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2D wave-equation migration by joint finite element method and 
finite difference method 

Xiang Du, Yuan Dong*, and John C. Bancroft 

ABSTRACT  
A new method of migration using the finite element method (FEM) and the finite 

difference method (FDM) is jointly used in the spatial domain. It has been applied to 
solve a time relay 2D wave equation. By using the semi-discretization technique of FEM 
in the spatial domain, the origin problem can be written as a coupled system of lower 
dimensions partial differential equations (PDEs) that continuously depend upon time and 
space. FDM is used to solve these PDEs. The concept and theory of this method are also 
discussed in this paper. Two numerical examples of 2D wave-equation migration show 
the successful result and its potential application. 

INTRODUCTION 
The finite element–finite difference method (FE–FDM) is one of the numerical 

methods using FEM and FDM in the spatial domain to solve partial differential 
equations. FE-FDM uses FEM in some dimensions and FDM in the remaining 
dimensions and in the time domain. The FE-FDM has strong resemblance to a number of 
numerical methods such as the finite difference method and the finite element method. A 
brief emphasis on the basic differences between FE-FDM and the above mentioned 
methods is as follows: 

FEM fully discretizes a static problem into a system of algebraic equations with 
discrete nodal values as the basic unknowns. For the time relay problem, FEM fully 
discretizes it in spatial domain into ODEs and solves them with the FD method (Hughes, 
1987), whereas the FE-FDM semi-discretizes the PDE using FEM in the spatial domain 
into a coupled system of PDEs. These PDEs still continuously depend upon both time 
and space (although not all the space dimension), and are solved with FD method. Thus, 
the strengths of FEM, the adaptation to arbitrary domain, boundary, material and loading 
are retained. The shortcomings of FEM, such as large demand on computer memory and 
high computation costs are reduced because of the semi-discretization. Compared with 
the FD method, the computation precision is increased by FEM semi-discretization. The 
technique of FD for solving PDEs in lower dimensions can decrease frequency dispersion 
in space and has looser conditions of stability for explicit FD schemes. 

In this paper, the basic concept and theory of the finite element–finite difference 
method are described through the 2D wave equation. Two numerical examples of 2D 
wave equation migration are given as well to demonstrate the tremendous performance of 
this method. 
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PRINCIPLE 
Consider the hyperbolic model problem, with the 2D scalar wave equation 
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Here ),,( tzxu denotes the wave disturbance at horizontal (lateral) coordinate x, vertical 
(depth) coordinate z (where the z axis points downward) and time t, respectively. a(x, z) 
is the medium velocity. We assume a boundary condition (B. C.) of the form: 
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and the initial condition:  

 ),(),,( zxTtzxu φ== , 0),,( == Ttzxu , inΩ . (1c) 

The two-dimensional domain Ω  is bounded by the piecewise smooth boundary ( Ω∂ ). 
The purpose of wave-equation migration is to solve the above equation so that the 
recorded wave field at t=T can propagate back to t=0; hence the reflected wave lies at the 
reflection interface (Yilmaz, 1987). FE-FDM discretizes (1a) in the x-coordinate using 
FEM, and solves the remaining equations in the z-t coordinates using the FD method. 

2.1 FEM semi-discretization in x-coordinate  
P1 denotes the partial differential equation (1). P2 denotes the corresponding Galerkin 

method of P1. P2 is: 

Find 1
ϕSu∈ , such that for all 1

0Sv∈  

 0)(),( =− vFvuD . (2) 
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),( vuD  can be rewritten as 
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Semi-discretizing the horizontal coordinate (x) in the region of [0, X], one constructs 
finite element function space as 
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where N  is the nodal numbers. By substituting equation (3) and (4) into (2), one gets the 
discrete style description of P2. 
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NE  is the total numbers of all the nodes, eu , ev  is the each cell vector, e  means each cell 
and this expression can be simplified. For the reason of function v  is arbitrary, one 
obtains semi-discretized PDEs as 
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with boundary condition (B. C.) 
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 )(),0( tgtzu == , (5b) 

and initial conditions 

 )(),( zfTtzu == , 0),( == Ttzu , (5c) 

where )(tg and )(zf  are the discretization of ),( txϕ and ),( zxφ  respectively. 
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It can be seen that the matrices M, K and H are all symmetric. M and H are positive-
definite, and K is positive-semidefinite. The PDEs are model hyperbolic equations when 
the velocity is constant because the matrices M and H can be diagonalized at the same 
time under this condition. It should be emphasized that only the matrix M varies with 
depth. 

2.2 FDM solution of matrix PDEs 
One of the explicit schemes, the five-point central scheme, is selected to solve this 

problem. The difference equation has the form 

 1 1
1 1[ ] [ ] ( [ ] [ ] ) [ ]n n n n n
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Here  
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where τ, and h are the time and space steps, assumed constant, and i, j, k are the discrete 
denotation of lateral direction, depth direction and time, respectively. The local truncation 
error of this scheme has the form of O( 22 h+τ ) (Durran, 1999). 

2.3 Stability discussion of matrix PDEs 
The stability of wave equation with BC and IC is much complicated. For this problem, 

the stability is hard because it is related to the FEM semi-discrete scheme and the form of 
the interpolation function.  

The scheme stability analysis of the simplest condition is discussed here. Consider 
piecewise linear interpolation function. This problem has only one element. The element 
length is l , the velocity is a, ix  is the each node coordinate value. The interpolation 
function (assume n=2, 21 , xx  is the two node coordinate value) 
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The coefficient matrices of equation (5a) is 
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By diagonalizing these equations, one gets two individual equations  
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By using the central scheme in both the time and space, the stability condition of equation 
(7b) is 122 <λa . Here τ and h are the time and space steps, and h/τλ = . Considering 
equation (7a) only, we use the Fourier analysis method. The amplification matrix has the 
form 
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Because of 1|| =c and cb −≤1|| , the eigenvalue of the amplification matrix 
1|)(| ≤Gµ meets the sufficient condition of scheme stability. From cb −≤1|| , it can be 

obtained that 

 1
4
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It can be verified that the equation (8) is the sufficient and necessary stability condition 
for equation (7a). Especially, when the element length is equal to the depth step ( hl = ), 

the stability condition becomes 1)
4
3( 22 <+ λa . When the velocity of the wave equation is 

much larger than 3/4, as in real rock (where it is about several hundred metres per 
second), the stability condition of 122 <λa  for equation (7b) is still valid for (7a). This 
condition is much looser than that ( 2/122 <λa ) of the 2D space and time central scheme 
FD method (Lu and Guan, 1987). It is to mean that the time-step restriction imposed in 
FE-FDM is often much smaller than that needed for accuracy in FDM. 
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In the numerical test, to improve the accuracy of the computation, a one dimensional 
element is chosen and the node is selected as 3(i.e. n=3). The interpolation function 
(assume n=3, 321 ,, xxx  is the three node coordinate value) 
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NUMERICAL EXAMPLES  
In order to test the validity of the FE-FDM, two numerical examples are chosen. One 

is the typical impulse response migration, and the other is steep obliquity migration. To 
show the advantage and potential of FE-FDM, it is compared with the FKFD migration 
method. 

3.1 Impulse response migration 

3.1.1 Model introduction 

Impulse response, the fundamental model of migration (Robinson, 1983) is selected to 
test the FE-FDM migration algorithm. The poststack profile in a constant-velocity 
medium (a=2000m/s) is shown as Figure 1. An impulse is located at x=1000m (lateral) 
and t=0.8s (time). This means that the reflection interface is a semicircle with a radius of 
800m and center at x=1000 on the ground. The migration steps of time, lateral and depth 
are 4ms, 10m and 10m. 

 

FIG. 1. Impulse record. (The impulse is located at 1000m, 0.8s) 

The ideal result is shown in Figure 2a, which we obtained by placing the impulse to 
the reflection interface uniformly. The result of the FE-FDM method and the F-K domain 
FD method (90 degree) is shown as Figures 2a and 2b. The program used to generate the 
results of Fig.2a and 2b is part of the free software package Seismic UNIX (SU) 
produced by the Center for Wave Phenomena (CWP), Colorado School of Mines. 
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3.1.2 Remark 

It can be seen from Figure 2 that all the two methods can image the semicircle 
reflection interface correctly. The steeply dipping part of the interface (near ground) is 
well imaged by FE-FDM migration (Figure 2b), but not well by omig-x domain FD 
migration. The result of FD migration (Figure 2b) has a lot of noise because of the spatial 
dispersion.  

 

FIG. 2a. Result of FE-FDM   FIG. 2b. Result of FKFDM 

Selecting the centre traces (x=1000) of Figure 2, and translating into temporal domain 
and drawing together, we obtain Figure 3. The impulse shapes of the two migration 
results both differ from the original one. The obvious drawback of the result of FE-FDM 
migration is the shape of impulse becoming low and wide because of the numerical 
dissipation. The dissipation of FE-FDM migration leads to a decrease of spatial 
resolution. Changing the scheme is one possible method to improve accuracy. Massive 
pseudo-waves with high amplitude, such as at t=0.1 and t=0.25, appear in the result of the 
omig-x domain FD method because of the numerical dispersion. The dispersion in omig-
x domain FD migration could lead to wrong interpretation results.  
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FIG. 3. Impulse records at 1000m in Figure 2(a, b) compared to the original impulse from Figure 1 
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3.1.3 Efficiency comparison  

Adopting the impulse response model, we compared the expenditure of FE-FDM and 
omig-x domain FD migration on a PC (Table 1). 

Table 1:  The efficiency comparison between the two methods 

Method Time(s) Memory(Mb) 
FEFD 26 2.176 
FKFD 31 1.28 

 
From the results shown in Table 1, one can see the FE-FDM migration is the faster than 
the FK-FD method, but also occupies nearly twice the memory. 

3.2 Steep Oblique Migration 

3.2.1 Model introduction 

The model for this section is shown in Figure 4. The velocity of the model increases 
both laterally and with depth direction. The velocity at the top left corner is 3600m/s, and 
the at the bottom right it is 4600m/s. There are two reflection interfaces, one with a 
decline of 45 degrees, and the other being a flat interface. 

The seismograph is computed by the FDM module of the SU Software Kit, and is 
displayed in Figure 5. From it, one can see that the event of the flat interface is overlain 
by a declining interface and an inhomogenous medium. To remove these influences, the 
FE-FDM and the FK-FDM are used to test the effect of migration. Figure 6 is the result 
of FEFDM, and Figure 7 is the result of FK-FDM. 

 

FIG. 4. Steep oblique Model     FIG. 5. The seismograph in use of FDM 

3.2.2 Remark 

It can be seen from Figure 5 and Figure 6 that both methods can effectively image the 
position of layers and have good correspondence with the model. In addition, the two 
methods can accurately image the geometry under the oblique reflector and the 
inhomogeneity. 
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FIG. 6. The result of FE-FDM   FIG. 7. The result of FK-FDM 

3.3 Discussion 
Omiga-x domain FD migration is a method for the one-way approximation wave 

equation. The equation used in this paper is accurate for propagation directions to 90 
degrees. FT and IFT are applied for time only. The FD method is used in omig-x domain 
for wavefield extrapolation (Lee and Suh, 1985). This algorithm fits lateral velocity 
variation and complex interfaces so well that it has become the most popular migration 
method today. The drawbacks of it are the high computation costs, spatial dispersion, and 
its limited ability to image steeply dipping interface. 

FEM migration is a highly accurate method for the problem of arbitrary shaped 
domains, lateral velocity variations, and complex and dipping interfaces (Teng and Dai, 
1989). But it is not widely used in seismic exploration because of its large demands on 
computational costs and computer memory. FE-FDM migration inherits all the 
advantages of FEM migration presented above. The computational efficiency is improved 
through spatial domain semi-discretization. As shown above, the FE-FDM migration can 
successfully be applied to field data. 

CONCLUSIONS 
A numerical method named finite element–finite difference method (FE-FDM) for the 

solution of time relay partial differential equations such as parabolic and hyperbolic 
model equations is presented in this paper.  

As the numerical examples, 2D scalar wave equation reverse-time depth migration has 
been shown above, and it is encouraging that the result is accurate and effective enough 
for steeply dipping interface imaging. 

This method combines FEM and FDM based upon the semi-discretization of the 
spatial domain. The main strengths of FEM (adaptation to arbitrary domain and accuracy) 
and FEM (computation efficiency) are inherited. FE-FDM can be used to get accurate 
results for migration more accurately than the FD method and much more quickly than 
FEM. At the same time, it can be used to implement elastic-wave equation migration, or 
simulate wave propagation. It is therefore a useful and promising numerical method.  
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