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Improvements and verifications for the Spherical Zoeppritz 
Explorer 
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ABSTRACT 
A key improvement is given for the Spherical Zoeppritz Explorer. This involves using 

exponential wavelets, which are employed in the analytical frequency integration, to 
represent the commonly used Ricker wavelet. In connection with this, the user interface 
to the applet now accepts the dominant frequency of the wavelet rather than the previous, 
less intuitive, wavelet parameter, s. We also carry out additional numerical tests to 
confirm that the methodology of the Spherical Zoeppritz Explorer can yield an extremely 
accurate approximation to exact results. 

INTRODUCTION 
In a previous report (Ursenbach and Haase, 2004), a method was presented for 

efficient calculation of spherical-wave reflection coefficients which employed only very 
minor approximations. The generalized reflection coefficients associated with spherical 
waves emanating from a point source can be calculated from the frequency-dependent 
potential (cf. Aki and Richards, 1980): 
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Here RPP(p;α1,β1,ρ1;α2,β2,ρ2) is the well known plane-wave reflection coefficient given 

by Zoeppritz, in which p is a ray parameter (the horizontal slowness), α, β, and ρ are P-
wave velocity, S-wave velocity, and density, and subscripts 1 and 2 refer to upper and 
lower media. To complete the description of the equation above, A is a scaling factor, ω is 

the frequency, t is time, ξ is the vertical P-wave slowness in the upper layer, J0 is the 
zeroth-order Bessel function, r is the horizontal receiver coordinate, z is the vertical 
receiver coordinate, h is the vertical source position, and the horizontal source position is 
equal to zero. 

The displacement is obtained by applying a gradient in the receiver position to the 
above potential. Weighting by the wavelet and applying an inverse Fourier transform 
yields the time trace observed at the receiver. AVO information can be extracted from 
maxima in the trace envelope. The above method was implemented in numerical 
calculations by Haase (2002, 2003, 2004a) [see also Haase and Ursenbach (2004)]. He 
has also carried out this procedure for converted waves (Haase, 2004a) and with 
viscoelasticity (Haase, 2004b). 
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The alternative method suggested for efficiency (Ursenbach and Haase, 2004) 
involves reversing the order of ω and p integrations, and choosing a wavelet of the form 

 ( ) exp( | |), 0,1, 2,..., 0 .nf s n sω ω ω∝ − = < < ∞  (2) 

which allows the ω-integration to be carried out analytically. This yields a time-
dependent seismic trace, but the p-integration must still be carried out for each value of t. 
As an additional approximation, it is then assumed that t is equal to the arrival time 
dictated by ray theory. The p-integration is then carried out numerically for this one value 
of t. The only other approximation is the assumption that displacement occurs precisely 
along the ray direction.  This is not exactly true, particularly in the vicinity of the critical 
point where the head wave is separating from the reflected wave. We note that this 
approximation is also made in the more accurate calculations of Haase and Ursenbach 
(2004). This paper presents numerical tests of both approximations, as well as the effect 
of approximating a Ricker wavelet by wavelets of the form of equation (2). These tests 
are carried out in the context of modifications to the Spherical Zoeppritz Explorer, which 
is based on the above theory. The method of Haase we refer to as a fully numerical 
method, and the method outlined above we refer to as semi-analytic, as the ω-integration 
is carried out analytically, and the p-integration numerically. 

IMPROVEMENTS TO THE SPHERICAL ZOEPPRITZ EXPLORER 

Approximating Ricker wavelets by exponential wavelets 
Let us rewrite equation (2) as 
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We have left out the case of n = 0, as this allows us to identify ωmax as the dominant 
frequency. This can be demonstrated straightforwardly: 
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Equation 3 is reminiscent of the Ricker wavelet, 

 ( )22
Ricker max( ) exp /f ω ω ω ω⎡ ⎤= −⎣ ⎦ , (5) 

for which ωmax is again the dominant frequency. 

Figure 1 shows the n = 5 and Ricker wavelets, along with an Ormsby wavelet used 
earlier (Ursenbach and Haase, 2004). The exponential wavelet clearly appears to be a 
useful approximation to the Ricker wavelet. Note that for the purposes of this figure we 
have scaled each of the wavelets by a constant to give 
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which normalize the wavelets at their maxima. 

 

FIG. 1. Comparison of a wavelet of the form of Eq. (3) (solid red line) with a Ricker wavelet (black 
circles) having the same ν0 of ~23.1 Hz. Also included in the comparison is a 5/15-80/100 Ormsby 
wavelet (dashed blue line). All three wavelets have similar low-frequency cutoffs. 

This figure suggests that f5 provides an excellent representation of the Ricker wavelet, 
although for practical purposes in exploration seismology, some other values of n could 
likely also be used with sufficient accuracy. 

In this notation, the quantity Rωmax/α1 (where R is defined by R2 = r2 + 4h2 and is the 
total pathlength traveled from source to receiver) is a quantity of key importance, as it is 
a measure of the spherical effects. It is analogous to the quantity kr used to measure 
spherical effects for monochromatic spherical waves (cf. Krail and Brysk, 1983; Furlong 
et al., 1994). The quantity Rωmax/α1 appears frequently in the expressions used to 
program the Spherical Zoeppritz Explorer. 
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Modified interface 
The updated interface for the Spherical Zoeppritz Explorer is shown in Figures 2 and 

3. Figure 2 displays the control panel, where one now enters ν 0 instead of S, and n = 0 
has been removed as an option, while n = 5 has been added. Figure 2 displays the 
graphical output. The wavelet displays include comparisons of the exponential wavelet 
employed in the calculation with the Ricker wavelet it approximates. This new version of 
the explorer should be more intuitive for users, allowing them to think in terms of ν 0 and 
Ricker wavelets rather than S and exponential wavelets. 

 

FIG. 2.  The control panel of the updated Spherical Zoeppritz Explorer.  The dominant frequency, 
ν0, is now an input variable, instead of the equivalent but less intuitive S parameter used 
previously. The parameter n is used to choose which exponential wavelet is employed in the 
calculation.  
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FIG. 3. The graphical output of the updated Spherical Zoeppritz Explorer.  The wavelet display 
shows the exponential wavelet used in the calculation, and compares it with a Ricker wavelet 
possessing the same dominant frequency, ν0. 
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VERIFICATION OF EXPLORER ACCURACY 
We consider three possible sources of error in the Explorer calculations: 1) the 

approximation of an arbitrary wavelet by an exponential wavelet, 2) the assumption that 
the arrival time always equals that calculated from ray theory, and 3) the assumption that 
the wavefront is always normal to the reflected raypath. We will estimate through 
calculation the error introduced by each of these. 

The model we employ for calculations is the same as that employed earlier (Haase, 
2004a), namely, an Ormsby wavelet, 5/15-80/100 Hz and the earth model detailed in 
Table I.  

Table I. Earth parameters for a two-layer, Class I AVO model. 

  Upper 
Layer 

Lower 
Layer 

VP (m/s) 2000 2933.33 

VS (m/s) 879.88 1882.29 

ρ (kg/m3) 2400 2000 

 

Exponential wavelet: Ricker and Ormsby wavelets are commonly used in synthetic 
modeling. It has been previously shown that calculations employing exponential wavelets 
can provide a rough approximation of calculations with an Ormsby wavelet (Ursenbach 
and Haase, 2004). This is illustrated in Figure 4. 
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FIG. 4: A comparison of spherical-wave reflection coefficients calculated using an Ormsby 
wavelet and the exponential wavelet of equation 3. Both have been normalized to allow 
comparison with the plane-wave result. This figure demonstrates that the exponential wavelet 
result provides a qualitative approximation to the Ormsby result. 

In Figure 5 we show generalized reflections, all calculated by the same fully numerical 
method, for the Ricker wavelet and for n = 4, 5 and 6 exponential wavelets. All are very 
similar, and the Ricker and n = 5 wavelets are indistinguishable on the scale of the figure. 
Note the scale of the figure, and that results are shown a short distance past the critical 
angle in a region where differences are the greatest. 
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FIG. 5: A comparison of spherical-wave reflection coefficients calculated using a Ricker wavelet 
and f4, f5 and f6 of equation 3. All have been normalized for comparison with the plane-wave 
result. This figure demonstrates that the exponential wavelet result can provide a quantitative 
approximation to the Ricker result for an appropriate value of n. 

Figures 4 and 5 demonstrate that the exponential wavelet required by the Spherical 
Zoeppritz Explorer methodology can qualitatively represent arbitrary seismic wavelets, 
and can quantitatively represent certain wavelets, such as the Ricker wavelet. 

The arrival time and propagation direction approximations are related to each other, as 
shown in the Figure 6. In the pre-critical region there is only a simple reflected wave. Far 
into the critical region there are both reflected and head waves, but they are well-
separated at the receiver. Just after the critical point, however, they are both present and 
interfere with one another. The arrival time and propagation direction of this generalized 
reflection are not precisely the same as for a simple reflection predicted by ray theory. 
Thus the errors from these approximations are greatest for angles slightly greater than the 
critical angle. 

 

FIG. 6: A diagram representing a) pre-critical reflecting wave, b) reflected and head waves well 
past the critical point, and c) reflected and head waves immediately past the critical point. 

a) b) c) 
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Arrival time: If we employ the same exponential wavelet in both numerical and semi-
analytical calculations, the arrival time will be the only theoretical source of error, as the 
calculations of Haase locate the arrival time from the full time trace. This approximation 
is thus tested by comparing calculations of these two methods for identical systems. Such 
a comparison is shown in Figure 7 (which was also shown in Ursenbach and Haase 
(2004), and is included here for completeness). Figure 7a shows both curves together, 
nearly indistinguishable, and Figure 7b shows the difference, with the critical point 
located by the green vertical line. The largest differences, which are still small in absolute 
terms, are immediately after the critical point, as reflected and head waves are separating 
from one another. 

 

FIG. 7: a) The spherical reflection coefficient for an exponential wavelet calculated by both fully 
numerical and semi-analytical methods. b) The difference between curves in a), which constitutes 
a measure of the error introduced by assuming the ray-theory prediction of arrival time. The error 
is greatest just past the critical angle. 

Propagation direction: Both the numerical and the semi-analytical method presented  
in this paper employ this approximation, so the following approach was devised to 
estimate its effect. P-waves have displacements parallel to the direction of propagation, 
so any deviation would manifest itself as a displacement normal to it. A modification was 
made to the fully numerical calculation to allow calculation of displacements 
perpendicular to the ray direction, and these are displayed as the black dotted line in 
Figure 8. This figure again shows that the perpendicular component becomes largest in 
the region immediately following the critical point, and that, even at its maximum, this 
component is still considerably smaller than the parallel component. For comparison the 
errors of Figure 7b (red solid) and the n = 5 error implied by Figure 5 (blue dashed) have 
also been included. It is clear that these approximations will introduce no substantive 
error into the calculation. 

b) 
�c 

a) 
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FIG. 8: A representation of all of the errors present in the Spherical Zoeppritz Explorer 
methodology.  The black dotted and red solid lines represent the error from assuming that the 
direction of propagation and arrival times are given by ray theory. The blue dashed line is the 
error from assuming that the exponential n = 5 wavelet is equivalent to the Ricker wavelet. All 
three errors are greatest just past the critical point, and all are negligibly small in absolute terms. 

CONCLUSIONS 
The Spherical Zoeppritz Explorer introduced previously (Ursenbach and Haase, 2004) 

has been markedly improved. The parameter s employed previously, which measured the 
rate of exponential decay of the wavelet, has been replaced by ω0 (or ν0), the dominant 
frequency of the wavelet. This contains equivalent information, but is much more 
intuitive and accessible to most exploration geophysicists. Comparison with Ricker 
wavelets is now made explicit in the Explorer display, which are also defined by their 
dominant frequency. 

All of the approximations inherent in the Explorer methodology have been identified, 
and the magnitude of their associated errors has been estimated by appropriate 
calculations. It is shown that all errors are negligibly small if one is assuming a Ricker 
wavelet. For other arbitrary wavelets, the error will be dominated by the wavelet effect, 
but the results will still be qualitatively correct. 
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