Nonstationary processing

Nonstationary image processing via Gabor transforms

Michael P. Lamoureux and Daniel H. Adler
ABSTRACT

We illustrate some of the key ideas of nonstationary filter and Gabor deconvolution via
a simple application of Gabor transforms to standard image processing.

INTRODUCTION

Seismic signals are nonstationary — that is, their characteristic changes over the length
of a recording, reflecting the fact that the seismic wave is altered as it propagates through
various geological layers of the earth. Some familiar alterations include attenuation due
to spherical spreading, frequency-shaping due to Q-effects, and amplitude variations due
to inhomogeneous reflectivity. Thus, it is fundamental in seismic data processing to have
technigues which take into account the nonstationary nature of the signal. Processors are
interested in developing algorithms for nonstationary filtering, nonstationary deconvolu-
tion, and other methods which modify a signal in a time-varying manner.

One key approach to developing such algorithms depends on the use of the Gabor trans-
form, which is a time-frequency method based on a localized version of the Fourier trans-
form. Denis Gabor, inventor of the hologram, proposed analyzing signals as a sum of mod-
ulated Gaussian functions. This idea has been extensively developed by the signal process-
ing community (see, for instance, Feichtinger and Strohmer (1998)) and recently applied
to problems in seismic imaging. For instance, a powerful extension to Wiener deconvolu-
tion based on the Gabor transform has been proposed and implemented by Margrave et al.
(2002). Similarly, novel algorithms for estimatidgattenuation in time-frequency domain
have be developed by Grossman et al. (2002). More recently, wavefield extrapolation based
on the use of Gabor multipliers have been implemented.

However, a basic problem we run into when developing Gabor methods for seismic
imaging, or trying to explain them to new users, is that we are trying to understand a
complex mathematical technique which is being applied to very complex, real data signals.
That is, the seismic data is very rich in complex physical phenomena, and it takes a high
level of sophistication simply to understand what the data represents, even before we get
the mathematics underway. The situation would be greatly simplified if we could develop
the mathematical ideas on a simpler set of data. Hence this article — we show how Gabor
transform techniques can be applied to simple sounds, and photographic images, which will
give a basic understanding of these methods before applying them to the seismic problems.

THE GABOR TRANSFORM

The Gabor transform is a localized version of the Fourier transform that provides local
frequency information about a given signal. It is typically computed by applying a sliding
window functionw,(t) = w(t — 7) to the signals(t), taking the product, and extracting
the local frequency information by taking the Fourier transform of this product. The Gabor
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FIG. 1. A whistled tune, and its Gabor transform.

transform of signak, evaluated at time, frequencyw, is thus
G(r,w) = FFT{w.()s(-)}{w). 1)

Without worrying too much about the details of this transform, we see immediately that the
resultG(r,w) is a function of both time- and frequencw, and ideally should represent
local frequency information about the signal. As an illustration, we compute the Gabor
transform of a recording of a person whistling a tune, as shown in Figure 1. The time-
frequency representation (in the bottom half of the figure) clearly shows the notes localized
in time, with a general upward trend in the frequency of the notes.

Similarly, a recording of ToneToA&' signals from a telephone can be decomposed by
the Gabor transform, and the result in Figure 2 clearly shows each tone burst as a combi-
nation of two pure tones, at various frequencies.

The Gabor transform comes with an inverse; thus once the sighahas been trans-
formed toG(T,w), it can be recovered exactly. Typically, the inverse is computed by ap-
plying an inverse Fourier transform to the Gabor function, applying a dual windoty
and summing over various translates of this window. That is, we recover the signas

s(t) =Y w'(t — m)IFFT(G(r;,w)), (2)
J

where the inverse FFT is applied in thevariable. It is important to correctly choose
the dual windoww’(t) and its spacing with the;. When this is done incorrectly, the
exact inverse is not obtained. For instance, when the Gabor transform is applied in two
dimensions to a testimage as in Figure 3, there is an obvious problem in the reconstruction
shown in Figure 4, where visual blocks appear. This was a particularly nice demonstration
of how the use of real images, rather than seismic signals, highlighted an error in initial
codes our student put together.
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FIG. 2. TouchTone signals and their Gabor transform.

FIG. 3. A simple test image, before filtering.
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FIG. 4. Reconstructed image, with improper windowing.

Windows

A proper selection of window functions is important to ensure an exact inverse. The key
connection between the windaw(t), its dualw’(¢), and their translates, is the partition of
unity condition:

Z w(t —m)w'(t — 1) = 1. (3)
J
That is, once we sum the products of the translates of the windows, diependence
disappears and the functions add up to one.

Denis Gabor proposed using multidimensional Gaussians as the window functions,
w(t) = e*°, as shown in in Figure 5. However, no matter how one translates these,
they do not sum to one exactly (although good approximations are possible). A better
choice in two dimensions would be the product of two raised cosine functioft$, =
(cos(t1) — 1)(cos(tz) — 1), as shown in Figure 6. If we take nine of these windows, prop-
erly spaced, we see they sum to a constant plateau in the middle, as shown in Figure 7.
Summing many such windows gives a flat plateau as large as necessary.

In these examples, the window functiarit) is carefully chosen so that the dual win-
dow can simply be taken as the constant one. The roles could be reversed) sothe
constant one, and’(t) is raised cosine window. A useful compromise which localizes
both the Gabor transform and the reconstruction is to chooseufojtandw’(¢) to be the
square root of the raised cosine window. Their product then forms the partition of unity.
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FIG. 5. A Gaussian window in 2D.
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FIG. 6. A raised cosine window in 2D.
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FIG. 7. Nine cosine windows sum to a flat plateau.
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NONSTATIONARY FILTERING

The key idea behind nonstationary filtering is to somehow apply different filters (or
filters with different characteristics) to different parts of a signal. In a seismic signal, one
may wish to perform different levels of whitening at different parts of the data, or design a
deconvolution method that changes the frequency content of a signal by different amounts,
at different times in the signal. Again, understanding the filtering process for seismic data
assumes the student already understands a lot about the physics of the processes generating
a seismic signal. Here, we want to simplify by working with images.

For nonstationary filtering of a photographic image, one might imagine blurring one
part of an image, while simultaneously sharpening another part of the image. In the Fourier
domain, blurring is achieved by suppressing the high (spacial) frequencies, while sharpen-
ing is achieved by suppressing the low frequencies. To do both simultaneously in the Gabor
domain, one simply suppresses high or low frequenciéinw) depending on the vari-
able. This is easily achieved by multiplying the Gabor function with some other function
a(7,w) that has necessary characteristics. The new, modified signal is obtained by applying
the inverse Gabor transform, so

5(t) = Z w'(t — 7)) IFFT{a(rj,w)G(7;,w) }(t). (4)

J

The functiona(7,w) creates a Gabor multiplier, which is a powerful technique for
implementing nonstationary filters. Again, for photographic images, it is easy to see the
effect of any particular Gabor multiplier. For instance, we can selectively filter our test
image by blurring in one corner while sharpening in the opposite, with a smooth transition
in between. Figure 8 is the result of this nonstationary filtering of the test image.

It is even possible to design the nonstationary filter “on the fly,” using interactive picks
with a computer mouse to identify regions that should be selectively filtered. For instance,
we can begin with the testimage in Figure 9, pick out some spots to be blurred, others to be
sharpened, and apply the resulting Gabor multiplier to obtain the edited image in Figure 10.
One can clearly see the results of the localizes blurring and sharpening. In this particular
example, one also sees a darkening of the image at the sharpened zones — this is due to
an error in the design of this particular multiplier, which again demonstrates how using
familiar images in developing the Gabor methods can help quickly identify problems.

The precise specification of the Gabor multipk€r-, w) for use in seismic problems is
a subject of considerable interest to our research team, and has been discussed in Gibson
et al. (2003). However, for a simple task like photo imaging, simple choices fidten
work very well.

CONCLUSIONS

We have demonstrated the use of the Gabor transform, a time-frequency method, in
analysis of simple sounds and the nonstationary filtering of photographic images. These
technigues have great utility in the processing of seismic data, but it is useful to develop an
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FIG. 8. Test image, with blurring in N.W., sharpening in S.E.

FIG. 9. Another test image, before selective filtering.

CREWES Research Report — Volume 16 (2004) 7



Lamoureux and Adler

FIG. 10. Test image with selective filtering.

understanding of how they work in the more familiar situation of sounds and images.
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