− , ⋅ ,−
,= ⊗ , ⊗ ,∫∫  

 ( )gV x xγ θ ϕ ξ ξ⊗= ⊗ , , ,− .  

Thus,  

 

1

1

g
a g

g

a SV
g

V S a
g

γ
γ

γ

ϕ θ θ ϕ
γ

θ ϕ
γ

,
⊗

∗ ∗
⊗

, = , ⊗
,

= , ⊗ .
,

M

 

 

Since generalized Kohn-Nirenberg operators encompass all of nL , given an arbitrary 
Gabor multiplier g

a
γ,M  on nR , there exists a distribution 2nσ ∈S  such that 

( ) g
aX D γσ ,, =M . By Theorem 1, this is equivalent, in terms of Schwartz kernels, to the 

equation  

 2
1

gV S a
g γσ
γ

∗ ∗
⊗= ,

,
T_F  (9) 

which can be solved for σ  in terms of a  to yield  

 1 1
2

1
gV S a

g γσ
γ

− − ∗ ∗
− ⊗= .

,
F T  (10) 

In contrast, there is no obvious way to solve equation (9) for a  in terms of σ , since 
neither of the operators gVγ

∗
⊗  or S ∗  is injective. Indeed, determining the Gabor symbol 

that corresponds to a given Kohn-Nirenberg symbol seems to be a much more intricate 
problem.  

Identical Gaussian windows 
Let us specialize to the case of a window pair consisting of identical Gaussians, 

2

( ) ( ) tg t t e πγ −= = , where we use the notation 2t t t= ⋅  for nt∈R . The special structure of 
these windows means that we can obtain an alternate formula for the Schwartz kernel of 
any Gabor multiplier based on them.  

The key point in our proof of Theorem 1, at which we can take advantage of our 
present choice of Gaussian windows, is the integral (8). The integrand involves the 
product  
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2 2

2 2
2 2

( ) ( )

2 ( ) ( )

( ) ( )
t

x t x

x t

x g t x e e
e eτ π

π τ π

π τ

γ τ
+

− − − −

− − − −

− − =

= .
 

Thus, in terms of the tempered change of variables  

 2( ) ( )tv w tτ τ+, = , − ,  

we see that ( ) ( )x g t xγ τ − −  has the form  

 1 2( ) ( ) ( ) ( )x g t x G v x G wγ τ − − = − ,  (11) 

where 
22

1( ) vG v e π−=  and 
2

2
2 ( ) wG w e

π−= . Substituting (11) into the expression (8) for 

gV Vγϕ θ , we obtain  

 2 ( )
1 2( ) ( ) ( )i t

gV V e G v x G w t d dtπ τ ξ
γϕ θ θ ϕ τ τ− ⋅= − ⊗ ,∫∫  

 1
2 1

1 2( ) ( ) ( ) detiwe G v x G w v w J dvdwπ ξ
ψ

θ ϕ ψ −
⋅ −= − ⊗ , | |∫∫ D  

 2
( 0) 1 2 ( ) ( )iw
xe T G G v w v w dvdwπ ξ

ψθ ϕ⋅ ∗
,= ⊗ , ⊗ ,∫∫ T  

 2
( 0) 1 2 ( ) ( )iw
xe T G G v w v w dv dwπ ξ

ψθ ϕ⋅ ∗
,

 = ⊗ , ⊗ , 
 

∫ ∫ T  

 i( )1
2 2 11 GG ψθ ϕ− ∗= ⊗ ∗ ⊗F T , (12) 

where i 11( ) ( )v G vG = −  and 1∗  denotes convolution with respect to the first n  variables. 
Replacing 1

2
−F  with 1

2
−F , and carrying 1F  through the convolution, we obtain from (12) 

that  

 il( )1
2 11gV V GGγ ψϕ θ θ ϕ− ∗= ⊗ ⊗F FT . 

Proceeding as in the proof of Theorem 1, this leads to the following formula for the 
Schwartz kernel of g

a
γ,M :  

 l 21

1
1

1( )g
a GG

K N a
g

γ
ψγ

, −
⊗=

,
M T F F . (13) 

Recalling that 
2

( ) ( ) tg t t e πγ −= = , 
22

1( ) vG v e π−= , and 
2

2
2 ( ) wG w e

π−= , we have  

 l 2 2
2 2 2

21
( ) 2

n ww e eGG
π πηη − − −⊗ , = .  

Since 
22 22t ng e dtπγ − /, = =∫ , the formula (13) simplifies as in the next proposition.  
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Proposition 5. Let 
2

( ) ( ) tg t t e πγ −= =  be identical Gaussians on nR . Then for any 

2na ′∈S , the Schwartz kernel of g
a
γ,M  is  

 1
1( )g

a GK N aγ
ψ

, −= ,M T F F  (14) 

where 2nG : →R R  is the Gaussian 
2

2 ( )( ) wG w e
π ηη − ,, =  and ψ  is the tempered change of 

variables 2( ) ( )tt tτψ τ τ+, = , − .  

Each of the operators 1
1 GNψ
−, ,T F  and F  occurring in the expression (14) for the 

Schwartz kernel of g
a
γ,M  is injective. Therefore if ( )g

a X Dγ σ, = ,M , we can, by comparing 
the Schwartz kernels of the two operators, express the Gabor symbol of g

a
γ,M  in terms of 

σ  as  

 
2

2 ( )1 where ( ) y i y
Ha N H y e

π η π ησ η , − ⋅−= , , = .F F  (15) 

Moreover, for a given 2nσ ′∈S , the operator ( )X Dσ ,  can be expressed as a Gabor 
multiplier based on identical Gaussian windows only if the expression (15) yields a well-
defined tempered distribution a . (Note that (15) cannot be written as a convolution, 
because the rapidly increasing function H  does not have a Fourier transform.)  

Are there window pairs ( )g γ,  other than identical Gaussians for which one can obtain 
results analogous to these? The purpose of this paper is to describe a class of window 
pairs for which this is possible.  

MAIN RESULTS 

Definition and examples of compatible window pairs 
The expression (14) for the Schwartz kernel of a Gabor multiplier based on identical 

Gaussians is the basis for the formula (15). With an eye to obtaining more general results 
along these lines, we investigate the class of all window pairs for which a formula 
analogous to (14) exists. In this regard the essential property of a Gaussian is the 
factorization rule (11), so we focus on the class of all window pairs that obey such a rule. 
This leads directly to the following key technical notion.  

Definition 6. We say that a window pair ( )g γ,  on nR  is compatible, and that g  and γ  
are compatible windows, if there exist functions 1 2

nG G, : →R C  and a tempered change 
of variables ( ) ( )v w tψ τ, = ,  with w t tau= −  such that for every nt xτ , , ∈R ,  

 1 2( ) ( ) ( ) ( )x g t x G v x G wγ τ − − = − .  
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Note that our derivation of formula (13) in Section 2.2 is valid for arbitrary compatible 
windows as we have just defined them. Hence we immediately have the following result.  

Proposition 7. Let ( )g γ,  be a compatible window pair on nR . Then for any 2na ′∈S , the 
Schwartz kernel of g

a
γ,M  is  

 l
21

1
1

1( )g
a GG

K N a
g

γ
ψγ

, −
⊗= ,

,
M T F F  

where 1 2G G,  and ψ  are related to ( )g γ,  as in Definition 6.  

If ( )g γ,  is compatible then so is ( )gγ , . The precise connection between the 
accompanying sets of functions as stated below may be easily verified. Here we write 

2 2n nψ↔ : →R R  for the change of variables ( ) ( )x y y xψ↔ , = , , and we use the notation 
i( ) ( )F x F x= − .  

Proposition 8. Let ( )g γ,  be a compatible window pair on nR , so that  

 1 2( ) ( ) ( ) ( )x g t x G v x G wγ τ − − = − ,  

in accordance with Definition 6. Then the reverse window pair ( )gγ ,  is also compatible 
and satisfies the equation  

 1 2( ) ( ) ( ) ( )g x t x G v x G wτ γ ′ ′ ′ ′− − = − ,  

where i
1 21 2G GG G
′ ′= , = , and ( ) ( )v w v wψ′ ′

↔, = ,D . 

Table 2 lists several families of compatible window pairs, alongside their 
corresponding factorizations and changes of variables, as prescribed by Definition 6. The 
class of compatible window pairs is easily seen to be invariant with respect to a number 
of elementary operations: rescaling, translation and modulation of either window, and 
linear change of variables applied simultaneously to both windows. This observation 
shows that the list in Table 2 is not complete. On the other hand, the window pairs listed 
in Table 2 are reasonably representative. For example, it turns out that every non-
negative compatible window pair on 1R  can be obtained by translating, dilating, 
reversing or rescaling the given examples, or by reversing the order of a window pair 
obtained this way. This is a rather involved technical result that will be presented in a 
forthcoming paper [3].  
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Table 2. Examples of compatible windows. The parameters m kµ α κ, , , ,  appearing in lines (3.-

5.) are positive scalars. The window pairs of lines (1.-3.) are defined on nR  for any n ; the 
window pairs of lines (4.,5.) are defined on 1R  only. 

Compatible window pairs ( )g γ,   
# ( )g t   ( )γ τ   ( ) ( )v w tψ τ, = ,   1( )G v   2 ( )G w    
1. 1 nSγ ∈ ( )tτ τ, −  ( )vγ  1  
2. 2 i te π ξ ⋅

nSγ ∈ ( )tτ τ, −  2 ( )i ve vπ ξ γ⋅ 2 i we π ξ ⋅   
3. 2mte−  

2

e µτ−   ( )mt
m tµτ

µ τ+
+ , −   2( )m ve µ− +   

2m
m we
µ
µ+−    

4. tt ee
α−  ee

αττ −   ( )( )( )11
2log tet tα τ

α τ−++ , − 2 2 vv ee
α−   ( ) 2cosh( 2)w αα − //   

5. tkt ee
α− ee

ατκτ −  ( )( )( )11
2log tet tα τ

α τ−++ , − ( ) 2 vk v ee
ακ+ −

2

k
k

k kw we e
κ

κα α α
κ κ

+

+ +
−− +

  
 

 

The example of line (1.), Table 2, which satisfies the definition of compatibility in a 
trivial way, is not directly of practical interest. Of course the Gaussian windows of 
line (3.) are the prototype for the notion of compatibility, and they are a standard window 
choice for the short-time Fourier transform. The most interesting examples in Table 2 are 
the windows of line (4.) and their generalizations in line (5.). These were discovered 
using the alternate characterization of compatibility developed in the next section of this 
paper; their full derivation will be presented in [3]. Like Gaussians, these windows have a 
fundamental role in probability theory and arise in connection to a variant of the central 
limit theorem. More precisely, let E  denote the function g  of line (4.) in the special case 

1α = :  

 ( )
tt eE t e −= .  

Properly scaled affine transformations of E , of the form  

 1 ( )a t
bE

b
− ,  

are the density functions of so-called “extreme value” probability distributions, described 
by Fisher and Tippett in [2]. Based on this, we refer to the windows of lines (4., 5.) as 
extreme value windows—see Figure 1.  
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FIG. 1. Extreme value windows. The function ( )
tt ef t e

α−= , above, and its reversal ( )f t− , 
below, are plotted for 10α = . Note the ( )f t−  is close to being causal, i.e. zero for negative 

values of t . This is because the double exponential 
tee

α−−  tends to the Heaviside function with 
increasing α . 

Note that the Fourier transform of an extreme value window is proportional to the 
gamma function, restricted to a line of constant real part:  

 1 2( )
tkt e k ie

α πξ ξ
α α α

 
 
 
 
 

−  = Γ − . 
 

F  

Thus the Fourier transform of an extreme value distribution is analytic, never zero, and 
rapidly decreasing. In Section 3.4, we show that extreme value windows have a certain 
advantage over Gaussians with respect to the representation of linear operators.  

An alternate characterization of compatibility 
Here we develop an alternate characterization of compatibility that makes it easier to 

derive formulas and to prove some technical facts that will be needed in subsequent 
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sections. The arguments given here are purely technical; they build toward our main 
results which are presented in the following Section 3.3.  

Let ( )g γ,  be a compatible pair on nR  with corresponding functions 1 2G G,  and 
tempered change of variables ( ) ( )v w tψ τ, = , , as stipulated in Definition 6. It can be 
deduced from the basic equation, 

 1 2( ) ( ) ( ) ( ) nx g t x G v x G w t xγ τ τ− − = − ∀ , , ∈ ,R  (16) 

that there are several simplifying assumptions to be made concerning 1 2G G,  and ψ  
without any incumbent loss of generality.  

Firstly, note that  
 1 2( ( ) ) ( ) ( ) ( )G v t x G t x g t xτ τ γ τ, − − = − −  

 (( ) ( )) (0 ( ))t x t g x tγ τ= − − − − −  

 1 2( ( 0) ( )) ( )G v t x t G tτ τ= − , − − −  

 1 2( ( 0) ) ( )G v t t x G wτ= − , + − .  (17) 

 

This leads to the first of our simplifying propositions.  

Proposition 9. It may be assumed without loss of generality that  

 ( ) ( 0) nv t v t t tτ τ τ, = − , + ∀ , ∈ .R  (18) 

 

Proof. Suppose that (18) fails to hold, and consider the new function v′ , defined by  

 ( ) ( 0) nv t v t t tτ τ τ′ , = − , + ∀ , ∈ .R  

Based on the fact that ( )v wψ = ,  is a tempered change of variables, it may be verified 
that the change of variables ( )v wψ ′ ′= ,  is tempered also. And by construction,  

 ( ) ( 0) nv t v t t tτ τ τ′ ′, = − , + ∀ , ∈ .R  

Now, applying the identity (17) yields  

 1 2 1 2

1 2

( ) ( ) ( ( 0) ) ( )

( ) ( )

G v x G w G v t t x G w

G v x G w

τ
′

− = − , + −

= − .
 

Therefore the defining equation (16) remains satisfied if we replace ψ  by the new change 
of variables ψ ′ .  
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Proposition 10. It may be assumed without loss of generality that (0 0) 0v , = .  

Proof. The equation that defines compatibility, (16), remains satisfied if 1G  is replaced by  

 1 1( ) ( (0 0))G y G y v′ = + ,  

and v  is replaced by  

 ( ) ( ) (0 0)v t v t vτ τ′ , = , − , .  

The modified change of variables ( )v wψ ′ ′= ,  is tempered, and by construction 
(0 0) 0v′ , = ..  

Proposition 11. Without loss of generality, 2 (0) 1G =  and 1G gγ=  

Proof. Substituting 0w =  (i.e., t τ= ) and 0x = into the equation (16) yields  

 1 2( ) ( ) ( ( )) (0)t g t G v t t Gγ = , .  (19) 

Since 0 g gγ γ≠ , = ∫ , it follows from (19) that that 2 (0) 0G ≠ . The equation (16) 
evidently remains satisfied if 2G  is replaced by 

2

1
2(0)G G  and 1G  is replaced by 2 1(0)G G , 

so we may assume 2 (0) 1G = .  

Assuming in addition that (18) holds and that (0 0) 0v , = , we have that 
( ) (0 0)v t t v t t, = , + = . It then follows from equation (19) that 1( ) ( ) ( )G t t g tγ= .  

It will streamline subsequent arguments to assume that 1 2G G,  and ψ  have the forms 
given in Propositions 9, 10, and 11. We now introduce the notion of “product-translation 
commutativity” for a window pair.  

Definition 12. Let ( )g γ,  be a window pair on nR . We say that ( )g γ,  is product-
translation commutative, or that g  and γ  are product-translation commutative, if there 
exist functions nC : →R C  and n nζ : →R R  such that for every nw∈R , 

 ( )( ) ( )w wgT C w T gζγ γ= ,  (20) 

and such that ( ) ( ( ) )t t t tτ ζ τ τ, − − , −6  is a tempered change of variables.  

Although it is not immediately obvious, product-translation commutativity of a 
window pair is equivalent to compatibility. This fact facilitates the analysis of 
compatibility.  
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Theorem 2. A window pair ( )g γ,  is product-translation commutative if and only if it is 
compatible. Moreover, if a window pair ( )g γ,  has this property then, without loss of 
generality, the terms occurring in the respective defining equations,  

 ( ) 1 2( ) ( ) and ( ) ( ) ( ) ( )w wgT C w T g x g t x G v x G wζγ γ γ τ= − − = − ,  

may be assumed to be related by the formulas  

 2 ( ) ( ) and ( ) ( 0)G C v t t t y v yτ ζ τ ζ= , , = − − = − − , .  

 

Proof. We prove the equivalence of Definitions 6 and 12; the stated formulas emerge in 
the course of the proof.  

Suppose that ( )g γ,  is compatible, with associated functions 1 2G G,  and ψ   that satisfy 
the properties in Propositions 9, 10, and 11. The basic equation of Definition 6, equation 
(16), can be written symbolically as  

 ( ) ( 0) 1 2x x xT g T G Gψγ, ,⊗ = ⊗T  

 ( ) ( 0) 1 2x x xg T T G Gψγ − ,− ,⇔ ⊗ = ⊗T  

 1 2( ) ( ( ) ) ( )g t G v x t x x G wγ τ τ⇔ ⊗ , = + , + − .  (21) 

 

Define ( ) ( 0)y v yζ = − − , , so that substituting x t= −  into (21) yields  

 ( )g tγ τ⊗ , = 1 2( ( 0) ) ( )G v t t G wτ − , +  

 = 1 2( ( )) ( )G t w G wζ−  

 = 2( ( )) ( ( )) ( )g t w t w G wζ γ ζ− − (by Proposition 11) (22) 

The identity w t τ= −  implies that ( ) ( )wg t gT tγ τ γ⊗ , = . Therefore (22) is equivalent to 
the equation 

 2 ( )( ) ( ) ( )( )w wgT t G w T g tζγ γ= .  (23) 

Note that ( ) ( 0) ( )v t v t t t tτ τ ζ τ, = − , + = − − , so the tempered change of variables 
( )v wψ = ,  is precisely the map ( ) ( ( ) )t t t tτ ζ τ τ, − − , −6 . Together with (23), this 

verifies that the pair ( )g γ,  conforms to Definition 12 of product-translation 
commutativity, with 2C G= .  

Conversely, suppose that the window pair ( )g γ,  is product-translation commutative, 
with associated functions C ζ,  as in Definition 12. Set ( ) ( )v t t tτ ζ τ, = − − , so that 



Representation of linear operators 
 

 CREWES Research Report — Volume 15 (2003) 17 
 

( ( ) ( )) ( ( ) )v t w t t t tτ τ ζ τ τ, , , = − − , −  is a tempered change of variables. As before, 
( ) ( )wg t gT tγ τ γ⊗ , = , so by definition,  

 ( )

( ) ( ( )) ( ( )) ( )
( ) ( ( ) ) ( ( ) ) ( )

( )( ) ( )
x x

g t t w g t w C w
T g t t w x g t w x C w

g v x C w

γ τ γ ζ ζ
γ τ γ ζ ζ

γ
,

⊗ , = − −
⇒ ⊗ , = − − − −

= − .

 

Thus ( )g γ,  conforms to Definition 6, with associated functions 1G gγ= , 2G C=  and 
( )v wψ = , .  

We are now in a position to derive two additional formulas concerning compatible 
window pairs. Recall that n nX : →R R  denotes the identity map; kX  denotes its k -th 

component. We write i( )gX γ∗  for the vector i i( )1( ) ( )ngX … gXγ γ∗ , , ∗ , and similarly 

( )1 ngX gX … gXγ γ γ, = , , , , . A tilde over a function indicates reflection in the 

argument: i( ) ( )F y F y= − .  

Proposition 13. If ( )g γ,  is a compatible pair then, without loss of generality, the 
associated function 2G  is given by the formula  

 
i

2
gG
g
γ
γ
∗

= .
,

 (24) 

And the change of variables ψ  can be expressed as ( ) ( ( ) )t t t tψ τ ζ τ τ, = − − , − , where 
the restriction of ζ  to points w  at which 2 ( ) 0G w ≠  is given by the formula  

 
i

i
( ) gXgX

gg
γγζ
γγ
,∗

= − .
,∗

 (25) 

 

Proof. By Theorem 2, g  and γ  satisfy the equation  

 2 ( )( ) ( )w wgT G w T gζγ γ= .  

Integrating both sides over nR  and rearranging terms yields 
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i

i

2

( )

( )
( )

( )

( )

w

w

gTG w
T g

g w

g

g w
g

ζ

γ

γ

γ

γ

γ
γ

=

∗
=

∗
=

,

∫
∫

∫
. 

 

Observe that  

 

i

2 ( )

2

( ) ( )

( ) ( )

( ) ( ( ))

w

w

gX w XgT

XG w T g

G w X w g

ζ

γ γ

γ

ζ γ

∗ =

=

= + .

∫
∫

∫
 

Also,  

 i
2 ( )g G w gγ γ∗ = , ,C C  

so, provided 2 ( ) 0G w ≠ , the right-hand side of (25) becomes  

2

2

( ) ( ( )) ( ) ( )
( )

gX g gXG w X w g w ac gX g w
G w g g g g

γ γ γζ γ ζ γ γ ζ
γ γ γ γ

, , ,+
− = + − , , = .

, , , ,
∫  

It turns out that 2G  can never be zero, so that in fact the formula (25) is valid 
everywhere, but we will not prove this in the present paper (see [3]).  

Next we prove some technical results, in anticipation of the coming section, where we 
relate the Gabor symbols of Gabor multipliers based on compatible windows to their 
Kohn-Nirenberg symbols.  

Proposition 14. Let ( )g γ,  be a compatible window pair, with associated functions 

1 2G G, . Then without loss of generality  

 l
2 21

1 1 ˆ ˆ( ) ( )g gGGg g
γ γ

γ γ
⊗ = ∗ ⊗ ∗ .

, ,
�  

 

Proof. This is just an application of Propositions 11 and 13.  
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Recall that ψ−  denotes the particular change of variables ( ) ( )t tψ τ τ τ− , = , −  and that 
T_  denotes the corresponding operator ψ−

T . 

Lemma 15. Let ( )g γ,  be a compatible window pair, with associated change of variables 
( ) ( ( ) )t t t tψ τ ζ τ τ, = − − , −  (as in Theorem 2). Then  

 ( ) ( ( ) )t t t tψ τ ζ τ τ, = − − , −  

Proof. Write 1
1 2( ( ) ( )) ( )f x y f x y x yψ −, , , = , . Then  

 1
2 2 1 2 1( ) ( ) ( ( ) )x y x y f f f f fψ ψ ζ−, = , = − − , − .D  

Combining the above expressions for x  and y  yields that  

 1 ( )f x y yζ= − + .  

Thus,  
 1

1 2 1 2 1( ) ( ) ( ) ( ( ) )x y f f f f f x y y yψ ψ ψ ζ−
− −, = , = , − = + − , .D  

Proposition 16. Let ( ) ( ( ) )t t t tψ τ ζ τ τ, = − − , −  be the change of variables associated to 
a compatible window pair ( )g γ, . Then 1

2
1 1

ie π ϕ
ψ −

−
− =FT T F , where  

 ( ) ( ( ))y y yϕ η η ζ, = ⋅ − .  

 
Proof. First note that 1 ψ ψψ −

−− =T T T D . Let 2( ) nF yτ , ∈S  be a dummy function, with τ  

serving as Fourier dual variable to η . Then  

 ( ) 2
1 ( ) ( )iF y e F y dπ τ η

ψ ψ ψ ψη τ τ
− −

− ⋅, = ,∫FT TD D   

 2 ( ( ) )ie F y y y dπ τ η τ ζ τ− ⋅= + − ,∫  (by Lemma 15) 

 2 ( ( )) 2 ( )i y y ie e F y dπ η ζ π τ η τ τ− ⋅ − − ⋅= ,∫  

 2 ( ( ))
1 ( )i y ye F yπ η ζ η− ⋅ −= , .F  

 
By density of S 2n  in 2n

′S  and continuity of the operators in question, it follows that  
 1

2
1 1

ie π ϕ
ψ −

−
− = .FT T F  
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Relation between the Gabor and Kohn-Nirenberg symbols 
In Section 2.3 we derived an explicit formula for the Gabor symbol of a Gaussian Gabor 
multiplier in terms of its Kohn-Nirenberg symbol, and then used this to constrain the 
class of Kohn-Nirenberg operators that can be realized as such a Gabor multiplier. We 
now present the corresponding results in a much more general setting, namely, for 
arbitrary compatible windows.  
Theorem 3. Let 2na ′∈S  and let ( )g γ,  be a compatible window pair on nR . Then 

( )g
a X Dγ σ, = ,M  if and only if the symbols a  and σ  are related by the equation  

 2
2

1 ˆ ˆ( ) ( ) ig g a e
g

π ϕγ γ σ
γ

−∗ ⊗ ∗ = ,
,

� F F  (26) 

where the phase function ϕ  is given in terms of ( )g γ,  by the formula  

 
i

i
( ) ( )( )

( )
gXgX yy y
gg y

γγϕ η η
γγ

  ,∗
, = ⋅ − − .    ,∗  

 

 
Proof. Comparing the Schwartz kernel of g

a
γ,M , given in Proposition 7, to the Schwartz 

kernel of ( )X Dσ , , given in (5), we have  

 l
21

1
1 2

1
GG

N a
g ψ σ
γ

−
−⊗ =

,
T F F T F  

 l
11 221

1 aGGg ψ
σ

γ − −⇐⇒ ⊗ = .
,

F FT T F  (27) 

 
Applying Proposition 14 to the left-hand side of (27), and Proposition 16 together with 
the formula (25) of Proposition 13 to the right-hand side, yields the desired equation.  

It is perhaps clearer to formulate equation (26) with the terms that depend on the 
windows combined into a single function F , as follows:  

 
2

2
ˆ ˆwhere ( ) ( )

ieF a F g g
g

π ϕ

σ γ γ
γ

= , = ∗ ⊗ ∗ .
,

�F F  (28) 

Of course one can solve explicitly for the Gabor symbol to yield  

 1
1 Fa N σ−
/= ,F F  (29) 

with F  as in (28). For the case where g  and γ  are compatible, equation (29) constitutes 
the companion result to equation (10) in Section 2.2.  

The expressions  
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 2
2

1 ˆ ˆ( ) ( ) and ig g e
g

π ϕγ γ
γ

−∗ ⊗ ∗
,

�  

corresponding to each of the compatible pairs in Table 2 are worked out in Table 3, 
where the consequent relations between Gabor and Kohn-Nirenberg symbols are listed. 
The following characterization of operators that can be represented as a Gabor multiplier 
based on a given window pair rests essentially on Theorem 3.  

 

Table 3. Comparison of Gabor and Kohn-Nirenberg symbols for compatible windows. Note that, 
as in Table 2, m kµ α κ, , , ,  denote positive scalars, and the windows of lines (4.,5.) are defined 

on 1R  only.  

Gabor vs. Kohn-Nirenberg symbols for compatible window pairs ( )g γ,  
# ( )g t  ( )γ τ  Relation between ( )a yη,F  and ( )yσ η,F  
1. 1 nγ ∈S

�
�1

(0)
( ) a

γ
γ η σ=F F  

2. 2 i te π ξ ⋅
nγ ∈S

�
� 21

( )
( ) i ye aπ ξ

γ ξ
γ η ξ σ− ⋅

−
+ =F F  

3. 2mte−  
2

e µτ−  
2 2 2 2m m

m m my i ye e a e
µπ π

µ µ µη η σ+ + +− − − ⋅=F F  
4. tt ee

α−  ee
αττ −  ( )

22

2
22 2

(2 ) (1 )
(1 )

iy

y
yi e

e
a e

π ηα
α

α α
απ

α α α η σ/

/

−
Γ / +

Γ − = +F F  

5. tkt ee
α− ee

ατκτ −  
( ) ( )

2
21 (1 )

2

k pa
k

k k i

k

y y
yk i e e a e

κα α α
κ κ π η

α
κ

α

ακ π
α α η σ

+

+ +

+

−−
−+

Γ

 +
Γ − = +  

 
F F  

 
Theorem 4. Let 2nσ ′∈S . The Kohn-Nirenberg operator ( )X Dσ ,  can be represented as a 
Gabor multiplier based on a given compatible window pair ( )g γ,  if and only if 
l

2nGσ ′∈ S , or equivalently, 2nHσ ′∈ ∗S , where  

 ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )G g g H g gγ γ γ γ= ∗ ⊗ ∗ , = ⊗ .�  

 
Proof. Since the change of variables ( ) ( ( ) )t t t tτ ζ τ, − − ,6  associated to ( )g γ,  is 
required to be tempered, the function  

 2 ( ) 2 ( ( ))( ) i y i y yh y e eπ ϕ η π η ζη − , − ⋅ −, = =  

has the property that  

 2 2 2(1 )n n nh h′ ′ ′= / = .S S S  

Now, for fixed 2nσ ′∈S , the equation (26) of Theorem 3 holds for some 2na ′∈S  if and 
only if  
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 ( )2 2 22

ˆ ˆ( ) ( ) ˆ ˆ ˆˆ( ) ( ) ( ) ( )n n n
g g g g g g

g h
γ γσ γ γ σ γ γ

γ
′ ′ ′∗ ⊗ ∗

∈ = ∗ ⊗ ∗ ⇐⇒ ∈ ⊗ ∗ .
,

� �F S S S  

 
We can read off from this result some basic heuristic principles concerning the 

existence of a Gabor multiplier based on given windows that represents a given Kohn-
Nirenberg operator, as follows. In order to represent ( )X Dσ ,  as a Gabor multiplier 

based on the compatible window pair ( )g γ, , it has to be the case that l ( )yσ η,  decays as 
fast as ˆ ˆg γ∗  in the variables η , and as fast as g γ∗ �  in the variables y . The symbol 

( )xσ ξ,  itself has to be as smooth as gγ  in the variables x , and as smooth as ˆ ˆgγ  in the 
variables ξ .  

Theorem 4 shows that for Gabor multipliers based on a given window pair ( )g γ,  to 
represent a wide class of linear operators, the function H  should approximate a delta 
function, so that 2 2n nH ′ ′∗ ≅S S . Note that the scope of identical windows g γ=  is limited 

by the uncertainty principle: it is not possible for gγ  and ˆ ˆgγ  to both be highly localized, 
so the symbol ( )xσ ξ,  of an operator representable using identical windows must be 
slowly varying in either x  or ξ . This constraint can be avoided by using distinct 
windows g γ, , provided one of g γ,  is highly localized while the Fourier transform of 
the other is highly localized. In keeping with this assertion, we will see in Section 3.5 that 
maximum generality is achieved with the “singular” window pair ( ) (1 )g γ δ, = ,  and its 
reversal ( 1)δ , .  

Generality of Gaussian versus extreme value windows 
With respect to the realization of linear operators as Gabor multipliers, the generality 

of a given window pair ( )g γ,  is represented by the set  

 2 2( ) such that ( ) g
n n aR g a X D γγ σ σ

 
 ′ ′ , 
 
 
  

, = ∈ ∃ ∈ , = .S S M  

And so, given two window pairs 1 1( )g γ, , 2 2( )g γ,  on nR , we say that 1 1( )g γ,  is more 
general than 2 2( )g γ,  if  

 2 2 1 1( ) ( )R g R gγ γ, ⊆ , ,  

or equivalently, if  

 l l
2 2 1 1( ) ( )R g R gγ γ, ⊆ , .  

In terms to this notation, Theorem 4 says that for a compatible window pair on nR ,  
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 l
2 2

ˆˆ ˆˆ( ) ( ) ( ) and ( ) ( ) ( )n nR g g g R g g gγ γ γ γ γ γ′ ′, = ⊗ ∗ , = ∗ ⊗ ∗ ,�S S  

which allows us to compare the generality of any two compatible window pairs. For 
example, the next result shows that extreme value windows are more general than 
Gaussians.  

Proposition 17. Let 0mα µ, , >  be fixed. On 1R , the window pair  

 ( )1 1( ) ( )
t tt e t eg t t e e

α α

γ
 
 
 
 
 

− −, = ,  

is more general than the window pair  

 ( ) 2 2

2 2( ) ( ) mt tg t t e e µγ
 
 
 
 
 

− −, = , .  

 
Proof. We carry out some computations so as to be able to apply Theorem 4. Write  

 1 1 1 1 1

2 2 2 2 2

( ) ( )
( ) ( )

K g g
K g g

γ γ
γ γ

= ∗ ⊗ ∗ ,
= ∗ ⊗ ∗ .

 

From Table 3, 

 
( )

22

2 2
1 1

2 2 2

2
2 2

21 2 2
1 (2 ) (1 )

1
2

( )

( )

i
y

y

m
m m

i e
eg

y

g

K y

K y e e

π η
α α

α α

µπ
µ µ

π
α α αγ

η

γ

η η

η

+

/

+ +

Γ / +,

− −

,

, = Γ − ,

, = .

C C

C C

 

Note that 1 2 1 2K K′ ′ ′=S S , where  

 
( )

22

2
1 1

2

1
2 1

1 1(2 )

22
(1 )

( ) ( )
i

y

y

g

i e
e

K y K y
π η

α α

α α

α γ

π
α α

η η

η

+

/

−
′

Γ / ,

+

 , = , 
 

= Γ − .

C C  

And 2 2 2 2K K′ ′ ′=S S , where  

 
2 2 2

2 22
2 2

1( ) ( )

m
m m y

K y K y
g

e e
µπ

µ µη

η η
γ

+ +

′

− −

, = ,
,

= .

 

We claim that 2 1 2K K′ ′/ ∈P , from which it follows that 2 1 2 2( )K K′ ′ ′ ′/ ⊆S S . To verify the 
claim, it suffices to compute the rate of decay of 1K ′  and to see that it is less than that of 

2K ′ . By Stirling’s approximation this works out to be  
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22 1

2 ( )
1( ) yK y e

π
α α ηη η − − | |+| |′| , | | | ,∼  

which is slower than the Gaussian decay of 2K ′ .  

Now, let 2ρ ′∈S  be arbitrary, and consider the distribution 2K ρ′ :  

 ( )2 1 2 1 1 2( )K K K K Kρ ρ′ ′ ′ ′ ′ ′= / ∈ ,S  

which proves that 2 2 1 2K K′ ′ ′ ′⊆S S , or equivalently 2 2 1 2K S K S′ ′⊆ . By Theorem 4, this shows 
that 1 1( )g γ,  is more general than 2 2( )g γ, .  

Singular windows 
The class of window pairs established in Definition 2 is useful because Gabor 

multipliers based on them are well-defined irrespective of the Gabor symbol. We were 
thus free to carry out a somewhat general analysis, unencumbered by questions of 
interpretation or scope of validity of formulas. But if one is interested, not in a general 
analysis, but rather in studying particular operators such as, say, a specific type of 
pseudodifferential operator, then there is good reason to consider windows of a more 
general type. This comes of course at a price—Gabor multipliers based on more general 
windows may be well-defined only for a limited class of Gabor symbols, and one has to 
carry out some sort of ad hoc analysis to determine this class. We will consider a few 
particular examples of such “singular” windows. To begin, we establish the relevant 
definitions.  

Definition 18. If ng γ ′, ∈S  are such that one of the expressions g γ,  or gγ ,  is well-
defined and non-zero, but ( )g γ,  is not a window pair in the sense of Definition 2, then 
we call ( )g γ,  a singular window pair on nR .  

Definition 19. We say that a singular window pair ( )g γ,  on nR  is compatible, and that 
g  and γ  are singular compatible windows, if there exist distributions 1 2 nG G ′, ∈S  and a 
change of variables ( ) ( )v w tψ τ, = ,  (not necessarily tempered) with w t τ= −  such that 
for every nx∈R , the equation  

 ( ) ( 0) 1 2x x xT g T G Gψγ, ,⊗ = ⊗T  

holds in the sense of distributions.  

Perhaps the simplest way to obtain singular compatible windows is as limits of regular 
compatible windows. For instance, if kγ δ→  is an approximate identity, then the 
compatible pairs (1 )kγ, , which have a consistent change of variables, tend to the limit 
(1 )δ, . The pair (1 )δ,  is indeed singular compatible, with accompanying functions 

1 2 1G Gδ= , =  and change of variables ( ) ( )t tψ τ τ τ, = , − . Note that, for every nϕ θ, ∈S ,  
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 l 2
1 ( ) ( ) ( ) ( )ixV x V x e xπ ξ

δϕ ξ ϕ ξ θ ξ θ− ⋅, = , , = .  

Thus  

 �1 2 ix
a a eδ π ξϕ θ θ ϕ, − ⋅, = , ⊗ .M  (30) 

Since �2
2

ix
ne π ξθ ϕ− ⋅ ⊗ ∈S , the equation (30) shows that the Gabor multiplier 1

a
δ,M  is well-

defined for every 2na ′∈S .  

The Schwartz kernel of 1
a
δ,M  may be computed directly from (30):  

 

�

( )

2 2 1
2

1
2

2

ix ixe eπ ξ π ξθ ϕ θ ϕ

θ ϕ

θ ϕ

− ⋅ − ⋅ −

− ∗
−

∗
−

⊗ = ⊗

= ⊗

= ⊗ .

F

F T

T F

 

It follows that  

 1
2( )aK aδ,

−= .M T F  (31) 

(We could have alternatively applied the formula of Proposition 7 to obtain the same 
result.) The expression (31) is of course the Schwartz kernel of the Kohn-Nirenberg 
pseudodifferential operator having symbol a . That is, changing notation slightly so that 
σ  denotes the Gabor symbol in place of a , we have:  

Proposition 20.  For every 2nσ ′∈S , 1 ( )X Dδ
σ σ, = ,M .  

This result is of theoretical importance in that it shows Gabor multipliers to be 
completely general, at least once we allow singular windows. Applying Proposition 8 and 
the adjoint formula of Proposition 4 yields that 

 1 1
aa

δ δ ∗, , 
 
 

=M M  

for any 2na ′∈S . Thus ( 1)δ ,  too is a singular compatible pair which gives rise to a well-
defined Gabor multiplier irrespective of the symbol. Although they are genuine examples 
of singular compatible windows, the pairs (1 )δ,  and ( 1)delta,  do not really give anything 
new, since Gabor multipliers based on them are just Kohn-Nirenberg operators (or their 
adjoints) in disguise.  

On the other hand, if we let α  tend to ∞  in the compatible pair  

 
tkt e ee e

α ατκτ 
 
 
 
 

− −,  

on 1R , we obtain something new, namely the pair  
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 ( ( ) ( )) ( ) ( )ktg t H t e H eκτγ τ τ 
 
 

, = − , − ,  (32) 

where H  denotes the Heaviside jump function and 0k κ, >  are constants. The associated 
functions ( )

1( ) ( ) k vG v H v e κ+= − ,  

 ( ( ) ( ))
2

0
( )

0

kw
kH w H w w

w

e w
G w e

e w
κ

κ
− −

−

 ≤
= = ,

>
 

and the change of variables ( ) ( ) (max{ } )v w t t tψ τ τ τ, = , = , , − , verify that (32) conforms 
to the definition of a singular compatible window pair. By Proposition 7 the Gabor 
multiplier g

a
γ,M  based on the windows (32) has kernel  

 l
21

1
1

1( )g
a GG

K N a
g

γ
ψγ

, −
⊗= ,

,
M T F F  (33) 

provided the latter is well-defined. A short calculation yields that  

 l ( ( ) ( ))
21

1 ( )
2

kH y H y yky eGGg k i
κκη

γ κ π η
− −+

⊗ , = .
, + −

 

Note that ( ( ) ( ))kH y H y ye κ− −  is not differentiable at 0y = , which implies that if �( )a yη,  is 
singular at some point ( 0)η,  then the usual distributional calculus breaks down for the 
right-hand side of (33). In this case the interpretation of g

a
γ,M  requires additional 

clarification (which in practice can be quite straightforward).  

We have already pointed out that for any nγ ∈S , the pair (1 )γ,  is compatible, and 
hence so is its reversal ( 1)γ , . In dimension 1n = , a limiting case of the latter is the pair  

 ( 1) ( ) ( ) tt H t eγ γ, , = − .  (34) 

The truncated exponential γ  in the pair (34) is advantageous for a couple of reasons. Not 
only is it amenable to explicit calculation, but also the singularity at 0  renders the pair 
( 1)γ ,  more general than if γ  were a Schwartz class function, as we will now show. Note 
first that (34) is singular compatible with associated functions  

 1 2 1 ( ) ( )G G t t tγ ψ τ τ= , = , , = , − .  

And the Gabor multiplier 1
a
γ ,M  makes sense for arbitrary symbol 2a ′∈S . Furthermore,  

 l
1

2
1 221

1 1( )
1 1 2

iy eGG i
π ϕ

ψ
η

γ π η −
−

−⊗ , = , = ,
, −

FT T F F  

where ( )y yϕ η η, = . Thus if a Kohn-Nirenberg operator ( )X Dσ ,  can be represented as a 
Gabor multiplier 1

a
γ ,M  based on the windows (34), then by (27) the Gabor and Kohn-

Nirenberg symbols are related by the equation  
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 21 ( ) ( )
1 2

i ya y e y
i

π ηη σ η
π η

−, = ,
−

F F  

 2( ) (1 2 ) ixa x i e π ξξ π ξ σ 
 
 

⇐⇒ , = − ∗ .  (35) 

 
The equation (35) imposes no restrictions on σ  for the existence of a corresponding 
Gabor symbol a . In other words, the window pair (34) is completely general:  

 2( ( ) 1)tR H t e ′− , = .S  

SUMMARY 
The starting point for the present paper was the two-fold premise that (i) in practice 

one often encounters linear operators in Kohn-Nirenberg form, ( )X Dσ , , and that (ii) it is 
of interest both from the numerical and analytical points of view to express such an 
operator as a Gabor multiplier g

a a gV N Vγ
γ

, ∗=M , for some choice of localizing windows 
g γ, . We have determined a class of window pairs, namely, compatible pairs and singular 
compatible pairs, for which there exists an explicit formula by which to compute the 
Gabor symbol a  in terms of the given Kohn-Nirenberg symbol σ . More precisely, the 
ratio l �aσ/  of the Fourier transforms of the symbols is given in terms of the windows by 
the expression  

 
2

2
ˆ ˆ( ) ( )

ie g g
g

π ϕ

γ γ
γ

∗ ⊗ ∗ ,
,

�  (36) 

where the phase function ϕ  is  

 
i

i
( ) ( )( )

( )
gXgX yy y
gg y

γγϕ η η
γγ

  ,∗
, = ⋅ − − .    ,∗  

 (37) 

Extreme value windows are a particularly interesting example of compatible windows 
which are approximately causal (or reverse causal), and are more general than Gaussians 
with respect to the representation of linear operators. The class of singular compatible 
windows includes window pairs in terms of which every linear operator may be 
represented as a Gabor multiplier. Within this framework, the Kohn-Nirenberg 
formulation itself is an example of a Gabor multiplier, based on the singular window pair 
(1 )δ, . These results offer the prospect of investigating (or evaluating) particular linear 
operators, for example partial differential operators or nonstationary filters, in terms of 
their myriad representations as Gabor multipliers.  

In conclusion we mention a couple of open problems stemming from the present 
paper. Concerning the formula (36) for the ratio of the transformed symbols, it is known 
to be valid for compatible and singular compatible windows. But are there other, non-
compatible windows for which it is also valid? More generally, is there a broader class of 
window pairs, for which formulas analogous to (36) and (37) can be obtained?  
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