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ABSTRACT 

 
Full wave equation 2D modeling and migration using a new finite difference scheme 

based on the Galerkin method (FDGM) for irregular grids are presented. Since these 
involve semi-discretization by the finite element method (FEM) in the depth direction 
with the linear element, spatially irregular grids can be used to compute the wavefield in 
modeling and reverse-time migration. The mesh can be made locally thin to better 
represent structural complexity and lower velocity zones, which are treated by a fine grid, 
while the remaining parts of the models are represented by a coarse grid with equal 
accuracy. No interpolation is needed between the fine and coarse parts due to the 
rectangular grid cells. The accuracy of the proposed technique has been tested with a 
comparison to an analytical solution. The effectiveness of the method is verified by its 
application to a thin-layer model. At the same time, its efficiency is shown through an 
impulse and an oblique interface with a variable velocity media.  

INTRODUCTION 
The design of finite-difference (FD) schemes to handle nonuniform grids is an 

important topic in seismic modeling and migration. It offers the possibility of a more 
rational discretization in which the mesh can be made locally thin to better represent 
structural complexities and low velocity zones, avoiding oversampling in the rest of the 
model. A simple kind of irregular rectangular mesh may be obtained by variation of the 
sample interval along the x- and z-axes. Mufti et al. (1996) demonstrated that a variable 
vertical grid step which adapts to the changes in the velocity with depth can greatly 
increase the efficiency of the acoustic-wave reversed time migration. In the elastic case, 
Oprsal and Zahradnik (1999) developed a FD scheme to solve the wave equation for 
displacements in irregular rectangular grids. Sergio (2003) extended the work to apply a 
fourth-order FD approximation to the complete acoustic wave equation and handle 
irregular rectangular grids. Pitarka (1999) put forward the velocity-stress formulation for 
nonuniform rectangular staggered grids. This paper presents a new approach to build 
irregular grids based on the Galerkin method. Considering that the field seismic data are 
uniformly recorded along the survey line, and velocities of layers change with the depth, 
a FD scheme with an irregular grid along the depth direction and a regular grid along the 
survey line is treated in this work. Following the Galerkin method, we used finite element 
discretization along the depth direction and the FD method in the spatial domain to solve 
partial differential equations, which has been clearly addressed by Du and Bancroft 
(2004). In previous work, we tested the effect of the new method on a regular mesh. 
Since the FEM discretization along the depth direction is applied, the irregular grid 
computation along the depth direction will be adopted. As a result, oversamping of large 
high-velocity areas, typical for fine regular grids, is avoided in this way; it also offers the 
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possibility of a more rational discretization to make the mesh locally thin to better 
represent structural complexity and low velocity zone. 

The accuracy of the proposed technique was tested by comparing a numerical solution 
with an analytical solution. The effectiveness of the method is verified by modeling 
regular meshes and irregular meshes. The efficiency in reverse-time migration is shown 
by an impulse model migration and an oblique interface with variable velocity media 
migration. 

PRINCIPLE 

 
Consider the hyperbolic model problem, with the 2-D scalar wave equation: 
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where ),,( tzxu denotes the wave displacement in the horizontal coordinate x, vertical 
coordinate z (where the z axis points downward) and time t, respectively, and a(x, z) is 
the medium velocity.  

FEM semi-discretization in the z direction              
Semi-discretizing the vertical coordinate (z) in the region of [0, Z], one constructs a 

finite element function space as 
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where N  is the nodal number. According to the Galerkin method (Lu and Guan, 1987), 
one can write the semi-discretized PDEs as: 
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where e represents the each node, and eN  is the total number of elements. In this paper, 
the line element is considered for the semi-discretiztion along the z direction. The linear 
element length is h and the velocity is a. The interpolation function is )1,()( ξξ −=zN , 

with 
h

zzi −
= +1ξ  and ii zzh −= +1 . The discretization along the z direction by the FEM 

can be seen from Figure 1. The interpolation functions at each node are shown in Figure 
2. From them, we can design the spacing interval according to the complexity of our 
research model.  

 
FIG 1. The discretization along the z direction by FEM. 

 
FIG 2a. The shape function in the node of zi. 

 
FIG 2b. The shape function in the node of zi+1. 

The coefficient matrix of Equation (3a) is 
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After all the elements are assembled, we can get the global matrix. Consider the matrix  
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with jj βα =+1 , which can be used to represent the mass matrix, stiffness matrix and H 
matrix. We can see that the assembly matrix is tridiagonal and symmetrical. When we 
assume the discretization has the same space interval, 

,           , 

and M is similar to K, with each element divided by the square of the velocity, which will 
be used in later numerical tests.  

FDM solution of matrix PDEs 

A set of indices i, j and n is chosen to establish a discretization model with different 
grid spacing x∆ , y∆ and t∆  in x, y and t, respectively: 

xix ∆−= )1(              Ii ,...,2,1=  

yjy ∆−= )1(             Jj ,...,2,1=  

   tnt ∆−= )1(              Nn ,...,2,1= , 

where I, J and N are the number of samples in x, y and t, respectively. One of the explicit 
schemes, the three-point central scheme, is selected to solve this problem. The difference 
equation has the form 
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here n
jiu ][  represents the discrete value of the wavefield at the grid point (i, j) and at time 

n,  τ and l are the time and space steps, assumed constant. When the irregular grids are 
adopted, and matrices M and H are applied by massed matrices, Equation (4) will become 
the standard three-point finite difference scheme as following: 
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Therefore, the presented scheme has much wider application for regular grids but also the 
irregular grids. As for the stability conditions of this method, they have been discussed in 
previous work by Du and Bancroft (2004), which show that it has much more relaxed 
conditions than traditional finite difference scheme with the same accuracy by Wu, et 
al.(1996). 

NUMERICAL EXAMPLES 
In order to validate the algorithms of FDGM for irregular grids, four cases are chosen 

for modeling and migration. The numerical solution of using irregular grids for a half-
plane problem is compared with the corresponding analytical solution. We also present 
an example of efficiently modeling wave propagation in a thin-layer model. For 
migration, an impulse model with constant velocity and an oblique interface model with 
variable velocities are chosen to show the computational efficiency of the irregular grids.  

Case I: Comparison between the numerical solution with the irregular grids and 
analytical solution of the half-plane problem 

The half-plane problem is a particular case of the infinite-wedge problem. As 
underlined by Wait (1959), the solution can be found by image theory. A source S inside 
the medium induces one virtual image source. The image 'S  is symmetric with respect to 
the real source. For a point source ),( ss zxS  with a time function )( stf , one can write the 
solution at the point ),( zxM  as 

)(),,,,,( ssss tftzxtzxG ∗               incident wave, 

)(),,,,,( ssss tftzxtzxG ∗−−          boundary reflection wave,                                       (6) 

where ),,,,,( sss tzxtzxG  is the Green’s function for the infinite medium given as 
222 //)/( crtcrtH −−  with 222 )()( ss yyxxr −+−= . 
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Table 1. Half-plane parameters. 

 

 

 

 

 

Table 1 gives the physical parameters of the half-plane problem. Considering the usual 
rule of using at least ten points for the shortest wavelength of the source in this FD 
scheme, the grid interval along the depth alternately changes between 4 meter and 6 
meter. The seismogram at a given point (Table 1) shows more quantitatively the accuracy 
of the numerical solution by comparison with the analytical solution (Figure 3). They are 
accurately matched except some difference in the amplitude. 

 

FIG 3. Seismogram at the given observer position (Table 1). The solid blue line is the analytical 
solution, the dashed green line is the numerical solution by FDGM with irregular grids. 

Case II: Comparison between the numerical solution with regular grid and 
irregular grid for thin-layer model 

 The accuracy of the proposed FD technique has been verified for the homogeneous 
region shown as Case I. Now we apply it to effectively model wave propagation in a thin-
layer model. Tests include both regular and irregular grid calculations. The size of the 
model is 1500 m × 1800 m. A thin-layer with 12 m thickness is imbedded in the model. 
The purpose is to see if the effects of the thin-layer with lower velocity can be observed 
in snapshots of the wavefield. The Ricker wavelet with 50 Hz is selected as the source 
centered in the horizontal direction and located 600 m below the top. The velocity of the 
thin layer is 2000 m/s, while the background velocity 4000 m/s, which are shown in 
Figure 4. The horizontal spacing is 5 m. For the regular grid calculation, the grid step of 

Physical parameters 
Velocity 3000 m/s 
Source and 
Observer 
Position 

Hzfmain 50= ;  
source position: (250, 250);  
observer position: (150, 150).  

Other 
parameters 

dx = 5m, dz =4 m(odd lines)/6 
m (even lines)  dt = 1.25E-3s, 
grid of 300×300 points 
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vertical spacing used is 6 m. In the irregular mesh, the thin grid is used only in the region 
of lower velocity, which is shown in the Figure 5, and the grid interval is 3 m. Other grid 
spacing along the depth direction is 7 m. So, the regular grid requires a total of 300 × 
300 points, where the irregular one needs 300 × 260 points, which saves almost 24% 
fewer points compared to the regular case. The same time step ( ∆ t = 0.001s) is used in 
both cases.  

              

FIG 4. The velocity model and the grids partition. 

  

FIG 5(a) Snapshot of the wavefield (t = 0.15 s) with regular girds, and (b) snapshot of the 
wavefield (t = 0.15 s) with irregular grids.  

In order to show the result with irregular grids, we apply the cubic spline interpolation 
function to interpolate the one with regular grids. As for the thin-layer model, we focus 
our attention on the wavefield character when the wave propagates into the thin-layer. 
Figure 5 shows a wavefield snapshot at time 0.15 s. Reflections and transmissions from 
the thin lower-velocity layer can be seen. From Figure 5a, there is obvious frequency 
dispersion in the region of the thin-layer because a coarse grid is used in the area, while 
the continuity of the wavefield in the thin-layer is well described in Figure 5b.  

(a) (b) 

mz 3=′δ  

mx 5=δ  

7z mδ =  
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Case III: Impulses and flat events migration with irregular grids 
To test the migration accuracy of FDGM with irregular grids, an impulses and flat 

events model is designed. The poststack profile of a constant-velocity medium (a=3000 
m/s) is shown as Figure 6. The Ricker wavelet with zero-phase is used, with a main 
frequency of 50 Hz and sampling interval of 1 ms. The first three impulses are 
respectively located at x=260 m, 262.5 m, 265 m (lateral) and t=0.1 s (time). In addition, 
the amplitude of the first three impulses is 0.25, 0.75 and 0.25 from the left to the right. 
The fourth impulse is located at x=261 m and t=0.2 s. The remaining feature is the flat 
event that is present in all the traces at t=0.3 s. 

In reverse-time migration, the spacing interval along the x direction is 2.5 m. 
considering the frequency dispersion and the dipping angle image, the depth interval 
above 300 m is 2.5 m, while the one of the left 300 m is 4 m. The migration result is 
shown in Figure 7. We can see that the FDGM with irregular grids well demonstrates the 
imaging ability for a dipping angle and flat events with high accuracy and efficiency. 

   

  FIG 6. Impulses and flat events seismic sections.           FIG 7. The migrated result by FDGM. 

Case IV: Steep oblique interfaces migration with variable velocities 

The model for this section is shown in Figure 8. The velocity of the model increases 
both laterally and with depth direction. The velocity at the top left corner is 3600 m/s, and 
the at the bottom right it is 4600 m/s. There are four reflection interfaces with a dip of 0º, 
23º, 45º, and 70º. The seismogram is computed by the FDM module of the SU Software 
Kit, and is displayed in Figure 9. From it, one can see that there is much diffraction 
energy from the edges of the reflectors.  
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FIG 8. The steep oblique model with variable velocities. 

 

  FIG. 9. Seismogram generated by FDM.       FIG. 10. Reverse-time migration result(△z=0.04m). 

 

FIG 11(a). A grayscale display of the reverse-time migration result(△z=0.15 m), and (b) a wiggle 
trace display.  

The parameters for reverse-time migration start with a grid interval of 10 m and 
increase by 0.04 m on each grid to a final interval of 20 m. The velocity increases in the 
spatial direction from 3600 to 4500. The regular grid with 10 m spacing requires a total 
of 100×100, while the irregular grid requires only 100×  85, which saves some 
calculations. The grids partition is also shown in Figure 8. Figure 10 is the reverse-time 
migration result, which correctly migrated the poststack seismic section to the right 
oblique interface. Since there is truncation in the seismogram, we can still see some 

(a) (b) 
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diffraction energy, which doesn’t affect the migration result. When the grid spacing 
increases with 0.15m, the irregular one requires only 100×63, which saves a lot of 
memory and calculations. The migration results are shown in Figure 11. From Figure 11a, 
we know there is obvious frequency dispersion problem, but from Figure 11b, there is 
still a good match between the events and the real interfaces. 

CONCLUSIONS 
This paper presents a FDGM approximation for the full acoustic wave equation which 

is able to handle nonuniform rectangular grids. The new scheme has achieved the same 
accuracy of a thin regular-grid calculation while reducing the comuputational cost in 
modeling and reverse-time migration. As numerical examples, it is encouraging that the 
result is accurate and effective enough for the simulation and migration of a complex 
wavefield. It is therefore a useful and promising numerical method. Only the linear 
element was applied along the depth direction, but extension to a quadratic element is 
straightforward, which gives a higher order accuracy. It is possible that a FDGM scheme 
for the elastic case may also be designed using the same approach. At the same time, we 
can construct the irregular grids FD calculation for both the horizontal direction and 
vertical direction by a two-dimensional interpolation function. 
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