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ABSTRACT

The constant-Q theory for anelastic attenuation is reviewed, particularly the aspects
related with the determination of the phase of the attenuated signal and the potential error
introduced by the discrete implementation of the Hilbert transform. Synthetic data are
used to test the phase correction in the Gabor deconvolution and to compare it with the
results obtained by inverse-Q filter methods. The maximum coefficient of a local
crosscorrelation and its lag are used as attributes to estimate the similarity between the
expected and the real output. Particularly the crosscorrelation lag is used as indicator of
the phase correction. The uncertainty associated with the estimation of Q is included as
variable by applying inverse-Q filter with a different Q from the one used to model the
attenuated trace.

INTRODUCTION

Different methods have been developed and are in use to compensate for anelastic
attenuation in seismic data. Time-variant spectral whitening and inverse-Q filter are
among the most widely known and used. More recently the Gabor deconvolution method
has emerged as a powerful tool to deal with this challenging problem.

Anelastic attenuation is just one of the mechanisms by which seismic waves travelling
through an anelastic medium are attenuated. Other attenuation mechanisms are geometric
spreading, absorption, transmission losses, S- and P-mode conversion, scattering, and
refraction at critical angles. Each of these mechanisms requires a separate treatment to
compensate for their nonstationary effects on the seismic signal. In general, the optimal
correction of attenuation requires the combination of different methods; each one
specialized in a specific attenuation mechanism.

As a wave travels through an anelastic medium, internal friction between the perturbed
particles causes that part of the transported mechanical energy be transformed into heat.
The dimensionless parameter Q, called the quality factor or attenuation parameter, is the
most common macroscopic variable used to quantify anelastic attenuation effects and is
defined as the ratio between the total and the lost energy per wave cycle. Different
physical mathematical models, based on experimental results, have been proposed to
represent anelastic attenuation. In the range of seismic frequencies used in data
processing, both in exploration and earthquake seismology, the constant Q or frequency-
independent O model have turned out to be a simple and at the same time sufficiently
accurate model to represent anelastic attenuation.

The constant-Q model (e.g., Aki and Richards, 2001) is the underlying theoretical
support for both Gabor deconvolution and inverse-Q filter methods. Its basic
assumptions are linearity, frequency-independent Q and velocity dispersion. A theoretical
model for an attenuated trace can be derived from the constant-Q model which is useful
for analyzing the effects of anelastic attenuation and for searching different methods of
correcting them. These effects on the signal can be summarized in amplitude decaying,
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due to energy absorption, waveshape modification, due to stronger absorption of higher
frequencies, and phase delaying, due to dispersion.

The Gabor deconvolution has been tested in real data and compared with conventional
surface-consistent Wiener deconvolution followed by time-variant spectral whitening
(Margrave et al., 2004). The resolution of data processed with Gabor deconvolution has
been found better than the resulting from conventional processing. In the last mentioned
paper there is also a comparison of the amplitude recovery from Gabor deconvolution
with the obtained from conventional processing. However, very little has been done to
evaluate the performance of Gabor deconvolution in compensating for the phase
distortion. The purpose of this paper is to carry out a first assessment of this issue, by
evaluating the phase recovery on Gabor-deconvolved synthetic data and comparing it
with the results obtained from inverse-Q filtering methods. A review and comparison of
the different existing methods for applying a Q filter can be found in Montafia and
Margrave (2004).

THEORY
A nonstationary model for the attenuated trace

The constant-Q theory (Kjartansson, 1979) establishes a model for the attenuated trace
based on two main assumptions: frequency independence of Q and linearity. Although
field measurements of attenuation show a slightly variation of O with frequency, the
assumption of frequency- independent Q allows to build a simple and powerful model for
anelastic attenuation, consistent, within the range of uncertainty associated with field
measurements, with experimental data. The assumption of linearity is broadly confirmed
by observations, except for strong attenuation (0<10) and for wave propagation very near
the source.

A fundamental result from the theory of linear filters is that a linear filter is completely
characterized by its impulse response. For this reason, the attenuation effects on a
travelling wave can be determined by examining the attenuating medium impulse
response. A first basic result of assuming Q constant and linearity is that the impulse
response p(x,t) is given by the expression

X

plat)=— 200 (1)

") |

where x is the travel distance, Q is the attenuation parameter, v is the frequency-
independent velocity, and ¢ is the traveltime (Aki and Richards, 2001). Figure 1 (blue
line) shows the plotting of Equation (1) in which the exponential decay of the amplitude
and the progressive broadening of the pulse are observed. The amplitude decay is a direct
consequence of the transference of energy to the medium. The pulse broadening is
generated by the stronger absorption of energy from the plane-wave components with
higher frequencies. Both effects are consistent with experimental observations. Other
characteristics of this impulse response are not consistent with observations: its symmetry
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and its noncausality. To reconcile the model with the observations regarding the pulse
shape, velocity dispersion must be considered.

In Aki and Richards’ (2001) approach, dispersion arises as a consequence of imposing
causality as a constraint, i.e. p(x,t)=0 for ¢t < x/v_, where v_ is the group velocity, which
corresponds to the common sense expectation that no response can be detected before the
arrival of the travelling wave. Consideration of causality forces the attenuation function,
the velocity and the frequency to be related through
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FIG. 1. A pulse source is modified when travelling through an anelastic medium. Its amplitude
decaying exponentially, the pulse broadens and a phase delay appears if dispersion is
considered. The blue pulse corresponds to plotting Equation (1) for different fixed-x travel
distances and does not consider dispersion. When dispersion is included the resulting pulse is
the red one.

is the attenuation function, and H[e(?)] is the Hilbert transform of the attenuation
function. The appearance of the Hilbert transform at this point is completely expected
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because, for causal functions, the amplitude spectrum is completely determined by its
phase spectrum and vice-versa through their Hilbert transforms.

The combination of Equations (2) and (3) takes to

2Qa(w>=vﬁ+H[a(w>], 4)

(=3

which can not be satisfied for constant-Q. By considering a generally frequency-
dependent Q, but effectively constant over the seismic frequency range, the ratio of two
velocities at two different seismic frequencies is established as

v@) _, 1. (o
@) 1+7ZQ10g( zj. ®))

An additional consequence of establishing causality as a constraint is to confer the
minimum-phase character to the impulse response p(x,?). Dispersion, causality and
minimum-phase are essential concepts for the attenuation constant-Q theory which are
intimately linked with each other.

Other dispersion relations are proposed in the literature; for example Kjartansson
(1979) uses

1

v(w) = V(@) (6)

0

The consequence of introducing dispersion into the constant-Q theory is that the
attenuating medium impulse response in the frequency domain is given by

B(w) = exp{— %} exp[ ;Eaaz} . (7)

A source pulse travelling through an anelastic medium, modelled from Equation (7), is
shown in Figure 1 (red line). Once the impulse response is determined, a model for the
attenuated trace (for the case of a pulse source) follows logically as a nonstationary
convolution between the reflectivity and the impulse response, according to the theory of
nonstationary linear filters (Margrave, 1998). The inverse Fourier transform of Equation
(7) nonstationaryly convolved with the reflectivity wavelet, yields the attenuated seismic
trace for an impulsive source (Margrave et al., 2002),

sp(t) = i T Tag(a), Dr(0)e " dudw, (8)

—o0 —oco

where
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a,(w,7) = exp(- wr /20 +iH (w1 /20)), 9)

is the exponential attenuation function and 7 =x/v_. By a stationary convolution of

Equation (8) with an arbitrary source wavelet w(z), a general nonstationary trace can be
generated,

5(w)= %Vv(a)) Tag(a), Dr(r)e " dr. (10)

Equation (10) shows the result of the stationary deconvolution in the Fourier domain.
The ‘hat’ symbol indicates Fourier transform.

Phase delay in modelling an attenuated trace

If Equation (10) is used to model an attenuated trace, an important aspect in the
modeling is how to compute the phase delay in the exponential attenuation function,
Equation (9). This phase delay is determined by the Hilbert transform of a function of
frequency and can be found either analytically, by using Equation (2), or digitally, by
using the definition of the Hilbert transform,

o'r
or) 1720 ..
H[2QJ—E_[Qw'_wda). (11)

To compute the phase delay from the definition given to the Hilbert transform in
Equation (11), a corresponding finite discrete definition must be used,

%
or|_1 < 20
H(zgj—ﬂn;an_wAw. (12)

The digital method to compute the phase, using Equation (12), has the disadvantage of
substituting the infinite limits in the definition of the Hilbert transform with finite limits
determined by the sample rate. An error in the phase delay is introduced by using this
approach.

The difference in phase delay between the two methods is estimated by computing a
windowed crosscorrelation between two pieces of trace within the same time interval.
The maximum coefficient of the local crosscorrelation (MAXCORR) gives an estimation
of the similarity between the two segments and its lag can be considered as an indicator
of their phase difference.

This comparison method is applied to two traces, Figure 3, modelled by the analytic
method, the blue one, and by the digital method, the cyan one. The rightmost plot in
Figure 3, corresponds to the maximum crosscorrelation lag between the analytic and the
digital modelled trace. A linear, growing with time, trend can be observed in the lag,
which almost reaches the 4 ms. In Figure 4, three events at different times are enlarged to
observe with better detail the phase difference.
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FIG. 2. A random reflectivity series (leftmost) is used to generate two attenuated traces. The
Hilbert transform for the phase of the attenuation function is computed in the analytic case
(second from the left) using Equation (2). In the digital case, the Hilbert transform is estimated by
the discrete Equation (12). The lag of the maximum crosscorrelation coefficient (rightmost)
between two corresponding pieces of traces is used as indicator of the phase difference between
the two attenuated traces. To find the circled point value, the shown windowed pieces of the
analytical and digital traces were used. In the example shown, the digital trace has greater phase
delay than the analytic one. A Q value of 50 was used.
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FIG. 3. Enlargement of the circled events in the previous Figure. The vertical scale in the three
plots is the same but the horizontal scale has been modified in each plot to ease the observation
of the growing phase delay.
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It can be seen that a growing phase difference exists between the two modelled traces.
It is worthwhile to point out that for the latest event, the phase difference is almost 4 ms,
from which a confirmation of the reliability of the crosscorrelation lag as an estimate of
the phase delay is reached. A Q value of 50 was used in this test. The MAXCORR and its
lag will be used henceforth as attributes to measure the similarity between the expected
output and the real output from the Gabor deconvolution and the inverse-Q filter
methods. In Figure 4, the resulting crosscorrelation lag is shown for different values of Q.
The phase lag tends to increase when Q decreases.
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FIG. 4. The lag of the maximum coefficient of the crosscorrelation between the analytic and the
digital attenuated traces for different Q values. An approximately linear trend, growing with time,
can be observed for each Q value. When Q decreases the lag tends to increase. For Q values
less than 25 and long times, the traces are so attenuated that the correlation lag is not reliable as
a phase-delay indicator anymore.

The Gabor transform and the spectrogram

The Fourier transform of a signal gives the relative weights of the wvarious
monochromatic components that make up the signal. It tells which frequencies exist and
their strengths. However it does not tell where those frequencies are localized in the time
domain. In contrast, time-frequency representations are functions of time and frequency
which display the frequency content of signals for different times. Among the more
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widely used time-frequency representations in signal processing are the Gabor transform
and the spectrogram.

One way of obtaining the time-dependence frequency content of a signal s(z), is to
take its Fourier transform over an interval around a point t=7, where 7 is a variable

parameter. This is the Gabor transform and may be defined as follows (e.g., Mertins,
1999):

=)

Vs(@.f)= [s(gle-o)edr . (13)
where g(¢)is the Gabor analysis window, f'is the frequency, and 7 is the location of the
window centre.

The inverse Gabor transform is defined as

oo oo

s(t) = j j V,s(z, )yt —7)e*™ dfdr , (14)

—oo—c0

where y(t) is the Gabor synthesis window. g(¢) and y(¢) must satisfy the condition

[enyde=1. (15)

Margrave et al. (2002) developed a particular implementation, appropriate for discrete
sampled bandlimited signals, based on the concept of partition of unity. A partition of
unity is a collection of real-valued windows chosen in such way that they sum to 1
everywhere. A highly efficient Discrete Gabor Transform algorithm can be obtained by
the implementation of a partition of unity based on Lamoureux windows (Grossman et
al., 2002).

The absolute squared of the Gabor transform is known as the spectrogram (e.g. Cohen,
1995):

2

oo

J.s(t)g(t —)e ™ dt] .

—oo

Py(z.f) =[] = (16)

The spectrogram P, (7, /) can be interpreted as an indicator of the signal energy at the

time and frequency point (7f). Both in the spectrogram and in the Gabor transform,
resolution in time and frequency are governed by the uncertainty principle. Improving
time localization by using a shorter window, results in a broadening of the local spectrum
and consequently frequency localization deteriorates. The reverse happens when
lengthening the time window: frequency resolution is improved at the cost of time
resolution. Figure 5 (right) shows the absolute value of the Gabor transform of a
nonstationary signal (left).
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FIG. 5. Gabor transform (right) of an attenuated signal (left). The frequency content of the signal
can be directly observed on the Gabor transform.

The Gabor deconvolution

Margrave and Lamoureux (2002) have proposed an asymptotic factorization of the
nonstationary trace model of Equation (10), based on the Gabor transform,

Ves(z, ) = w(f)ay (2, f)V,r(z, f), (17)

which states that the Gabor transform of the seismic trace, V,s(z, f), is approximately
equal to the product of the Fourier transform of the source wavelet, w(f), the time-
frequency attenuation function, «,(7,f), and the Gabor transform of the reflectivity
Vr(z,f). The Gabor deconvolution is a non-stationary extension of the Wiener
deconvolution method in the frequency domain and implies a minimum-phase source

wavelet and white reflectivity series. The method assumes that ‘Vgr(z', f )‘ is a rapidly

varying function in both variables 7 and f,

w(f )| is smoothly varying in f; and (7, f)
is an exponentially decaying function in both variables T and f, and constant over
hyperbolic families of 7f=constant. An approximation |O'(T, f )| of |v”v( f )| ‘aQ (z, f )‘ is
obtained by applying a smoothing operation to‘Vgs(T, f )‘. Different kinds of smoothing

are possible; Iliescu and Margrave (2002) use 2-D boxcar smoothing and hyperbolic
smoothing, along curves of 7f=constant. Grossman et al. (2002) use a different method to
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estimate |Vv( f )| and ‘OKQ(T, f )‘ based on a least square fitting of Equation (17). As

o(7,f) represents the attenuated source wavelet, its minimum-phase function is

estimated from |O'(Z', f )| using the Hilbert transform:

Thnjo(z, 1)
o, f)= | —— 9" (18).
_j.x, f=r
Finally the Gabor spectrum of the reflectivity is estimated in the Gabor domain as:
V (z,
Ver(z, f) e =M- (19)
- o@f)

Gabor vs. Q filter phase correction

By using the Hilbert transform to compute the phase spectrum of the attenuated source
wavelet, the problem of substituting the infinite limits of the Hilbert transform integral by
finite limits arises again. The difference is that now there is no analytical expression to
find the accurate phase function and only a digital estimation is at hand. It is very
important to know the length of the phase delay remaining after Gabor deconvolution as a
result of the error introduced in the computation of the Hilbert transform.

By using synthetic seismic data, an assessment of the phase delay remaining after
applying Gabor deconvolution and a comparison with the results obtained by using O
filtering can be carried out. The phase correction performed by the Q filter methods is
highly accurate when the exact value of Q is available (e.g., Montana and Margrave,
2004). However, in practice, Q is estimated from surface seismic data, VSP data, or
derived from other properties, for example as 1% of the velocity. Among the three
methods for estimating Q, the VSP is the most accurate, but unfortunately, given that the
VSP data requires a borehole, only on few occasions is this kind of data available. The
estimation of Q from the other mentioned methods involves uncertainty grades as high as
100%.

Given the uncertainty surrounding Q, it is reasonable to evaluate the performance of
the two kinds of methods by assuming an error in O estimation. A random reflectivity
series is used as a reference trace, without convolving it with a source wavelet to avoid
mixing the error from the Q filters with the error from the stationary deconvolution
necessary to remove the source signature. An attenuated trace is modelled by
nonstationarily convolving the reference stationary trace with the nonstationary impulse
response corresponding to a value Q;. This attenuated trace is then subject to Gabor
deconvolution, on the one hand, and inverse-Q filter (using a value Q;), on the other, and
the results compared. For weak attenuation (Q>100), the Hale inverse-Q filter method is
used due to its unmatched accuracy. For strong attenuation (Q<100), Hale method
becomes highly unstable, so the next method in order of accuracy, i.e. nonstationary
inverse-Q filter, is chosen instead.

Figures 6 to 8 show the results obtained for Q=100, when the Hale inverse-Q filter
with O values of 100, 150 and 80, is compared to the Gabor deconvolution. The phase
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correction performed by Gabor deconvolution is very good; the lag is zero in the first half
of the trace and around 1 ms. in the second half. The Q filter performs an almost perfect
phase correction in the three cases. These results are consistent with the recommendation
made by Duren and Trantham (1997) that is better to overestimate Q than underestimate
it when applying QO filtering

Figures 9 and 10 show the results obtained for Q=50, when the Hale filter, using Q
values of 50 and 56, is compared to the Gabor deconvolution . For Q=50 the correction of
the inverse-Q filter is virtually perfect, but for Q=56 it turns unstable. The Hale inverse-O
method is substituted for the nonstationary inverse-Q method at this point. Figures 11 and
12 show the results when the nonstationary inverse-Q filter, with Q values of 56 and 65,
is compared to the Gabor deconvolution. The Gabor deconvolution corrects the phase
very well in the first two-thirds of the trace, but in the last third an important lag,
reaching almost 4 ms, remains. When a Q value of 65 is used in the nonstationary
inverse-Q filter, the phase correction of the two methods is similar.

Figures 13 to 15 show the same comparison for Q=20, when the nonstationary Q filter
is applied with Q values of 20 and 22. The Gabor deconvolution seems to perform a very
good job in this case, and the lag is around zero along the majority of the trace. However,
something strange can be observed in the crosscorrelation plot: in several places,
especially in the second half, the crosscorrelation coefficient is negative, though its
absolute value is kept in the same order of magnitude. Enlarging a few events in different
parts of the trace, Figure 14, it can be observed that the Gabor deconvolution apparently
restores the correct position of the events but applies a phase rotation, in this case of
approximately 7, although the effect can be interpreted as a growing phase delay (which
can be appreciated clearly in event 2) accompanied by a phase rotation.

DISCUSSION

The enlargement of a few events in the results obtained, Figures 3 and 14, indicate that
the lag of MAXCORR can be accepted just approximately as a valid estimation of the
phase correction, and that its reliability decreases when attenuation increases. According
to this attribute, the phase correction performed by the Gabor deconvolution corrects only
partially the phase-delay introduced by velocity dispersion but without reaching the
phase-delay values corresponding to the difference between the analytical and the digital
approach in the forward-modelling process. For Q equal to 100 (Figure 6 (f)), the
remaining phase delay is less than a half of the difference between the analytical and the
digital phase delay in forward-modelling, for the same Q value (Figure 3). For Q=50, the
phase correction is practically perfect in the first two-thirds of the trace and then
increases rapidly to reach approximately 4 ms. For Q=20, a phase delay can be observed
clearly in event 2 (Figure 14), and a phase rotation in events 3, 4 and 5. It is not certain
that the cause of the flaws mentioned in the previous paragraph lies entirely with the
Hilbert transform computation. An important difference between the computation of the
Hilbert transform in the forward and the inverse cases is the kind of function that is
integrated. In the first case, it is the attenuation function, Equation (3), which is linear
with respect to frequency. In the latter case, a function that is similar to the exponential
attenuation function, Equation (9), which is expected to decay more rapidly with @, has
to be integrated.
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Independent of the validity of the previous argument, the identified flaws in the phase
correction by the Gabor deconvolution must be analyzed more carefully, the real cause
established and a solution found.

A definitive judgment about the assessment considered in this work just can only be
found by complementing the test done here with similar test using real surface seismic,
VSP data and well logs.

CONCLUSIONS

Computation of the Hilbert transform for discrete functions can introduce an
appreciable error thorough substituting the infinite limits in the integral for finite limits in
the summation. This can be corroborated in the forward modelling of an attenuated trace
according to the constant-Q theory. This theory provides an analytic way to compute the
Hilbert transform, which can be used as reference for estimating the error committed by
using a discrete approximation to the integral. The Gabor deconvolution is applied to
attenuated traces and its phase-correction performance is compared with that obtained by
using inverse-Q filtering methods. For weak attenuation (Q>100), inverse-Q filtering is
highly insensitive to the uncertainty associated with the Q wvalue. For this level of
attenuation, the phase correction using Gabor deconvolution is very good, the remaining
phase delay is within a half time sample although the Q filter performs better even when
the O used is 50% greater. For strong attenuation (Q<100), the performance of the Gabor
deconvolution is better than the inverse-Q filter. When Q decreases, the inverse-Q filter
results are increasingly sensitive to the uncertainty associated with O and the Gabor
deconvolution preserves the quality in its performance even for Q values as low as 20. As
a result, the advantage in favour of the Gabor deconvolution increases when Q decreases.
Given the fact that the Gabor deconvolution does not require any value of Q at all to yield
results comparable to those obtained using any Q filtering method is an enormous
difference in its favour.

A couple of flaws in the phase correction by Gabor deconvolution were observed: a
comparatively large value for the remaining phase error (2 samples) in the last third of
the trace for Q=50, and a rotation of the phase especially in the final half of the trace for
Q=20. Neither problem seems to be part of a trend nor be caused by the discrete
computation of the Hilbert transform involved in the Gabor deconvolution, but further
research is needed to clarify and correct it.

FUTURE WORK

Consider models where Q changes with depth. Investigate and correct the causes of
the flaws detected in correcting phase by Gabor deconvolution. Extend the tests to real
data, using surface seismic data, VSPs and well logs. Improve the performance of the
MAXCORR lag as phase-delay indicator.
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