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ABSTRACT  
Theory and experiment have shown that the propagation of seismic waves in real media 

is in many respects different from propagation in ideal solids. In data processing, the 
attenuation and dispersion of the seismic wave has often been neglected. Presented here is a 
method for accommodating absorption and dispersion effects in prestack depth migration 
schemes. Extrapolation operators that compensate for absorption and dispersion have been 
designed. The algorithm is developed in the frequency-wavenumber domain, and is 
characterized by simplicity, speed, little dependence on stratum obliquity, and good 
stability. To test the validity of the method, a viscoelastic geology model was designed. 
Synthetic seismic data were generated based on the model. Viscoelastic and elastic prestack 
depth migration were performed on the synthetic data; the two results obtained are 
compared in this paper and show the influence of absorption and attenuation. 

INTRODUCTION 
Elasticity is a good model for mechanical wave propagation through the earth. No real 

materials, however, are perfectly elastic. Wave energy is gradually converted into heat. The 
propagation of seismic waves in real media is in many respects different from propagation 
in an ideal solid. The real medium will cause dissipation of seismic energy, thus decreasing 
the amplitude and modifying the frequency content of the propagating wavelet. This 
attenuation and dispersion of the seismic wave is strongly affected by the saturation state 
and physical condition of the rock (Jones, 1986). Therefore, these effects are important in 
exploration geophysics since they may allow us to extract more detailed information about 
the subsurface from seismic data or to construct images with better resolution, if the quality 
factor Q is satisfactorily approximated. There is, at the outset, no justification for 
neglecting the absorption and dispersion of seismic energy, and the effect has been 
incorporated into seismic modeling schemes (Emmerich and Korn, 1987; Carcione et al., 
1988) and migration schemes (Mittet al., 1995). Attenuation of propagating waveforms is, 
in some cases, quite significant and could be a source of erroneous results in forward 
modeling, inversion, and imaging if neglected (e.g., Samec and Blangy, 1992). In recent 
years, the inclusion of second-order effects, such as absorption and anisotropy, into seismic 
processing schemes has become more important. Finite-difference modeling in a 
viscoacoustic medium has been developed (Carcione, 1993), and 3-D prestack migration in 
anisotropic media has been performed (Dong and McMechan, 1993). 

The main purpose of this work is to compensate for the absorption of energy from the 
source location to the receiver location. This implies that both forward-propagated and 
backward-propagated waves should be compensated. Formally, this is equivalent to starting 
at the receiver location and repropagating the wave to the source location and at the same 
time adding the lost frequency components to the wavefield. The implementation 
performed in this paper is 2-D, but there is nothing in the formalism that prevents us from 
using the same method in the 3-D case. 
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The rest of this paper is organized as follows. In the next section, we present the basic 
equations for the depth extrapolation, and the formalism for absorption is then presented 
and introduced into the migration scheme. Next, we include a section with a numerical 
example of the scheme. 

VISCOELASTIC WAVE EQUATION PRESTACK DEPTH MIGRATION 
Since Stolt put forward the f-k migration method, much research has been done to 

improve it, and f-k migration arithmetic has been one of the most popular migration 
methods. The work in this paper is based on Stolt’s migration (1978). In viscoelastic media, 
the viscoelastic wave equation can be expressed as: 
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In the 2-D case, equation (1) can be expressed as: 
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where P(x,z,t) is the pressure, ρ is the density, c is the velocity, and 0ω is the transition 
frequency, 
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whereη1 and η2 are the viscoelastic coefficients. We perform a Fourier transform in the x-
direction and t-direction of equation (2) to obtain  
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where xk  is the wave number responding to x, and ω  is apparent frequency responding to t. 
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its inverse Fourier transform is 
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where zk  is the wave number corresponding to z. 

The wave equation (3) has two independent solutions, corresponding to extrapolation of 
up-going waves and down-going waves, respectively.  
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where A
Br =

, ( )ω,0,xkP is the 2-D Fourier transform of ),0,( txP . Thus, for a down-going 
wave, we have  
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the extrapolator 
zre  can be used to compensate for the energy-loss that the wave has 

experienced during propagation from source to the reflecting interface (see Figure 1). For 
an up-going wave, the extrapolation will give  
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up-going wave has been propagated upwards, losing amplitude on its way. The extrapolator 
zre−  will boost the amplitude, thereby compensating for the lost amplitude on the way up 

from the reflection point (see Figure 1).  
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FIG. 1. Raypath of a reflected signal. The wave is compensated for absorption on the way from the 

source down to the reflector, and up to the receiver. 

We perform a inverse Fourier transform in the xk -direction and zk -direction of equation 
(4) to obtain 
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According to the exploding reflector theory, the reflected point is located in the position 
when t=0. So, let t=0, 
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then equation (8) is the basic migration formula in wave number domain. 

There is a problem with equation (8) in that we can not apply FFT directly, and the 
computation speed is extremely slow. Such solutions are known to exist for a large class of 
linear partial differential equations with constant coefficients. Thus, migration with this 
algorithm is limited to homogeneous media with a constant-velocity function. In order to 
overcome this limitation, Gazdag (1978) developed solution methods for the migration of 
seismic records in inhomogeneous media. This called for the numerical solution of partial 
differential equations with variable coefficients. The numerical operations are defined in 
the frequency domain rather than in configuration space. The aim was to obtain the solution 
by operating on the Fourier coefficients of the seismic section. We will try to solve the 
problem this way. 

Suppose that the geological model is composed of multiple horizontal layers, the 

coefficients are constant in the same layer ( iii zzzz ∆+≤≤ ), and they are variable in the 
vertical direction. We will only show the up-going wave extrapolation here, for the down-
going wave extrapolation is the same. At different layers we can get a migration equation 
like equation (4) 
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where i0ω  is the transition frequency of media in the iz∆  interval. zic  is velocity in the 
iz∆  interval. ii βα ,  are arguments of ii BA ,

，respectively. zik  is the wave number of z  
and is defined as 
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From equation (9), follows that if 0=iz , ),0,( txP  and ),0,( ωxkP  are the zero offset 
record and its Fourier transform.  

Equation (10) is a migration algorithm corresponding to the vertical variable relative 
coefficient. But real media are complex, and relative coefficients vary in all directions. So 
we tried to develop an algorithm that fits complex situations. Let’s consider the phase-shift 

operator ii zre ∆2 , where ir2  is determined by ii BA , , equation (11) can be expressed below 

 )(2 inmkr zii +−= , (13) 

where nm,  corresponds to the real and imaginary part of equation (11) after zik  is picked 
up. 

Suppose that the coefficient varies in the x and z directions, then ),( zxcczi = , equation 
(12) can be expressed as 
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Also, equation (14) can be expressed as 
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where ac  is the average velocity, and xc  is the velocity along the x direction. Then the 
phase-shift operator is 
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The seismic wavefield in vertical variable velocity situations can be obtained by 

migration, using ac . The wavefield after migration is 
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The seismic wavefield at horizontal variable velocity situation is 
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Then equation (18) becomes 
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Thus, the final algorithm that can fit a horizontal and a vertical variable velocity is 
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Prestack depth migrations are commonly obtained by using Claerbout’s imaging 
principle (Claerbout, 1971). The upcoming wavefield is correlated with the down-going 
wavefield at each depth level. The details will be presented in this paper. 

NUMERICAL EXAMPLE 
Synthetic seismic data were generated to check the formalism developed in the previous 

section, and to demonstrate the compensation for absorption. A geological model was 
designed (see Figure 2), including a declining layer, two faults, and a flat seam. The 
velocity of each layer is labeled in the figure. The transition frequency 0ω  of this model is 
20000. Figure 2 contains the geometry of the model used, together with the shot and 
receiver configuration. The dashed line defines the area to be imaged in this test. The test 
contains 30 shots. The streamer shown in the figure consists of 128 geophones with an 
interval of 20m; the offset is from 20m to 1280m, and shot in the middle. Data were 
recorded for 2,048ms with a simple rate of 1ms. The shot gather is shown in figure 3. The 
source signature is a Ricker wavelet. First, viscoelastic modeling with absorption was 
performed. The result of the modeling is shown in Figure 3. The synthetic data were 
generated without surface multiples. For field data, one should preprocess with surface 
multiple removal schemes, e.g., using methods such as those proposed in Fokkema and 
Vanden Berg (1990) and Wapenaar et al. (1990).  

The data were processed with the prestack depth migration scheme outlined earlier. In 
Figure 4, we show the result using elastic prestack depth migration. Note the diffuse image 
of the reflectors due to the dispersion of the wavelet as it propagates down in the subsurface 
and up again. Also the locations of some of the reflectors are incorrect. This is a 
consequence of the fact that both an amplitudes and arrival times are changed in a 
viscoelastic medium with absorption (Carcione et al., 1988). In Figure 5 we show the result 
of our proposed viscoelastic prestack depth migration scheme. Note the improved quality 
of the image; in the points of the faults, and how reflectors are imaged clearly. 
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FIG.2. Subsurface model. The dashed line defines the image window. The velocity for each layer is 
labeled in the model. The transition frequency 0ω  of this model is 20000. 

 

 

FIG. 3. Modeled data of a shot gather 
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FIG. 4. The images resulting from elastic wave equation prestack depth migration 

 

 

 

FIG. 5. The images resulting from viscoelastic wave equation prestack depth migration. 
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CONCLUSIONS 
We have shown that the effect of absorption and dispersion of seismic energy in a 

viscoelastic medium can be compensated for in prestack depth migration schemes. New 
extrapolator coefficients that account for the attenuation and dispersion of a wavefield have 
been designed in this paper. From prior information about the variable velocity and the 
absorption coefficient of the medium, the correct extrapolator coefficient for a given point 
in space can be accessed and used in the depth extrapolation.  

A viscoelastic model was designed, and synthetic data were obtained. The extrapolation 
operator can handle absorption laws. The results of the numerical test show a significant 
improvement of the images when migrating with compensation for absorption, as 
compared to images using elastic prestack migration extrapolation. The images are less 
diffuse, and the locations of the reflectors are improved.  
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