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ABSTRACT 
This paper demonstrates a methodology to produce high-resolution AVO reflectivity 

attribute estimates similar to sparse spike deconvolution.  Similar to poststack sparse 
deconvolution this reflectivity may be converted to impedance provided there are suitable 
additional constraints. The AVO estimate is performed prior to NMO avoiding the 
distortions and loss of frequency associated with this process.  Long tailed a priori 
distributions are used to constrain the problem.   The resulting sparse reflectivity is able 
to resolve thin layers and is more reliable than the estimates provided by the traditional 
AVO analysis that is performed on a sample-by-sample basis on NMO corrected gathers. 
This greater reliability is due to the classic trade-off between resolution and stability. 
With the new method a few sparse reflectivity values are estimated with greater certainty 
than the dense reflectivity at every time sample as in the traditional AVO analysis.  

INTRODUCTION 
We present a method for producing high-resolution estimates of AVO reflectivity 

attributes.  The objective is to produce a sparse spike reflectivity series similar to that 
done by poststack sparse deconvolution (Levy and Fullagar, 1991; Sacchi, 1999; and 
Trad, 2002).  Further, the methodology presented is analogous to the high-resolution 
Radon transform presented by Sacchi and Ulrych (1995).  The new approach is better 
able to estimate reflectors undergoing NMO stretch and differential tuning than 
traditional AVO performed on a sample-by-sample basis on NMO corrected gathers. The 
inclusion of constraints and the waveform further stabilizes the inversion improving the 
reliability of the estimates compared with the traditional methodology.  In addition, the 
approach provides a framework to estimate elastic impedances similar to poststack sparse 
spike impedance inversion.   

The theory for this new algorithm is developed using a Bayesian formalism.  Instead 
of the typical assumption of Gaussian probability distributions, various long-tailed 
distributions are used for the prior distribution.   The likelihood model is based on the 
AVO NMO formalism (Downton and Lines, 2002) where the AVO and NMO inversions 
are performed simultaneously assuming some input wavelet.  The inversion is nonlinear 
and must be solved using a bootstrap procedure.  Conjugate gradient method is used to 
solve the inverse problem.  Typically only a few iterations are needed to solve the 
problem so the algorithm is relatively quick.   

Both synthetic seismic and real data examples are shown demonstrating the new 
methodology.  The first example is constructed so as to illustrate how the new algorithm 
better estimates AVO reflectivity on events undergoing NMO stretch and tuning.  The 
second example illustrates how the algorithm behaves on more realistic data created from 
well data.  Real seismic data is used to show how the new algorithm gives more robust 
estimates in the presence of noise compared to the traditional method.  Lastly the theory 
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needed to output impedances rather than reflectivity is developed and an example is 
shown illustrating the technique. 

THEORY 

Convolutional model 
The convolutional model is used as the basis for the likelihood model.  This model 

assumes the earth is composed of a series of flat, homogenous, isotropic layers.  Ray 
tracing is done to map the relationship between the angle of incidence and offset. 
Transmission losses, converted waves, and multiples are not incorporated in this model 
and so must be addressed through prior processing.  A modification of the two-term Fatti 
approximation (Fatti et al., 1994, Equation 4) is used to approximate the offset dependent 
reflectivity over some predefined angle range.  Rather than solving for the P- and S-wave 
impedance reflectivity, we choose to solve for the P-wave impedance and fluid factor 
reflectivity since these two variables are uncorrelated.   

The AVO NMO model (Downton and Lines, 2002) is the starting point for this 
inversion scheme.  For the example of  two offsets the AVO NMO formulation written in 
block matrix form is 
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where W is a Toeplitz matrix representing the source wavelet, N is the NMO matrix 
describing the kinematics of the problem, F and G are diagonal matrices containing the 
weights as defined by the two term Fatti et al. (1994) equation.  The column vectors rp, rf 
describe the P-wave impedance and fluid factor reflectivity over some time interval.  
Likewise the column vectors d1, d2 represent the data at offset 1 and 2 over some time 
window.  This formulation can be modified to include more offsets by just adding 
additional rows of block matrices to the problem.  The NMO matrix N may be written to 
incorporate higher order NMO corrections or anisotropy, but the velocity must be 
specified a priori.  Typically the analysis is performed over some limited angle range 
implying the data is muted.  By incorporating NMO into the inverse problem, the NMO 
correction is never done as a processing step thus avoiding introducing NMO stretch 
distortions and biases.  Differential tuning is incorporated as part of the forward model 
and so is dealt with.    

This linear model described by Equation 1 can be written more simply as  

 d=Lm,  (2) 
where L is the linear AVO NMO operator, d is the data vector and m is the unknown 
parameter vector describing the reflectivity.  The data vector contains N time samples by 
M offsets while the parameter vector contains 2M elements.  This paper assumes the 
likelihood function is Gaussian for simplicity but it might be more appropriate for real 
seismic data to choose a robust distribution. 
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Prior model 
Both the matrices W and N are typically underdetermined or ill-conditioned.  This is 

due to the fact the data is band-limited and the differential tuning introduces null spaces 
into the N operator.  Because of this, the problem needs to be regularized.  This can be 
done by choosing a weighting function that will treat certain reflection coefficients as 
being more reliable than others.  Choosing a long tailed a priori distribution will lead to 
such a weighting function.  

A long tailed distribution or sparse reflectivity may be argued for based on physical 
arguments.  The fluid factor reflectivity is sparse by its nature since it only responds to 
anomalous fluids or large changes in lithology.  The P-wave impedance reflectivity may 
also be modeled as a long tailed distribution, such as the L1 distribution (Levy and 
Fullagar, 1981).  Further, we make the typical assumption made in deconvolution that the 
reflectivity from different interfaces is uncorrelated so the resulting parameter covariance 
matrix is diagonal.   Thus the two reflectivity series can be modeled by a variety of 
distributions including the Huber, Cauchy or Lp norm.  Good results were obtained with 
each of these, but for illustration purposes this paper uses the Cauchy prior.  Sacchi 
(1999) shows that this leads to a prior of the form 
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where J is the objective function and Q is a diagonal matrix that is defined as  
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where σp and σf act in a similar fashion to the standard deviation of the P-wave 
impedance and fluid factor reflectivity.  The weights are large when the reflectivity is 
small and small when the reflectivity is large.  The matrix Q is estimated iteratively in a 
bootstrap fashion. 

Nonlinear inversion 

The Likelihood function (Equation 2) may be combined with the a priori probability 
function (Equation 3) using Bayes’ theorem. There is no explicit interest in the variance 
of the time-domain constraints so it is marginalized (Sivia, 1996). The most likely 
solution can then be found by finding where the PDF is stationary. This involves taking 
the partial derivatives with respect to each parameter, setting the result to zero, and 
solving the set of simultaneous equations. This results in the nonlinear equation 
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[ ] ,dLmQLLT T=+ µ

 (5)  

where ( )1/ −= MNTεεµ  and ε=Lm-d.  There are two sources of nonlinearity in Equation (4), 
the estimate of the regularization parameter µ and the calculation of Q. 

The actual inverse problem being quite large, it is most efficiently solved using 
iterative techniques such as conjugate gradients (Skewchuk, 1994).  Solving the inverse 
problem requires two nested loops.  In the inner loop the conjugate gradient algorithm is 
used to solve Equation 5 using the previously calculated values of � and Q. The 
maximum number of conjugate gradient iterations is used as a parameter to help stabilize 
the solution (Hansen, 1998).  After solving for the reflectivity the estimate of � and the 
covariance matrix Q is updated.  Iteratively updating these parameters and re-estimating 
the reflectivity parameters constitute the outer loop.  Generally a satisfactory sparse 
solution is obtained after 3 to 5 outer loops. For the first loop the inversion is run as an 
unconstrained inversion by setting �=0.  Care must be taken in the first outer loop not to 
put too much detail in the solution or the problem will not converge.  This can be 
controlled by carefully setting the maximum number of conjugate gradient iterations 
parameter to a value that limits resolution.   

EXAMPLES 

Synthetic example showing NMO stretch and differential tuning 
To demonstrate that the new approach performs better in the presence of NMO stretch 

and differential tuning a synthetic model was created to demonstrate this.  Dong (1999) 
quantified the error due to these two effects.  Summarizing for the case of Ricker source 
wavelet, the intercept term A has approximately zero error while the gradient term B, 
after some rearrangement, has an error of the form  
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where η=dt/f0 is defined in terms of the dominant frequency f0 and the time interval dt of 
how far the time sample under investigation is from center of the wavelet.  Thus the 
fractional error of the gradient is a function of η and the ratio of intercept over the 
gradient A/B. The leading term acts as scalar which is a function of η.  The other factor 
which controls the size of the error is the ratio A/B.  Thus it is possible to predict the size 
of the error for different classes of AVO anomalies as defined by Rutherford and 
Williams (1989).  For a class I anomalies where A<<B and a class II anomalies where 
A≈0 the expected error will be small.  This is also true for most reflectors which fall 
along the mudrock trend since typically A<<B.  However for class III and IV anomalies 
where A>B the error will be potentially large.  These predictions were tested and verified 
in Downton et al. (2003). 
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Based on this analysis a simple model was constructed which honored the assumption 
of sparse reflectivity, which had most of the reflectors following the mudrock trend and 
which had several class III and IV anomalies.  These anomalies were created for both 
isolated and tuned reflectors.  The synthetic data was generated using a convolutional 
model with a Ricker wavelet with a central frequency of 32.5 Hz central frequency.   In 
order to isolate the affects of NMO stretch and differential tuning on the AVO inversion, 
the reflectivity was generated using the 3 term Shuey equation (1985) using the Gardner 
relationship to calculate density.  By doing this the Smith and Gidlow (1987) AVO 
inversion could be used to perform the inversion exactly thus avoiding the introduction of 
theoretical error.  Noise was added to give a signal-to-noise ratio of 4.  A constant 
background velocity was used so there would be a simple angle to offset relationship.  
The maximum offset was chosen to be 4 times the target depth so that angles out to 65 
degrees would be available for the inversion, though only angles to 45 degrees were 
actually used.  These large angles were created to highlight the distortions.  Figure 1 
shows the generated prestack synthetic gather. 

 

FIG. 1: Synthetic seismic gather.  At zero offset and 1.5 sec. is the class III isolated reflector, at 1.6 s is the 
tuned class III reflector, at 1.7 s the isolated class IV anomaly and at 1.8 s the tuned class IV anomaly. 

The middle panel of Figure 2 shows this gather after NMO correction.  For 
comparison sake the same gather is shown that was generated without any moveout.  
Taking a difference between the two shows the theoretical error that is introduced by 
NMO stretch and differential tuning.  This theoretical error will bias the AVO inversion. 

An AVO inversion was performed using the Smith and Gidlow formulation using 
angles from 0 to 45 degrees.  The Smith and Gidlow formulation was used rather than the 
2-term Shuey approximation since the former is exact under the assumptions the model 
was created while the later is not.  The reflectivity estimates where then transformed to 
intercept and gradient for display purposes as shown in Figure 3.  As expected there is no 
error for the intercept term while the gradient term only shows error for both the class III 
and class IV anomalies.  Reflectivity that falls along the mudrock trend is perfectly 
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predicted even though they undergo NMO stretch.  Figure 3 also shows the reflectivity in 
the cross-plot domain.  The class III and IV anomalies show significant scatter. 

 

  

FIG. 2:  The middle panel shows the NMO corrected gather from figure 1:  The left panel shows the 
synthetic gather generated without moveout while the right panel shows the difference between the two. 

 

FIG. 3:  The results of the traditional AVO inversion for intercept A and gradient B.  The estimate is shown in 
red and the ideal in blue.  This data is also shown in the cross-plot domain.  The upper cross-plot is the ideal 
while the lower cross-plot is based on the estimate.  Note the class III and IV anomalies are spread out in 
cross-plot space. 
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The same data was used to perform the high-resolution AVO NMO inversion.  The 
results of this are shown in Figure 4 and 5.  Figure 4 shows the input to the inversion, the 
estimated model reconstructed from the parameter estimates and the difference.  The 
model matches the data closely with the difference only showing random noise.  The 
estimated reflectivity is shown in figure 5.  The estimate is now almost perfect for all 
reflectors including the class III and IV anomalies that were undergoing NMO stretch and 
had differential tuning.  This is confirmed by cross-plotting the reflectivity. 

 

FIG. 4:  Input to the AVO NMO inversion (left panel) and the model based on the AVO NMO inversion 
(middle panel).  Note the good match between the two with only random noise showing up in the difference 
(right panel) 

 

FIG. 5:  The results of the high-resolution AVO NMO inversion for intercept A and gradient B.  The estimate 
is shown in red and the ideal in blue.  This data is also shown in the cross-plot domain.  The upper cross-
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plot is the ideal while the lower cross-plot is based on the estimate.  Note the class III and IV anomalies are 
almost perfectly estimated now. 

The AVO inversion estimates shown in Figure 5 are filtered with the source wavelet.  
Figure 6 shows the unfiltered reflectivity estimates shown in terms of the fluid factor, P- 
and S-wave impedance reflectivity.  The match for the large reflectivity is almost perfect.  
With suitable modifications to the constraints to account for the background trend, these 
sparse spike reflectivity estimates may be used to estimate the P- and S-wave impedance 
as shown later in the paper. 

  

FIG. 6: Fluid factor, P- and S-wave impedance reflectivity estimates from the high-resolution AVO NMO 
inversion.  The estimate is red and the ideal in blue.  The left hand panel is filtered by the source wavelet 
while the right hand panel is the raw reflectivity estimate coming from the algorithm. 

Synthetic data example based on well log 
The preceeding example’s input model was blocky and so the a prior assumptions 

were perfectly met.  The next model tests what happens if the reflectivity does not match 
the a priori assumptions perfectly.  For this second example the reflectivity is based on a 
well log from North Eastern British Columbia.  The input well logs are shown in Figure 7 
along with the synthetic seismic gather that was generated.  In this case the reflectivity 
was generated with the Zoeppritz equation and convolved with a 10/14-90/110 Hz zero 
phase wavelet.  Once again noise was added to give a signal-to-noise ratio of 4.  The 
AVO inversion was done over angles from 0 to 35 degrees.  The filtered estimate is close 
to perfect (Figure 8).  The sparse spike reflectivity shows some errors particularly around 
0.34 seconds on the S-wave impedance reflectivity.   
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FIG. 7: Input density, P- and S-velocity logs used to generate synthetic gather shown at right 

 

FIG. 8: Fluid factor, P- and S-wave impedance reflectivity estimates from the high-resolution AVO NMO 
inversion.  The estimate is in red while the ideal is in blue.  The filtered results (left panel) are almost perfect.  
The sparse spike estimate (right panel) is good with some problems on the S-wave impedance reflectivity. 

Seismic data example 

The seismic data example is from North East Saskatchewan.  The well at shotpoint 
3030 encountered two gas sands, an upper blanket sand and a channel sand.  Both these 
gas sands should show fluid factor anomalies.  The data has a good S/N ratio with signal 
extending from 10 to 130 Hz.  The range of angles used in the in inversion was 0 to 36 
degrees.  The wavelet was calculated following Walden and White (1984). 
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Figure 9 shows the results of the high-resolution AVO NMO inversion.  The bottom 
panel shows the fluid factor.  The anomaly at 0.3 seconds is the top blanket sand and the 
anomaly at 0.4 seconds is the channel sand.  The anomaly at 0.65 seconds with the peak 
over the trough represents a carbonate.  In this case the fluid factor is responding to a 
change in lithology, which is off the mudrock trend.  For comparison sake, Figure 10 
shows the results from performing a traditional AVO inversion on NMO corrected 
gathers.  Notice the significant improvement in S/N and continuity in the high-resolution 
AVO NMO inversion.  This is probably due two factors.  The fact the waveform is 
included in the formulation of the problem limits how quickly the filtered reflectivity can 
change temporally.  Secondly, and probably more importantly the regularization of the 
problem   improves the condition number of the problem decreasing how the noise gets 
amplified as part of the inversion.  Figure 11 shows the prestack seismic data and the 
high resolution AVO NMO model. 

 

FIG. 9: High-resolution AVO NMO reflectivity inversions.  P-wave impedance reflectivity on top and Fluid 
factor on bottom. 



High Resolution AVO NMO 

 CREWES Research Report — Volume 15 (2003) 11 

 

FIG. 10: Traditional AVO NMO reflectivity inversions done on NMO corrected gathers.  P-wave impedance 
reflectivity on top and Fluid factor on bottom. 

 

FIG. 11:  Input to the AVO NMO inversion (left panel) and the model based on the AVO NMO inversion 
(middle panel).  Note the good match between the two with mostly random noise showing up in the 
difference (right panel) 
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IMPEDANCE INVERSION 
Rather than outputting reflectivity it is desirable to output impedances.  This simplifies 

the interpretation.  However, the seismic data typically is missing low frequencies 
implying some sort of constraints must be used to get a unique solution.   This low 
frequency trend may be supplied using regional well control and information from an 
interval velocity travel time inversion from the seismic.   

The impedance ξ  may be calculated by integrating and taking the exponential of the 
reflectivity r  
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Using this expression it is possible to write a series of constraints that specify that the 
average estimated impedance from the seismic over some interval must be equal the 
average impedance of the well log over that same time interval with Σw variance 
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where P is the linear operator for integration and w is the well log data.  This leads to an 
equation of the form 
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which can be solved in a similar fashion to before. 

To test this, a simple blocky model was constructed where most reflections follow the 
mudrock trend.  A class III anomaly under going differential tuning was introduced at 1.5 
seconds.  The reflectivity was generated using the Zoeppritz equation and was convolved 
with 5/10-40/50 Hz wavelet.  Noise was added to give a signal-to-noise ratio of 4.  Figure 
12 shows the input synthetic gather and the model gather generated by the inversion.  
Note the excellent match between the two with only random noise showing up in 
difference display.  The reflectivity and impedance estimates are shown in Figure 13.  
The estimated impedance matches the actual impedance closely even for the tuned class 
III gas reservoir where one might expect problems.  
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FIG. 12:  Input to the high-resolution AVO NMO Impedance inversion (left panel) and the model based on 
the AVO NMO inversion (middle panel).  Note the good match between the two with only random noise 
showing up in the difference (right panel) 

 

FIG. 13: The right panel shows Fluid factor, P- and S-wave impedance sparse spike reflectivity estimates 
from the high-resolution AVO NMO Impedance inversion.  The estimate is in red while the ideal is in blue.  
The right hand side shows the reflectivity converted to impedance.  Note the excellent match between the 
estimate and the ideal, even in the tuned class III reservoir. 
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CONCLUSIONS 
High-resolution AVO NMO is better able to resolve reflectors undergoing NMO 

stretch and differential tuning.  This is clearly shown by the synthetic example.  The 
seismic data example shows that high-resolution AVO NMO inversion is more reliable 
than the estimates provided by the traditional AVO analysis that is performed on a 
sample-by-sample basis on NMO corrected gathers.  This increased reliability is due to 
the classic trade-off between resolution and stability.  A few sparse reflectivity values are 
estimated with greater certainty than the dense reflectivity at every time sample as in the 
traditional AVO analysis. 

The algorithm is relatively fast.  Even though the size of the problem is much larger 
than the traditional AVO problem, only a few iterations of conjugate gradient are 
required to come to a satisfactory solution.  For the real data example, the algorithm took 
8 times as long as the traditional way of solving the problem. 

Further by outputting sparse reflectivity, this methodology provides a framework to do 
elastic impedance inversion similar to poststack sparse spike impedance inversion.  The 
method shown is an extension of poststack sparse spike deconvolution such as presented 
in Sacchi (1999) or Trad (2002).  Comparing this implementation to the poststack 
implementation, this method has the advantage that the regularization parameter in 
Equation (4) can be estimated as part of the inversion since the variance of the noise can 
be estimated from the prestack data.  This is not the case for the poststack implementation 
thus simplifying the implementation.  Further by working with prestack data, estimates 
for both the P- and S-wave impedance reflectivity are possible whereas the poststack case 
only estimates the P-wave impedance reflectivity. 
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