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A non-linear, three-parameter AVO method that can be solved 
non-iteratively 

Charles P. Ursenbach 

ABSTRACT 
The rationale is presented for a three-parameter AVO expression which includes a 

term quadratic in the shear velocity reflectivity. It is shown that this can be solved 
explicitly without recourse to iterative techniques. It is compared to other AVO methods 
in its ability to estimate various reflectivities from noisy synthetic data. 

INTRODUCTION 
Two-parameter methods have been the staple of practical AVO inversion for many 

years. In a previous study (Ursenbach, 2004a,b) we presented new two-parameter 
inversion methods. One involved adding a term quadratic in the shear velocity or 
impedance, and this had the effect of removing what is usually the single largest 
component of theoretical error for most inversions. Furthermore, unlike most non-linear 
methods, this inversion could be completed in a single step, without recourse to iterative 
techniques. 

In this study we extend this technique to three-parameter methods by augmenting the 
traditional Aki-Richards equation with a single quadratic term. The method of solution is 
slightly more complicated than in the two-parameter case, but can still be carried out non-
iteratively.  

Notation: The individual reflectivities are defined as one-half of the relative contrast 
of a property. Thus using α to represent the P-wave velocity, the α-reflectivity is defined 
as 
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where the subscript 1 denotes the layer above the interface and subscript 2 the layer 
below. Similar definitions are used for reflectivities of the S-wave velocity (β), density 
(ρ), P-wave impedance (I=ρα), S-wave impedance (J=ρβ) and shear modulus (µ=ρβ2). 

THEORY 
We have previously shown (Ursenbach, 2003a,b), using synthetic reflectivities derived 
from data on 110 interfaces, that errors in AVO results (except the P-impedance 
reflectivity) are strongly correlated with the S-wave velocity reflectivity (and with the S-
impedance reflectivity and also the µ reflectivity, all of which are usually similar). This is 
illustrated in Figure 1, which displays the error in reflectivity estimates for the Aki-
Richards methods. It is particularly noticeable in the shear-impedance reflectivity.  
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Figure 1: Errors in Rα, Rβ, Rρ, RI (= Rα+Rρ), and RJ (=Rβ+Rρ), as obtained by the Aki-Richards 
theory from AVO inversion of noise-free synthetic RPP amplitudes. 

To correct this behavior we suggest an augmented Aki-Richards expression as follows: 
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Here RPP is the P-wave reflection coefficient, θ is the average of the P-wave reflection 
and transmission angles, and γ ≡ β / α = (β1+β2) / (α1+α2).  The appropriate expression 
for B2 can be derived and is given as 
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where ϕ is the average of the S-wave reflection and transmission angles, and B1 is the 
coefficient of the linear ∆β/β term, −4γ2sin2θ. The quantity cosϕ is well-approximated by 
√(1-γ2sin2θ). 

Seeking a least-squares solution to Eq. (1) yields three equations which must be solved 
simultaneously. Two are of the form (see Appendix for more details) 

 
2
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i.e., they are linear in Rα and Rρ and have linear and quadratic terms in Rβ. These two 
equations are solved for Rα and Rρ, which gives each of them as a quadratic function of 
Rβ. The third equation is of the form 

 ( ) ( )3 20 1 2 3 3 4 43 4c R c R c c R c R R c c R c Ra c a cb bα ρ α ρβ β β= + + + + + + + , (4) 

which, when substitution is made for Rα and Rρ, becomes a cubic polynomial in Rβ. This 
is solved, with Rβ being equal to the real root having the smallest magnitude. Rβ is then 
substituted back into the expressions for Rα and Rρ. 

RESULTS 
We use data published by Castagna and Smith (1994) to generate synthetic reflection 

data for 110 interfaces as described in earlier publications (Ursenbach, 2003a,b). [The 
earlier studies employed 125 interfaces, but some of these have been deleted because of 
concerns over physicality.] On a scale where the maximum RPP is ~1, Gaussian noise is 
then added which has a magnitude of ~0.1. For each interface we perform four AVO 
inversions with four methods: Aki-Richards (1980), Smith-Gidlow (1987), Fatti et al. 
(1994), and Eq. (1) of this study. The results are displayed by subtracting the exact value 
from the predicted value for the various reflectivities, and then plotting these against RJ = 
Rβ + Rρ.  

In Figure 2 we compare impedance reflectivity predictions from Eq. (1) against results 
from the Aki-Richards and Fatti et al. methods. As expected all methods give very good 
results for RI, which, in the presence of zero-offset data, is very stably predicted. In the 
case of RJ we see that Eq. (1) has somewhat less scatter than Aki-Richards, and is very 
similar to the result of Fatti et al. For comparison, estimates of RJ are also given for 
noise-free data. 

In Figure 3 we compare velocity and density reflectivity predictions from Eq. (1) 
against results from the Aki-Richards and Smith-Gidlow methods. Eq. (1) appears to deal 
with noise far better than the Aki-Richards method. In the absence of noise (not shown) 
the two methods give much less disparate results. Comparison to the Smith-Gidlow 
method however shows that the two-parameter method is even more stable for noisy data. 
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Even when the density reflectivity is crudely predicted by Gardner’s relation (1974) from 
the Smith-Gidlow Rα, the result is still better than Eq. (1). 

CONCLUSIONS 
For noisy synthetic data Eq. (1) gives estimates similar to the Fatti method for 

impedance reflectivities, but more scattered than the Smith-Gidlow method for velocity 
reflectivities and even for a Gardner-density reflectivity. However it gives results which 
improve very significantly on the Aki-Richards method. 

As long-offset data becomes more frequently available, interest in the density 
reflectivity will continue to increase. Methods designed to tame the Aki-Richards 
method, and to extract density information without the aid of empirical relations, might 
profitably be applied to Eq. (1). 
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FIG. 2. This figure illustrates the error in various impedance reflectivity estimates. Note the 
differences in y-axis scales.  Parts a) and b) illustrate that the P-impedance reflectivity RI is 
predicted equally well by all methods. Parts c) and d) show that estimates of the S-impedance 
reflectivity RJ are similar for Eq.(1) and the Fatti method (perhaps slightly better for the latter) but 
that Aki-Richards results are strongly corrupted by noise in the data. For comparison, results for 
RJ from noise-free data are shown in e) and f). 
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FIG. 3. This figure illustrates the error in velocity and density reflectivity estimates. Note the 
differences in y-axis scales. Parts a), c) and e) illustrate that, when using noisy data, Eq. (1) gives 
a far more stable estimate of Rα, Rβ and Rρ than does the Aki-Richards method. Parts b), d) and f) 
show that Smith-Gidlow estimates are in turn superior to those of Eq.(1), even when Rρ is 
estimated simply as Rα/4, as per the Gardner relation. In the case of Rβ, however, the Smith-
Gidlow method is not as strongly superior to Eq. (1). 
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APPENDIX 
If Eq. (1) is written as 
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then to find the least squares solution we first construct the quantity 
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Next we find the stationary point of S with respect to the three parameters: 
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The equations in A3 can be written explicitly as 
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and 
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Eqs (A4) and (A5) are of the form of Eq. (3). Solving these two equations gives Rα and Rρ 

as quadratic functions of Rβ. Substituting for Rα and Rρ in Eq. (A6) results in an equation 
of the form of Eq. (4). 
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One may just as easily carry out this derivation from the three-term Fatti 
approximation (in terms of I, J and ρ) rather than from the Aki-Richards expression (in 

terms of α, β and ρ). The expression for B2 is the same in both cases. 


