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ABSTRACT 
Space-frequency domain wavefield extrapolators have attractive advantages compared 

to wavenumber-frequency domain extrapolators. The most attractive merit is that they 
can accurately handle strong lateral velocity variations without incurring a significant 
increase in computational cost. It is well-known that finite space-frequency domain 
extrapolators are designed as approximations to the exact phase-shift operator. These 
approximations manifest themselves as small instabilities and inaccuracies in the 
performance of the extrapolators. These effects are best examined in the wavenumber-
frequency domain, where the extrapolator response can be compared to the exact 
response, and in the space-time domain, where angular aperture, wavelet stability, and 
artifacts can be evaluated and compared. In this paper, we compare the 19- and 39-point 
Hale, Nautiyal (Gaussian tapered), and Kirchhoff (Hanning tapered) extrapolators. We 
use a common set of standards to visualize the various extrapolators and quantitatively 
investigate their stability and accuracy. The dip responses of the extrapolators are 
compared using constant velocity 2-D impulse responses (zero-offset) and a constant 
velocity pre-stack depth migration of a single shot-record over a carefully designed set of 
dipping reflectors. 

INTRODUCTION 
In recent years, “wave equation” seismic imaging methods have found wider 

application as computational power has steadily increased and as exploration efforts 
target areas with strong lateral variations in seismic velocity. The essential component of 
a “wave equation” imaging method is recursive wavefield extrapolation based on the one-
way wave equation (Berkhout, 1981), where the term recursive implies that the output 
wavefield from the last extrapolation step is used as the input wavefield to the next 
extrapolation step. Various “wave equation” imaging methods have demonstrated a 
superior capability for imaging complex structures compared to conventional 
nonrecursive methods typified by diffraction-stack Kirchhoff migration (Paffenholz et al., 
2002; Soubaras, 2002). A widely agreed explanation is that recursive extrapolators 
provide an accurate solution to the wave equation over the whole range of seismic 
frequencies. Therefore, they are more easily able to handle complex wave phenomena 
such as multiple arrivals and complicated scattering (Bevc and Biondi, 2002). 

The recursive wavefield extrapolation methods can be categorized into two major 
groups, implicit and explicit. A typical example based on the implicit extrapolation is the 
well-known 45-degree finite-difference method for depth migration (Claerbout, 1985), 
where the implicit filtering is implemented by solving a linear system of coupled 
equations for the output points. In contrast, the explicit methods approximate the 
extrapolation operator as finite-length spatial filters. Recursive Kirchhoff extrapolation 
(Bevc, 1997; Margrave and Daley, 2001; Geiger et al., 2002) and the family of 
wavenumber-frequency extrapolations such as phase-shift-plus-interpolation (Gazdag and 
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Sguazerro, 1984) and non-stationary phase shift (Margrave and Ferguson, 1999; 
Ferguson and Margrave, 2002) are considered to be explicit methods. 

One compelling advantage of explicit methods is the ease with which they can be 
coded for parallel implementation (e.g., Geiger et al., 2002) and extended to the 3-D case 
(Claerbout, 1985). Moreover, explicit extrapolation methods implemented in the space-
frequency domain (e.g., the recursive Kirchhoff extrapolation) can easily handle irregular 
acquisition geometry (Margrave and Daley, 2001) and provide protection from wrap-
around artifacts that typically appear with wavenumber-frequency extrapolators. 

Although these are desirable advantages, stability and accuracy are always major 
concerns when designing explicit extrapolation schemes implemented in the space-
frequency domain. Unlike implicit extrapolations, which are unconditionally stable 
(Godfrey et al., 1979; Claerbout, 1985), explicit extrapolators are not stable unless special 
care is taken in their design and implementation. In general, instability results from 
spatial truncation of the explicit extrapolation operators, either for the purpose of 
decreasing the computational cost or due to the inevitable finite aperture of the survey. 
Specifically, truncation of the spatial aperture of extrapolators causes a Gibbs oscillation 
in the wavenumber domain, and instability arises when any part of the amplitude 
spectrum exceeds one. Recursive application of the truncated extrapolator tends to 
amplify the wavefield energy with depth, damaging the final images. In other words, the 
stability condition that no amplitude at any frequency will grow exponentially with depth 
is not automatically fulfilled with explicit extrapolators. The other important factor is 
accuracy, which could be comprised if the amplitude and phase spectra of the 
extrapolator deviate from those of the exact analytical phase-shift operator. 

Many efforts have been devoted to stabilize the space-frequency domain extrapolators 
without sacrificing accuracy. Holberg (1988) and Blacquière et al. (1989) suggested a 
constrained non-linear least-square method to design 2-D and 3-D stable extrapolators, 
respectively. Unfortunately, as shown by Hale (1991), the recursive application of non-
linear least-square optimized extrapolators may still result in instability and/or 
exponential decay of the seismic wavefield with depth. In addition, the nonlinear 
algorithm is usually expensive and can be trapped in a local minimum (Thorbecke et al., 
2004). As an alternative, Hale proposed a stable explicit extrapolator designed using a 
modified Taylor series method. Although Hale’s extrapolator is guaranteed to be stable, 
the artifacts caused by the nature of the extrapolator design make it suboptimal (see 
following discussion). An additional drawback is that Hale’s method is based on the 
Taylor series expansion about wavenumber zero. Therefore, it’s no longer accurate to 
handle propagation angles at high wavenumbers. A more straightforward way to stabilize 
the extrapolator as well as accommodate the irregular geometry is to taper the 
extrapolator in the space domain by multiplying a proper window function. A successful 
example was shown by Nautiyal et al. (1993) using a Gaussian window. However, as 
seen later, its abilities to image the steep dips and keep phase accurate are not competitive 
with Hale’s extrapolator. Other extrapolators were also designed that demonstrated 
interesting stability and accuracy features, e.g., Soubaras (1996) suggests equiripple 
polynomial expansion combined with Laplacian synthesis, while Thorbeck et al. (1994 
and 2004) suggest an optimized weighted least-squares method. 
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The criteria for an optimal space-frequency domain extrapolator would mainly rely on 
the specific stability and accuracy analysis, where deep insights should be gained in order 
to make the fair comparison. To date, there has not been a study that compares the 
accuracy and stability of various extrapolators using a common set of standards. In this 
paper, I developed an intuitive way to visualize the wavefield extrapolators and illustrate 
the stability and accuracy problems in the explicit wavefield extrapolation. This leads to a 
better understanding of the stability and accuracy problems, and a more effective 
evaluation of various explicit wavefield extrapolators. More importantly, it will pave the 
way for developing new wavefield extrapolation techniques. 

It’s hard to compare all the extrapolators that have been introduced in the literature. 
Instead, I selected recursive Kirchhoff extrapolator, Nautiyal’s Gaussian tapered 
extrapolator and Hale’s extrapolator to exemplify the stability and accuracy analysis. 
They are either widely referenced or well developed, thus, make themselves good 
candidates. Furthermore, in order to make the fair comparison, I coded Nautiyal’s, Hale’s 
and Kirchhoff extrapolators on a common platform1.  

In this paper, I briefly introduce the three extrapolation methods, followed by the 
stability and accuracy analysis. Post-stack and pre-stack synthetic data are used for the 
illustration. 

EXPLICIT WAVEFIELD EXTRAPOLATORS 

Hale’s stable explicit extrapolator 
Hale (1991) proposed a modified Taylor series method to stabilize the explicit 

wavefield extrapolator. The method can be viewed as the design of a finite length 
extrapolation filter )(nh with a Fourier transform )ˆ(kH  that best approximates the 
Fourier transform )ˆ(kD of the desired extrapolator, 
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where ω  denotes the angular frequency (in radians per unit time), v denotes velocity, and 
z∆ and x∆ denote vertical and horizontal spatial sampling intervals. The normalized 

wavenumber k̂ (in radians per sample) is obtained by multiplying the wavenumber k  by 
x∆ . )ˆ(kD is the familiar filter applied in Gazdag’s (1978) phase-shift migration, and is 

subject to the constraint that 1)ˆ( ≤kH for π≤k̂ . 

The desired transform )ˆ(kD uniquely depends on the two dimensionless 
constants xz ∆∆ / and vx /∆ω . As indicated by equation (1), )ˆ(kD is symmetric with respect 
to k̂ (both the real and imaginary parts are even), which implies that )(nh should also be 
even. Thus, the length of )(nh , measured by N, should be odd, with the coefficient index 
                                                 
1 Kirchhoff extrapolator is revised from the existing algorithm by Margrave. 
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n bounded by 2/)1(2/)1( −≤≤−− NnN . Moreover, due to the symmetry of )(nh it is 
completely described by (N+1)/2 coefficients. 

The extrapolation filter )(nh is defined by 
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and moδ is the Kronecker delta function defined by 
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To ensure stability of the extrapolator (i.e., 1)ˆ( ≤kH ), the number of weights M in 

equation (2) should be less than the number of filter coefficients (N+1)/2. The Fourier 
transform of )(nh is obtained as 
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The Taylor series expansion of the desired transform D(k) and the 
approximation )ˆ(kH  about 0 (i.e., the Maclaurin series) can be calculated respectively as 

 ...ˆ
!

)0(...ˆ
!2

)0(''ˆ)0(')0()ˆ(
)(

2 +++++= n
n

k
n

DkDkDDkD . (7) 

 
....)0(

!

ˆ
...)0(

!2

ˆ
)0(ˆ)0(

...ˆ
!

)0(...ˆ
!2

)0(''ˆ)0(')0()ˆ(

1

0

)(
1

0

''
21

0

'
1

0

)(
2

∑∑∑∑
−

=

−

=

−

=

−

=

+++++=

+++++=

M

m

n
mm

nM

m
mm

M

m
mm

M

m
mm

n
n

Bc
n
kBckBckBc

k
n

HkHkHHkH
 (8) 

Since )ˆ(kD and )ˆ(kH are symmetric, the odd derivatives at 0ˆ =k in equation (7) and (8) 
are all zeros. 
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The conventional way to approximate )ˆ(kD is to match the first (N+1)/2 even 

derivatives at 0ˆ =k in equation (7), which can result in an unstable extrapolation filter. 
The instability arises when the amplitudes of )ˆ(kH exceed one due to the truncation of the 
infinite Taylor series. Instead, Hale’s suggests matching only the first M 
(for 2/)1( +≤ NM ) even derivatives, yielding the linear system, 
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Note that Equation (10) has corrected an error in Hale’s equation (A-6). The 
remaining (N+1)/2-M degrees of freedom are used to achieve the stability of the 
extrapolation filter. The weights cm can be obtained from equation (9) by solving the 
linear system. The extrapolation filter h(n) is then obtained from equation (2). 

In practice, we consider an extrapolator to be stable when its amplitude is smaller than 
1.0001 for all wavenumbers. In a homogenous medium and a single frequency, the 
amplitude will be amplified to a maximum value of 1.1052 after 1000 extrapolation steps. 
This is considered as being “reasonably” stable. 

Recursive Kirchhoff extrapolator 

If ),0,,( ωψ =zyx is a wavefield in the space-frequency ),,( ωyx domain at depth 
level 0=z , then its extrapolated value at depth z is calculated as 

 ∫
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where v is the laterally variable velocity and W3D is the three-dimensional, space-
frequency, wavefield extrapolation operator. It can be derived by taking the z derivative 
of 3-D Green’s function for constant velocity, i.e. 
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where 222 zyxr ++= , vk /ω= and rz /cos =θ  is the cosine of the scattering angle. 

By substituting equation (12) into equation (11), we obtain 
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where 222 )ˆ()ˆ(~ zyyxxr +−+−= . Equation (13) is a spatial convolution of the 
wavefield with an operator that performs a weighted summation along a diffraction curve. 
Therefore, equation (13) is interpretable as a Kirchhoff-style wavefield extrapolation 
operation in the space-frequency domain (Margrave and Daley, 2001). Depending on the 
choice of Fourier transform convention, W3D can represent either a forward or backward 
wavefield extrapolation operator. 

The Kirchhoff extrapolator is different from typical space-frequency extrapolators 
(e.g., Berhout (1981)). The traditional space-frequency extrapolators are usually designed 
as finite-difference operators and thus assume a uniformly gridded dataset. The Kirchhoff 
extrapolator, on the other hand, is derived from an analytical formula that can be 
evaluated at any arbitrary spatial location. Therefore, it can easily adapt to irregular 
geometry and could prove effective in data regularization. 

Similarly, the 2-D form of wavefield extrapolation can be developed as, 
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where )()1(
1 uH  is the first-order Hankel function of the first kind and 22)ˆ(~ zxx +−=ρ .  

The simple replacement of constant velocity by lateral variable velocity in equation 
(13) and (14) leads to the extrapolators that can approximately accommodate lateral 
velocity variations. 

Nautiyal’s Gaussian tapered extrapolator 
Nautiyal (1993) suggested applying a Gaussian window, 
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to the Kirchhoff extrapolator in the space-frequency domain. σ is a parameter to be 
chosen. Spatial tapering by a Gaussian window is easy to implement and stabilizes the 
extrapolator. 

STABILITY AND ACCURACY ANALYSIS 
The space-frequency domain extrapolators studied in this paper are plotted in the 

wavenumber-frequency domain so that a direct comparison can be made with the exact 
phase-shift extrapolator for constant velocity. A constant velocity of 1250m/s (half-
velocity of 2500m/s for zero-offset extrapolation), frequency range of 0 to 55Hz, spatial 
sampling of ∆x=∆z=10m and temporal sampling of 4ms are used for the extrapolators 
calculation. To be consistent with the literature (e.g., Hale (1991) and Nautiyal (1993)), 
the operator lengths used in the demonstration are chosen as 19 and 39 points.  
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As illustrated in Figure 1 and 3, the various explicit extrapolators implemented in the 
space-frequency domain are designed in different ways to approximate the desired phase-
shift operator. Figure 1(a) and 3(a) are the spectra of the desired extrapolator (phase-shift 
operator) obtained from equation (1). Wavenumbers and phase are normalized by the 
factors of 2π/∆x and 2π, respectively. The full-aperture Kirchhoff extrapolator (Figure 
2(a) and 4(a)) shows the smallest amplitude and phase errors in comparison to other 
“limited aperture” extrapolators 2 . However, there are number of reasons why full-
aperture extrapolation is less desirable in practice. First, full-aperture extrapolation is 
computationally expensive, especially in 3-D. Second, the finite aperture in the space 
domain causes a Gibbs oscillation in the wavenumber domain with a resultant 
amplification or attenuation of portions of the wavefield. Therefore, limited aperture 
extrapolation can be, at best, only “reasonably” stable for a finite number of extrapolation 
steps. Third, it is important to note that, even at infinite aperture, we always choose to 
attenuate the evanescent region and are thus making errors for inverse extrapolation (see 
Wapenaar (1997)). Although tapering techniques have been shown to be effective in 
handling truncation problems (Liu et al., 2004), a simple Hanning edge taper in the space 
domain cannot stabilize the 19-point and 39-point Kirchhoff extrapolators. As indicated 
from in Figure 1(c) and 3(c), the Hanning edge taper is not able to guarantee that the 
amplitudes of extrapolators won’t exceed one. 

Both Hale’s extrapolator (Figure 1(b) and 3(b)) and Gaussian tapered extrapolator 
(Figure 1(d) and 3(d)) are guaranteed to be stable without amplifying wavefield during 
the recursive extrapolation. However, differences in their design result in differences in 
accuracy. Taking advantage of the Gaussian window (the Fourier transform of the 
Gaussian is another Gaussian), Gaussian tapered extrapolator is like a “smoothed” 
version of the exact extrapolator where Gibbs oscillation is removed but high angle 
propagation energy is also attenuated. The fact that the phase error is not zero at small 
wavenumbers (Nautiyal (1993); Figure 2(d) and 4(d) in this paper) makes it less 
competitive. In contrast, Hale’s extrapolator achieves better accuracy by matching the 
first few terms in Taylor series expansion of the exact extrapolator. As indicated by 
Figure 2(b) and 4(b), Hale’s extrapolators are more accurate within the evanescent 
boundary. Unfortunately, the nature of the design for Hale’s extrapolator will cause 
blocky spectra in the wavenumber-frequency domain (Figure 1(b) and 3(b)). As will see 
later, the discontinuities between each frequency bands will result in high-angle artifacts 
that could have been canceled out if there were energy in between the high wavenumber 
gaps. In addition, as Hale’s extrapolator was derived from the Taylor series expansion at 
k=0, it won’t be accurate to handle the high propagation angles. This is evident from the 
Figure 2(b) and 4(b) where the amplitude and phase errors increase with wavenumbers. 

The above accuracy evaluation of various extrapolators is qualitative. A quantitative 
way is to investigate how the errors are associated with propagation angles. As depicted 
in Figure 5(a), one extrapolation step using Hale’s 39-point extrapolator will attenuate the 
waves propagating at 55° by a factor of 0.995 (i.e., 1-1/200) for most frequencies. A 200-
step extrapolation will attenuate the wave by a factor of 0.995200=0.367. Similarly, the 

                                                 
2 Strictly speaking, “full-aperture” is also aperture-limited due to the finite acquisition survey. In this paper, 
the “limited aperture” refers to the case where the full-aperture is not used. 
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wave propagating at 70° will be attenuated by a factor of 0.9520=0.359 only after 20 steps 
for many frequencies. This is a quantitative way to evaluate the ability of an extrapolator 
to propagate wavefields accurately over a range of propagation angles. Given that phase 
errors accumulate, the phase error contour shown by Figure 5(a) indicated that one-half 
cycle (π radians) phase error will be generated after 1000 step extrapolation for the waves 
propagating at 55°, while it only takes 100 steps for the waves propagating at 70°. 
Therefore, inaccurate waves are rapidly attenuated during the extrapolation. 

As shown by Figure 5(b), the 39-point Kirchhoff extrapolator with Hanning edge taper 
is more accurate for most of frequencies. It will attenuate waves propagating at 60°-70° 
by a factor of 0.367 after 200 extrapolation steps (except the very low and high 
frequencies). A half cycle phase error will be generated after 1000 steps for the wave 
propagating at 70°-80° degrees. However, the 39-point Kirchhoff extrapolator with 
Hanning edge taper is not stable as described before. The 39-point Gaussian tapered 
extrapolator is probably the least accurate extrapolator as shown by Figure 5(c). It will 
attenuate waves propagating at 40° by a factor of 0.367 after 200 extrapolation steps 
(except for the very low and high frequencies). 

SYNTHETIC TESTS 

Zero-offset synthetic test 

Zero-offset synthetic tests (impulse responses) are conducted with a half-velocity of 
1250 m/s, receiver spread of 2000 m and maximum extrapolation depth of 2000 m. The 
spatial sampling is ∆x=∆z=10 m and the temporal sampling is ∆t=4 ms. A Ricker wavelet 
is seeded at t=0 with a dominant frequency of 24 Hz. As depicted by Figure 6, the 
impulse response from full-aperture Kirchhoff extrapolator is the best and will be used as 
the reference.  

In general, the 19-point extrapolators (Figures 6(b), (c) and (d) on the left) are less 
accurate than the 39-point extrapolators (Figures 6(b), (c) and (d) on the right). The 
Hanning tapered Kirchhoff extrapolators (Figure 6(c)) preserve higher propagation angles 
than the other two extrapolators, but they start to become unstable – this is particularly 
noticeable with the 19 point Hanning extrapolator (Figure 6(c), on the left). As predicted 
by the error contours, the impulse response from Hale’s 39-point extrapolator (Figure 6 
(b), on the right) shows attenuation at about 55 degrees after 200 extrapolation steps. 
There are also artifacts present at high propagation angles caused by discontinuities in the 
extrapolator. Hale’s 39-point extrapolator generates fewer artifacts than the 19-point 
extrapolator (Figure 6(b)) because the discontinuities in the 39-point extrapolator are less 
severe than those in the 19-point extrapolator. Gaussian tapered extrapolators have the 
poorest angular aperture of all tested extrapolators. (Figure 6(d)). This is not surprising in 
view of the amplitude error contours in Figure 5(c). Tapering by Gaussian window in the 
space domain is just a compromise between stability and accuracy. 

Pre-stack synthetic test 

A prestack synthetic test is used to examine the accuracy of pre-stack depth migration 
based on the wavefield extrapolators studied in this paper. The synthetic shot record 
(Figure 7(b)) is generated from the homogeneous model (v=2500 m/s) depicted in Figure 
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7(a). The spatial sampling is ∆x=∆z=10 m and the temporal sampling is ∆t=4 ms. The 
model contains 17 dipping reflectors at the dip angles of 0°, 10°, 20°, 30°, 40°, 50°, 60°, 
70° and 80°. The position of each reflector is carefully chosen so that the normal to the 
center of the reflector projects through x=0. Thus the maximum dip imaged will provide a 
coarse quantitative measure of the angular aperture of both the forward propagating shot 
wavefield and the backward propagating receiver wavefield.  

The migration results are shown in Figure 8, with the dipping reflectors superimposed 
on the left half of the figures. Again, the full-aperture migration yields the best result and 
is used as the reference. The migration based on the 39-point Hanning tapered Kirchhoff 
extrapolator yields a poor image (Figure 8(c)) with most of the reflectors incorrectly 
positioned. Even the horizontal reflector is poorly positioned due to phase rotation of the 
wavelet during propagation. Hale’s 39-point extrapolator images reflectors up to a dip 
angle of 60° (Figure 8(b)). Noise in Figure 8(b) is a consequence of the notched design of 
Hale’s extrapolator discussed previously. Figure 8(d) shows that a pre-stack depth 
migration based on the 39-point Gaussian tapered extrapolator is stable but less accurate. 
It only imaged the reflectors with a maximum dip angle of 30°. The phase is also 
deviated from the desired result (Figure 8(a)). 

CONCLUSIONS 
In this paper, we investigated the stability and accuracy of explicit space-frequency 

domain wavefield extrapolators. An intuitive visualization for various extrapolators is 
developed to help understand wavefield extrapolators and stability and accuracy 
problems. A comprehensive analysis is conducted by using error contouring, impulse 
responses and pre-stack synthetic test. It is expected that the tools developed in this paper 
will be utilized in evaluating the stability and accuracy of other wavefield extrapolators. 
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FIG. 1. 3-D visualization of various band-limited extrapolators in the wavenumber-frequency 
domain. Amplitude spectra are on the left, and phase spectra are on the right. (a) Desired 
extrapolator (from equation (1)); (b) Hale’s extrapolator; (c) Kirchhoff extrapolator with a Hanning 
edge taper; (d) Gaussian tapered extrapolator. An operator length of 19 points is used by 
operators (b), (c) and (d) in the space domain. 
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FIG. 2. Amplitude (left column) and phase (right column) errors of (a) full-aperture Kirchhoff 
extrapolator, (b) Hale’s 19-point extrapolator, (c) 19-point Kirchhoff extrapolator with Hanning 
edge taper,  and (d) 19-point Gaussian tapered extrapolator. 
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FIG. 3. 3-D visualization of various band-limited extrapolators in the wavenumber-frequency 
domain. The figures on the left are the amplitude spectra and on the right are the phase spectra. 
(a) Desired extrapolator (from equation (1)); (b) Hale’s extrapolator; (c) Kirchhoff extrapolator with 
a Hanning edge taper; (d) Gaussian tapered extrapolator. An operator length of 39 points is used 
by operators (b), (c) and (d) in the space domain. 
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FIG. 4. Amplitude (left column) and phase (right column) errors of (a) full-aperture Kirchhoff 
extrapolator, (b) Hale’s 39-point extrapolator, (c) 39-point Kirchhoff extrapolator with Hanning 
edge taper,  and (d) 39-point Gaussian tapered extrapolator. 
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FIG. 5. Amplitude and phase error contours for (a) Hale’s 39-point extrapolator, (b) 39-point 
Kirchhoff extrapolator with Hanning edge taper, and (c) 39-point Gaussian tapered extrapolator. 
Figures on the left are the contours showing amplitude error. Contour values are 1/20 (dash lines) 
and 1/200 (solid lines). Figures on the right are the contours showing phase error. Contour values 
are -π/100 (dash lines) and -π/1000 (solid lines). Frequency is normalized by multiplying dx/v. 
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FIG. 6. Impulse responses (zero-offset migration) of (a) full-aperture Kirchhoff extrapolator, (b) 
Hale’s 19- and 39-point extrapolators, (c) 19- and 39-point Kirchhoff extrapolators with Hanning 
edge taper, and (d) 19- and 39-point Gaussian tapered extrapolators. The impulse responses are 
computed for ∆t=4ms, ∆x=∆z=10m, half-velocity of 1250m/s and 200 extrapolation steps. 
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FIG. 7. (a) A constant velocity earth model containing 17 dipping events. For a better comparison, 
reflectors are symmetric with x=0. (b) Synthetic shot record of the model. 
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FIG. 8. Migration of pre-stack synthetic data by using (a) full-aperture Kirchhoff extrapolator, (b) 
Hale’s 39-point extrapolator, (c) 39-point Kirchhoff extrapolator with Hanning edge taper, and (d) 
39-point Gaussian tapered extrapolator. 


