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Quasi-compressional group velocity approximations in a weakly 
anisotropic orthorhombic medium 

P.F. Daley  and E.S. Krebes 

ABSTRACT 
Using modifications to the standard linearized approximation of the phase velocity for 

quasi-compressional (qP) wave propagation in a weakly anisotropic orthorhombic 
medium, two approximate eikonal equations are constructed. Corresponding expressions 
for the group velocities are then derived. In the first approximation, the degenerate 
(ellipsoidal) case of qP wave propagation in an orthorhombic medium is examined and 
an exact group velocity expression obtained, together with the exact expressions for the 
slowness vector components, for this simple case. This ellipsoidal group velocity is taken 
as the reference or background velocity surface and is employed as a trial solution in the 
first approximate eikonal equation, where the resultant group velocity surface is shown to 
be a perturbed ellipsoid. All formulae are in terms of angles related to the group velocity 
vector. As in the solution method used for the first approximate qP eikonal equation, the 
method of characteristics is employed in obtaining a group velocity approximate 
expression using another related linearized eikonal equation. The result is a more 
complex expression for the group velocity vector components. For completeness, analytic 
expressions for the exact components of the group velocity vector are presented. The 
group velocity expressions, approximate versus exact, are numerically compared for two 
orthorhombic anisotropic models that may be classified as weakly anisotropic or, 
possibly more accurately, weakly anellipsoidal, as the background group velocity is an 
ellipsoid. The extension of what is presented here to more complex anisotropic structures 
can be achieved in a similar manner. 

INTRODUCTION 
In the recent literature on wave propagation in anisotropic media, specifically quasi-

compressional (qP) waves in a medium displaying orthorhombic symmetry (for example; 
Song and Every 2000, Song et al. 2001), a number of approximate techniques, usually 
based on perturbation theory, have been used to advance the understanding of wave 
propagation in these complex anisotropic structures. The motivation for this is that the 
exact analytical expressions for quantities such as eikonal equations, phase and group 
velocities and polarization vectors are so complex that they usually reveal inadequate 
information when attempting to determine their significance. The more general linearized 
anisotropic problem is dealt with in Jech and Pšenčík (1989), Pšenčík and Gajewski 
(1998) and Every and Sachse (1992) and other cited references. Explicit expressions for 
qP ray tracing, yielding linearized group velocity approximations, in the general as well 
as subset media types, including orthorhombic, may be found in Pšenčík and Farra 
(2005). In that paper, an isotropic background medium is assumed. As the exact solution 
for the linearized problem may be determined for an ellipsoid, it is this that will be used 
as a reference velocity surface or background medium. The statement in Mensch and 
Farra (1999), " Examples obtained in a homogeneous orthorhombic medium show that a 
reference media with ellipsoidal anisotropy is a better choice to develop the perturbation 
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approach than an isotropic reference medium, " gives further indication that that this is a 
reasonable manner in which to proceed. 

A rewriting of the linearized eikonal equation describing quasi-compressional (qP) 
wave propagation in an orthorhombic medium is presented, from which approximations 
of the group velocity in that medium type are derived. The method of characteristics 
(Courant and Hilbert, 1962) is employed, if only in part, in the solution process to obtain 
qP group velocity approximate expressions.  

To establish the accuracy of the approximations, the exact expressions for the group 
velocity vector components in a general orthorhombic medium, the exact qP phase 
velocity expression and hence eikonal ((Every, 1980 and Schoenberg and Helbig, 1997) 
is employed. For simplicity, but without much loss of generality, the medium of 
propagation is assumed to be homogeneous, i.e., the anisotropic elastic parameters are 
independent of the spatial coordinates. The indication of spatial dependence will be 
retained in what follows except in those instances where inclusion would be incorrect or 
misleading. 

 Often in the literature where the topic of orthorhombic anisotropy is addressed, 
comparisons of approximations to phase velocities, slowness surfaces, group velocities 
and polarization vectors with exact expressions are done in symmetry planes. This 
essentially amounts to reducing the problem to wave propagation in a transversely 
isotropic medium for which comprehensible exact expressions may be found, for 
example, Gassmann (1965). There is merit in doing this, since, if the approximate and 
exact formulae do not reasonably coincide in this instance, it is highly probable that at 
some arbitrary azimuth, removed from a symmetry plane, the fit between the two will 
deteriorate past some acceptable level. For that reason the focus here will be on checking 
the group velocity approximations with the exact formulae both in and out of symmetry 
planes. 

THEORETICAL PRELIMINARIES  
Determining the linearized phase velocity in an anisotropic medium of orthorhombic 

symmetry for a quasi-compressional (qP) wave using the method given in Backus (1965) 
yields the following first order linearized approximation in a weakly anisotropic medium, 
which is the standard that appears in the literature for a range of disciplines of study 

 

( )
( ) ( ) ( )

2 4 4 4
11 1 22 2 33 3

2 2 2 2 2 2
12 66 1 2 13 55 1 3 23 44 2 32 2 2 2 2 2 .

qP kv n A n A n A n

A A n n A A n n A A n n

= + + +

+ + + + +  (1) 

In Voigt notation, the density normalized elastic anisotropic parameters, ijA , have the 
dimensions of velocity squared and n is a unit 3D vector in the direction of the wave 
front normal or equivalently the phase velocity propagation vector direction, defined as 
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 ( ) ( )1 2 3, , sin cos ,sin sin ,cosn n n θ φ θ φ θ= =n  (2) 

where θ  is the polar angle measured from the positive 3x  (vertical) axis ( )0 θ π≤ ≤ and 

φ  the azimuthal angle measured in a positive sense from the 1x  axis ( )0 2φ π≤ < . 

To put equation (1) in a form that has been found to be more useful and instructive, add 
to and subtract from it the quantity (Daley and Krebes, 2004a) 

 ( ) ( ) ( )2 2 2 2 2 2
1 2 11 22 1 3 11 33 2 3 22 33n n A A n n A A n n A A+ + + + + . (3) 

After some manipulation, the following formula, quadratic in the terms involving in , 
results 

 ( )2 2 2 2 2 2 2 2 2 2
11 1 22 2 33 3 12 1 2 13 1 3 23 2 3qP kv n A n A n A n E n n E n n E n n= + + + + +  (4) 

with the quantities ijE  being the linearized forms of the anellipsoidal deviation terms in 

the planei jx x −  or equivalently in the ( )slowness planei jp p −  and defined as 

   ( ) ( )12 12 66 11 222 2E A A A A= + − +  (5) 

 ( ) ( )13 13 55 11 332 2E A A A A= + − +  (6) 

  ( ) ( )23 23 44 22 332 2E A A A A= + − + . (7) 

The components of the slowness vector, pi, are defined in terms of the qP phase (wave 
front normal) vector components, ni, and phase velocity as 

 ( ) ( )[ ] ( )1
1 2 3 1 2 3, , , ,qP kp p p v n n n n−= =p , (8) 

so that the specification of a pseudo eikonal equation may be given as 

 

( )
[ ][ ] [ ][ ] [ ][ ]

2 2 2
11 1 22 2 33 3

12 1 2 1 2 13 1 3 1 3 23 2 3 2 3

, , 1qP k k kG x p n A p A p A p

E p p n n E p p n n E p p n n

= = + + +

+ + , (9) 

where the equal signs have to be taken within the context that an approximation is being 
considered. The above equation can be put in a form that is only a function of ( ),k kx p  

with the introduction of the identities 2 2 2
1 2 3 1n n n+ + =  and ( ) ( )2 2, , 1qP k k qP k kv x n v x n = . 

The resulting linearized qP eikonal equation, obtained after minor rearrangement, is 
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( ) 2 2 2
11 1 22 2 33 3

2 2 2 2 2 2
13 1 3 12 1 2 23 2 3

2 2 2
1 2 3

, 1

.

qP k kG x p A p A p A p

E p p E p p E p p
p p p

= = + + +

+ +⎡ ⎤
⎢ ⎥+ +⎣ ⎦  (10) 

The method of characteristics (Courant and Hilbert, 1962) is used to determine the 
rays, along which the energy traverses between one point in the medium and another. In 
the degenerate ellipsoidal case, where the 3 symmetry plane anellipsoidal coefficients are 
identically zero, the qP eikonal becomes 

 ( ) 2 2 2
11 1 22 2 33 3, 1qP k kG x p A p A p A p= = + + . (11) 

The group (ray)velocity vector and corresponding slowness vector components are given 
generally in terms of some eikonal equation, ( ),k kG x p , by 

 

( ),1
2

k ki

i

G x pdx
dt p

∂=
∂  (12) 

 

( ),1
2

k ki

i

G x pdp
dt x

∂= −
∂ . (13) 

An initial value problem is fully specified, given some initial conditions  

 ( ) ( )ando ot t= =0 0x x p p  (14) 

at a reference time 0t . The progression of the ray in 3D Cartesian space as well as the 
magnitude and direction of the slowness vector at these points may be determined. In 
what follows the elastic anisotropic parameters have been assumed to be spatially 
independent, therefore 0idp dt = . The initial conditions on p require that 

( ) ( )0 0t t= = =p p p  some constant for all t. With this in mind, the group velocity in terms 
of its components may be given as 

 ( )31 2
11 1 22 2 33 3, , , ,dxd dx dx A p A p A p

dt dt dt dt
⎛ ⎞= =⎜ ⎟
⎝ ⎠

x , (15) 

with the magnitude defined by 

 
1 22 2 2

1 22 2 2 2 2 21 2 3
11 1 22 2 33 3

d dx dx dx A p A p A p
dt dt dt dt

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎡ ⎤= + + = + +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎣ ⎦⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

x . (16) 

It is convenient to introduce the group velocity angles, that is, the azimuthal and polar 
angles at which the ray propagates. The azimuthal angle, Φ , ( )0 2π≤ Φ <  may be 
determined from 
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2 2 22 2 22

1 1 11 1 11

tan tandx dx dt A p A
dx dx dt A p A

φ
⎡ ⎤ ⎡ ⎤

Φ = = = =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ . (17) 

Defining the projection of the 3D group velocity vector onto the ( )1 2,x x  plane as 

 

1 22 2
1 22 2 2 21 2

11 1 22 2
dr dx dx A p A p
dt dt dt

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎡ ⎤= + = +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎣ ⎦⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦  (18) 

the group polar angle, Θ , ( )0 π≤ Θ ≤  is given by 

 

( )

1 22 2 2 2
11 1 22 2

3 3 33 3

1 22 2
11 22 11

33

tan

tan cos 1 tan
.

A p A pdr dr dt
dx dx dt A p

A A A

A

θ φ φ

⎡ ⎤+⎡ ⎤ ⎡ ⎤ ⎣ ⎦Θ = = =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

⎡ ⎤+⎣ ⎦=
 (19) 

After a moderate amount of algebra involving basic trigonometric manipulations, first 
solving equation (17) for Φ , and then substituting the result into equation (19) to obtain 
Θ , expressions for the components of the slowness vector, p, may be obtained in terms 
of the group rather than the phase angles and velocity. Defining a unit vector in the 
direction of ray propagation as 

 ( ) ( )1 2 2, , sin cos , sin sin , cosN N N= = Θ Φ Θ Φ ΘN , (20) 

the magnitude of the qP group velocity for the degenerate (ellipsoidal) orthorhombic 
medium is 

 ( )
2 2 2

1 2 3
2

11 22 33

1
,qP

N N N
A A AV

= + +
Θ Φ . (21) 

From the above relations the phase slowness vector in this special case may be written 
completely in terms of group velocity and angles as 

 ( ) ( ) ( ) ( )1 2 3
1 2 3

11 22 33

, , ,
, , , ,

e e e
qP qP qPe e e V N V N V N

p p p
A A A

⎛ ⎞Θ Φ Θ Φ Θ Φ
= = ⎜ ⎟⎜ ⎟

⎝ ⎠
p . (22) 

This solution will be used as an initial approximation, or trial solution, in an 
approximate eikonal for the more general case of the quasi-compressional (qP) group 
velocity in a general, weakly anellipsoidal orthorhombic medium. 
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GROUP VELOCITY APPROXIMATIONS 
In this section two different routes will be investigated to find qP group velocity 

estimates using linearized approximations to the exact eikonal equation. Both approaches 
involve the use of the method of characteristics. In the first case it has already been 
employed to derive analytical expressions for the group velocity and slowness vector in 
the degenerate (ellipsoidal) orthorhombic qP problem, where the anellipsoidal terms 13E , 

12E , and 23E , were assumed to be equal to zero. 

The ellipsoidal phase velocity is 

 
( )2 2 2 2

11 1 22 2 33 3,qP k k e
v x p A n A n A n⎡ ⎤ = + +⎣ ⎦  (23) 

and the general linearized phase velocity may be recovered as 

( ) ( ) ( ) [ ][ ]
[ ][ ] [ ][ ]

2 2
12 1 2 1 2

13 1 3 1 3 23 2 3 2 3

2 2 2 2 2 2 2 2 2
11 1 22 2 33 3 12 1 2 13 1 3 23 2 3

, , , 1qP k k qP k k qP k k e

e

G x n v x n v x n E p p n n

E p p n n E p p n n

A n A n A n E n n E n n E n n

⎡ ⎤ ⎡= = + +⎣⎣ ⎦

⎤+ ⎦

⎡ ⎤= + + + + + +⎣ ⎦ (24) 

where the subscript " "e  denotes ellipsoidal and the constraints that the kn  have the 
ellipsoidal angular values has been removed. In an equivalent manner the general 
linearized group velocity may be written as 

( ) ( ) ( )

[ ][ ] [ ][ ] [ ][ ]

2 2

12 1 2 1 2 13 1 3 1 3 23 2 3 2 3

1 1,
, ,

1 .
1

k k
qP k k qP k k e

e

G x N
V x N V x N

E p p n n E p p n n E p p n n

⎡ ⎤
= = ×⎢ ⎥

⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥+ + +⎣ ⎦  (25) 

Rewriting equation (25) using the approximation ( ) ( )1
1 1ij ija a

−
+ ≈ − , introducing the 

definitions of kp  presented in equation (22), and as in the phase velocity case relaxing 
the constraints on kN , results in 

 

( ) [ ]

[ ] [ ]

22 2
31 2 1 2

12 1 22
11 22 33 11 22

1 3 2 3
13 1 3 23 2 3

11 33 22 33

1
,qP

NN N N NE n n
V A A A A A

N N N NE n n E n n
A A A A

⎡
≈ + + − −⎢Θ Φ ⎣

⎤
− ⎥

⎦ . (26) 

Consider now the possibility that i j i jn n N N≈ . In the initial linearization process the 
phase vector components were used to approximate the components of the polarization 
vector, which in general is not aligned with either the phase or group unit vectors. At that 
point, the group vector components could have been used as they would serve just as well 
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in approximating the polarization vector components. However, the use of the phase 
vector components was more convenient in the initial stages of the problem, being the 
only known quantities. Introducing the above replacement into equation (26) yields the 
following approximation for the qP group velocity in an orthorhombic medium as a 
function of the related group vector angles 

 ( )
2 2 2 2 22 2 2 2
3 13 1 3 23 1 21 2 12 1 2

2
11 22 33 11 22 11 33 22 33

1
,

N E N N E N NN N E N N
V A A A A A A A A A

= + + − − −
Θ Φ . (27) 

The perturbed velocity derivation above results from the fact that in ray propagation 
space, for some given ray, the vector beginning at the origin of the ray surface and 
normal to the tangent plane associated with the point at which the ray touches the ray 
surface is the phase velocity vector, ( ) [ ] 1

qP kn −=v p . Equivalently, in slowness space, 

( )( )1

qP kn
−

⎡ ⎤= ⎣ ⎦p v , for an arbitrary slowness vector, the vector originating at the slowness 

surface origin and normal to the tangent plane at the point at which the slowness vector 
contacts the slowness surface is the group velocity vector inverse, ( ) 1

qP kn
−

⎡ ⎤⎣ ⎦V .  

Formula (27) is in agreement with that presented by Song and Every (2000) where 
these results were " … not established … by rigorous derivation but we were lead to 
[them] by plausibility arguments that are backed up by the numerical results …" . As 
indicated in the quote, the formulae derived by Song and Every (2000) are quite 
comparable to those obtained by exact methods if they are used in the situations for 
which they were derived - weakly anellipsoidal orthorhombic media. The advantage of 
the expression derived above for the qP group velocity is that it is in terms of group 
angles rather than wave front normal vector components or equivalently phase velocity 
angles. An alternate group velocity approximation may be constructed from the eikonal 
equation (10), in a similar manner as was equation (27), by introducing the group angle 
dependent slowness vector components from equation (23). This possibility is not 
considered here as equation (27) is the simplest of a number of variants that may be 
derived in the preceding manner.  

The second method that will be presented for obtaining an approximation for the qP 
group velocity in an orthorhombic medium is, as would be expected, a bit more complex 
and results in a more complicated expression than equation (27). As it has already been 
established that equation (27) produces reasonable results, the motivation for pursuing 
this further is that it is presumed that for azimuths not aligned with symmetry axes a more 
accurate approximation might be required to more adequately approximate the exact qP 
group velocity. 

Again employing equations (12) and (13), where the eikonal equation is given by 
equation (10), the following initial value problem consisting of a system of ordinary 
differential equations are obtained with the initial conditions specified in a manner 
similar to equation (14). The assumption that the elastic anisotropic parameters are 
spatially independent (pi = constant; i = 1,2,3) will again be made. The following 
expressions are obtained for the components of the qP group velocity. 
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( )1

1 11 1 111dx p A F A
dt

= +
 (28) 

 ( )
( ) ( )[ ]2 2 2 2 2 2

1 13 3 12 2 2 3 23 2 32
1

k k

F E p E p p p E p p
p p

= + + −
 (29) 

 
( )2

2 22 2 221dx p A F A
dt

= +
 (30) 

 ( )
( ) ( )[ ]2 2 2 2 2 2

2 12 1 23 3 1 3 13 1 32
1

k k

F E p E p p p E p p
p p

= + + −
 (31) 

 
( )3

3 33 3 331dx p A F A
dt

= +
 (32) 

 ( )
( ) ( )[ ]2 2 2 2 2 2

3 13 1 23 2 1 2 12 1 22
1

k k

F E p E p p p E p p
p p

= + + −
 (33) 

with 2 2 2
1 2 3k kp p p p p= + + . The scalar expression for the group velocity is  

 

1 22 2 2
1 2 3d dx dx dx

dt dt dt dt
⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

x

. (34) 

At this point it might seem appropriate to introduce the approximation 

 ( ) ( )21 1 2 1,2,3i ii i iiF A F A i+ ≈ + =  (35) 

under the assumption that the dimensionally equivalent parameters iF  and iiA  are such 
that i iiF A<< . Little would be gained by this additional level of approximation, in either 
computational efficiency or analytic simplification.  

The azimuthal and polar group velocity (ray) direction angles, Φ  and Θ , may be 
obtained using equations (17) – (19). However, only the numerical values of idx dt  are 
known here. 

For completeness, the problem of exact ray tracing for qP rays in an orthorhombic 
medium should be addressed and may be found in Appendix A. The motivation for 
including this was that nothing comparable, which only computed group velocities, could 
be found in the literature or public domain software. 

 

 

 



Orthorhombic group velocity 

 CREWES Research Report — Volume 17 (2005) 9 

NUMERICAL RESULTS 
The first model that will be considered is the weakly anellipsoidal orthorhombic 

material, whose anisotropic properties are similar in degree of anisotropy to transversely 
isotropic clay-shale associated with hydrocarbon deposits that could have been made 
orthorhombic (azimuthally anisotropic) through the introduction of vertical fracturing. 
The model is defined by the density normalized anisotropic parameters, ijA , which have 

the dimensions of velocity squared ( )2km s  and are given in Table 1. The second model 
is another weakly anellipsoidal orthorhombic medium that is a modification of a dry 
sandstone model used in the paper by Pšenčík and Gajewski (1998). Only those 
anisotropic parameters of the 21 in all that define an orthorhombic medium are retained. 
These values may also be found in Table 1. As an indication of the degree of anisotropy 
(deviation from the ellipsoidal case), the dimensionless quantities 332ijE A  are given in 
Table 2. These values are equivalent to ij ijδ ε−  in a slight modification of the notation 
introduced by Thomsen (1986). 

The group velocities for each of these two models are computed at an azimuth angle of 
0φ = Φ =  degrees, in the 1 3x x  symmetry plane, and at phase azimuthal angles of φ = 30, 

45 and 60 degrees, which are not in symmetry planes and, although nearly the same in 
value do not, in general correspond to group angles of Φ = 30, 45 and 60 degrees. The 
variation of Φ  with φ  is related to the degree of anisotropy. These angles are measured 
from the positive 1x  axis. The inclusion of the symmetry plane results for 0φ = Φ =  is to 
provide a reference comparison from which to determine the quality of fit in the non-
symmetry plane examples. The two approximations 1A  (equation (27) and 2A  (equations 
(28) – (34)) and the exact, E, group velocity are compared in Figures 1 through 4 for a 
polar angle range of 0 to 360 degrees for the two models described above at the azimuthal 
phase angles specified. The curves in the plots are annotated on the panels; red indicating 
the exact solution and blue the approximate solution, which in Figures 1 and 2 refers to 
A2 and in Figures 3 and 4 to A1. The group angle inputs for the approximation 1A  are 
obtained from those angles, computed numerically, and resulting from the phase angle 
input of the exact solution.  

The plotting of the group velocity curves is not done in polar plots but rather in a 
manner that enhances the differences between exact and approximate group velocity 
computations. The polar angle Θ  is measured from the vertical, or 3x , axis. It is quite 
evident upon viewing the four figures that for weakly anisotropic media, the match 
between the approximations and the exact solution are quite reasonable, which is a 
subjective observation as the fit required is most often problem specific. 

The numerical measure of deviation, PD , given in Tables 3 and 4, is the average 
deviation of a given approximate group velocity expression ( ).appV  from the exact value 

( )exactV over a 360 degree polar angle range at N equally spaced points obtained using the 
formula 
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( ) ( )

( )
.

1

1 100%
j j

N exact app
p j

j exact

V V
D

N V=

⎡ ⎤−
⎢ ⎥= ×
⎢ ⎥
⎣ ⎦
∑ . (36) 

 CONCLUSIONS 
Two quasi-compressional (qP) group velocity approximations for elastic wave 

propagation in an orthorhombic medium have been presented. The solution methods were 
facilitated by modifying the standard form of the linearized eikonal equation that is found 
in the literature for this medium and wave type. The eikonal equation is first put in a form 
such that the background slowness surface, and hence the group velocity surface, is an 
ellipsoid, with anellipsoidal correction terms added in each of the three symmetry planes. 
This rewriting of the eikonal equation has the effect of allowing the group velocity and 
slowness vector components for the degenerate (ellipsoidal) case to be determined 
analytically in the first approximate method, using the method of characteristics, and as 
functions of group rather than phase angles. In this approximation, the exact solution for 
this degenerate case was then used as a trial solution to obtain the group velocity 
approximation for the anellipsoidal case. As both approximations have analytic solutions 
when the anellipsoidal terms, ijE , are zero, they have been referred to as 
"weakly anellipsoidal"  rather than "weakly anisotropic". The second approximation was 
obtained using the same eikonal equation as in the first case but introducing some 
algebraic manipulations so that the full qP eikonal equation was a homogeneous function 
of order two in slowness vector components. The group velocity vector components were 
then obtained using characteristic theory. 

Comparisons of both approximations, in a symmetry plane and at phase azimuthal 
angles of 30, 45 and 60 degrees, with the exact group velocity expression for two realistic 
geological models were carried out with good matches in all instances. As with any 
approximate method, care must be taken not to violate the original assumptions used in 
its development. The models used in the previous section were selected such that they lay 
within the set which could be designated as "weakly anellipsoidal" . In geophysical 
applications, this assumption is infrequently contravened to a large degree in actual 
geological models. The second model example presented here approaches this limit as 
indicated by the values of 332ijE A  in Table 2. It was mentioned early on that the 
methods employed here to obtain group velocity approximations could be extended to 
more complex anisotropic structures. This was not pursued here but this contention 
should receive some validity from the methods examined here. 
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Anisotropic Parameters ( )2km s  for the Two Models Considered 

Material   A11   A22   A33   A44   A55   A66   A12   A13   A23 

Clay-shale 19.56 11.94 14.20  3.90  4.72  4.78  4.01  4.33  4.57 

Sandstone 19.30 17.40 14.10  5.10  5.50  4.60  0.90  1.30  0.20 

 

Table 1. Density normalized anisotropic parameter specification of the models used in the text. 
The ijA  have the units of ( )2km s . 
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Anellipsoidal Deviation Parameters 

Material    E12     E13     E23    E12/2A33    E13/2A33    E23/2A33 

Clay-shale    -4.37   -6.25   -1.40    -0.154    -0.220    -0.050 

Sandstone   -16.50     -8.80   -10.70    -0.585    -0.312    -.380 

 

Table 2. Density normalized anisotropic deviation parameters for the two models. The ijE  have 

the units of ( )2km s . These parameters, when normalized with respect to 332A , are 

dimensionless and are equivalent to ( )ij ijδ ε−  in a modification of the notation introduced by 
Thomsen (1986). 

 

Percentage Deviation from the Exact Solution for Clayshale Model 

Clay-shale   0 Degrees   30 Degrees   45 Degrees    60 Degrees 

Approximation 1       0.0816         0.1049          0.2913         0.3541 

Approximation 2       0.2603         0.5105         0.6947        0.4833 

 

Table 3. Average percentage deviation for the clay-shale model over a 360 range, equally 
sampled, in the group polar angle, Θ , for azimuths of phase angles φ = 0, 30, 45 and 60 
degrees. 

 

Percentage Deviation from the Exact Solution for Sandstone Model 

Sandstone   0 Degrees   30 Degrees   45 Degrees    60 Degrees 

Approximation 1       0.2697         1.0894         0.7075         0.7509 

Approximation 2       0. 3148         1.150         0.4485         0.5011 

 

Table 4. Average percentage deviation for the sandstone model over a 360  range, equally 
sampled, in the group polar angle, Θ , for azimuths of phase angles φ = 0, 30, 45 and 60 
degrees. 
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FIG. 1. Clay-shale orthorhombic model. The exact group velocity (red curve) is compared to the 
second approximation for the for the polar ( )Θ angle range 0 to 360 degrees and shown at four 

different (phase) azimuth angles. The azimuth of 0 degrees coincides with the 1 3x x  symmetry 
plane. The other panels are at phase azimuthal angles of 30, 45 and 60 degrees, respectively, 
and do not correspond to symmetry planes. 
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FIG. 2. Orthorhombic sandstone model. The exact group velocity (red curve) is compared to the 
second approximation for the for the polar ( )Θ angle range 0 to 360 degrees and shown at four 

different (phase) azimuth angles. The azimuth of 0 degrees which coincides with the 1 3x x  
symmetry plane The other panels are at phase azimuthal angles of 30, 45 and 60 degrees, 
respectively, and do not correspond to symmetry planes. 
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FIG. 3. Clay-shale orthorhombic model. The exact group velocity (red curve) compared with the 
first approximation for the for the polar ( )Θ angle range 0 to 360 degrees are shown at four 

different (phase) azimuth angles. The azimuth of 0 degrees coincides with the 1 3x x  symmetry 
plane. The other panels are for phase azimuthal angles of 30, 45 and 60 degrees, respectively, 
and do not correspond to symmetry planes. 
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FIG. 4. Orthorhombic sandstone model. The exact group velocity (red curve) compared with the 
first approximation for the polar ( )Θ angle range 0 to 360 degrees are shown at four different 

(phase) azimuthal angles. The azimuth of 0 degrees coincides with the 1 3x x  symmetry plane. 
The other panels are for phase azimuthal angles of 30, 45 and 60 degrees, respectively, and do 
not correspond to symmetry planes. 
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APPENDIX A: EXACT QUASI- COMPRESSIONAL RAY TRACING 
EQUATIONS IN AN ORTHORHOMBIC ANISOTROPIC MEDIUM  

Discussions of the problem of wave propagation in a general anisotropic medium may 
be found in numerous texts and papers (for example, Cerveny, 2001). After substitution 
of a standard high frequency, asymptotic ray (geometrical optics) solution into the 
equation of particle motion, a condition for the existence of a solution is obtained in 
terms of the eigenvalues (eikonal equations) and the elements, ( ), 1, 2,3mn m nΓ = , of the 
Christoffel matrix Γ . The elements of Γ  are functions of the anisotropic parameters of 
the medium and are homogeneous functions of order two in powers of slowness, ip , so 

that with G denoting the eigenvalues ( )( ), 1k kG x p =  the following equation is obtained 

 0jk jkG δΓ − =  (A.1) 

As Γ  is known to be a symmetric matrix (Cerveny, 2001), it is positive definite and as a 
consequence its three eigenvalues are real, positive and generally distinct quantities. 
These eigenvalues, ( ) ( ), 1, 2,3i k kG x p i =  are the solution of the above characteristic 
equation which results in the following cubic equation 

 ( ) ( ) ( )3 2 0G Tr G Tr Cof G Det⎡ ⎤− + − =⎣ ⎦Γ Γ Γ
. (A.2) 

where 

 ( ) 11 22 33Tr = Γ + Γ + ΓΓ  (A.3) 
the two invariants in equation (A.2) for Y are 

 ( )[ ] 2 2 2
11 33 11 22 22 33 13 12 23Tr Cof = Π = Γ Γ + Γ Γ + Γ Γ − Γ − Γ − ΓΓΓ  (A.4) 

 ( ) 2 2 2
11 22 33 12 13 23 11 23 12 33 13 222Det = = Γ Γ Γ + Γ Γ Γ − Γ Γ − Γ Γ − Γ ΓΓ Γ  (A.5) 

and Tr denotes trace, Cof, cofactor and Det, determinant. A variable change (Every, 1980 
and Schoenberg and Helbig, 1997), which allows for the determination of analytic 
expressions for the three eigenvalues, is given by 

 ( ) 3 1G Y Tr= + =Γ . (A.6) 
Introducing equation (A.6) into (A.2) results in  

 
2

1 23 2 0Y K Y K− − = . (A.7) 

There is no quadratic term in equation (A.7) and as a consequence a solution method 
exists or this equation, provided certain constraints related to the ijA  are satisfied. The 
quantities 1K   and 2K  in equation (A.7) are defined as 
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 ( ) ( )2
1 2 3K Tr Tr Cof⎡ ⎤ ⎡ ⎤= −⎣ ⎦ ⎣ ⎦Γ Γ

 (A.8) 

 
( ) ( ) ( ){ } ( )3

2 27 6 2K Tr Tr Cof Tr Det⎡ ⎤= ⎡ ⎤ − ⎡ ⎤ ⎡ ⎤ +⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦Γ Γ Γ Γ
. (A.9) 

where the three roots of the polynomial correspond to the eikonal (characteristic) 
equations associated with each of the three possible modes of elastic wave propagation in 
the medium, one quasi-compressional, qP, and two quasi-shear, 1qS  and 2qS .  

What is of interest here is qP wave propagation, where the eikonal equation is given 
by equation (A.6), and Y and related quantities are defined through the series of equations 

 ( )cos 3Y L X=  (A.10) 

 ( )1 3 / 2cosX H L−=  (A.11) 

 
( )[ ]3

0
9 3

TrL Π= − >ΓΓ
 (A.12) 

 
( )[ ] ( )[ ]3

27 6 2
Tr TrH Π

= − +ΓΓ Γ Γ
. (A.13) 

The expression for Y and related quantities were approximated by Tsvankin (1997) to 
obtain a linearized expression for the qP phase velocity in an orthorhombic medium. The 
resultant formula is equivalent to that presented by Backus (1965) (his equation (1)) 
expressed in terms of a generalization of the anisotropic parameters introduced by 
Thomsen (1986). 

The qP eigenvalue of the matrix Γ , is by definition, homogeneous of order two in 
powers of the slowness vector components ip , which is masked in the above equations. 
The components of the group velocity vector may be obtained using equations (12) and 
(13) in the text. For qP wave propagation in an orthorhombic medium obtaining the 
expressions iG p∂ ∂  ( )1, 2,3i =  is an exercise in differentiation, the results of which are 

given below. From these results, together with some initial spatial, ( )0 0t=x x , and 

slowness vector ( )0 0t=p p , conditions at a reference time, 0t , a computer code may be 
written to compute the exact qP group velocity vector components. 

The following sequence of steps produce a system of first order differential equations 
which may be used to trace rays in an arbitrarily inhomogeneous orthorhombic medium. 
The expressions for derivatives with respect to spatial variables, iG x∂ ∂  ( )1, 2,3i =  are 
not given here as they are cumbersome and are not required for the homogeneous 
medium type being discussed here. The quasi-compressional eikonal equation is given by 
equation (A.6) and repeated here 
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 ( ) ( ), 3i iG p x Y Tr= + Γ  (A.6) 

The derivative of ( )iG p  with respect to a slowness vector component, ip , is obtained 
from the following sequence of equations 

 

( )[ ]1
3i i i

TrG Y
p p p

∂∂ ∂= +
∂ ∂ ∂

Γ

 (A.14) 

 
( ) ( )1 2cos 3 sin 3

3i i i

Y L L XX X
p p pL

∂ ∂ ∂= −
∂ ∂ ∂  (A.16) 

 

( )3 / 2

5 / 22 3 2 3

3

2
/ //1 1

1 / 1 /

i i

i i

H p L H L pH LX
p p LH L H L

⎧ ⎫∂ ∂ − ∂ ∂∂∂ ⎪ ⎪= − = ⎨ ⎬∂ ∂− − ⎪ ⎪
⎩ ⎭ (A.16) 

where Y and X are defined by equations (A.10) and (A.11). The derivatives of the 
intermediate variables L and H (equations A.12) and A.13) are given by 

 
( ) ( )[ ]2 1

9 3i i i

TrL Tr
p p p

∂∂ ∂Π= −
∂ ∂ ∂

ΓΓΓ
 (A.17) 

 
( )[ ] ( )[ ] ( ) ( )[ ]21 1 1

9 6 6 2i i i i i

Tr TrH Tr Tr
p p p p p

∂∂ ∂∂ ∂Π Π= − − +
∂ ∂ ∂ ∂ ∂

Γ Γ ΓΓ ΓΓ Γ
(A.18) 

where [ ]Tr Γ , ΠΓ  and Γ  have been previously defined in equations (A.3) – (A.5). 

Before proceeding further it should be noted that the expressions for iG x∂ ∂  are the 
same as the above sequence of equations with the exception that ip  is replaced by ix . For 
this reason they will not be presented here. Additionally, for the case of an infinite 
medium with constant anisotropic coefficients, jkA , the result of computing iG x∂ ∂  will 

be zero, so that 0idp dt = , ( ) is a constantip  for 1, 2,3i = . 

For the formulae for ray tracing to be complete, the individual mnΓ  terms for an 
orthorhombic medium, defined below, must be differentiated with respect to the ip  

 
2 2 2

11 1 11 2 66 3 55p A p A p AΓ = + +  (A.19) 

 

 
2 2 2

22 1 66 2 22 3 44p A p A p AΓ = + +  (A.20) 
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2 2 2

33 1 55 2 44 3 33p A p A p AΓ = + +  (A.21) 

 ( )13 1 3 13 55p p A AΓ = +  (A.22) 

 ( )12 1 2 12 66p p A AΓ = +  (A.23) 

 ( )23 2 3 23 44p p A AΓ = +  (A.24) 

As the partial derivatives of [ ]Tr Γ  with respect to the 
i

p  are easily determined they are 
given first as 

 

( )[ ] ( )1 11 66 55
1

2Tr p A A A
p

∂ = + +
∂

Γ

 (A.25) 

 

( )[ ] ( )2 66 22 44
2

2Tr p A A A
p

∂ = + +
∂

Γ

 (A.26) 

 

( )[ ] ( )3 55 44 33
3

2Tr p A A A
p

∂ = + +
∂

Γ

 (A.27) 

The following relations are required for the partial derivatives of ΠΓ  and Γ  with 
respect to 

i
p  

 
11 11 11

1 11 2 66 3 55
1 2 3

2 , 2 , 2p A p A p A
p p p

∂Γ ∂Γ ∂Γ= = =
∂ ∂ ∂  (A.28) 

 
22 22 22

1 66 2 22 3 44
1 2 3

2 , 2 , 2p A p A p A
p p p

∂Γ ∂Γ ∂Γ= = =
∂ ∂ ∂  (A.29) 

 
33 33 33

1 55 2 44 3 33
1 2 3

2 , 2 , 2p A p A p A
p p p

∂Γ ∂Γ ∂Γ= = =
∂ ∂ ∂  (A.30) 

 
( ) ( )13 13 13

3 13 55 1 13 55
1 2 3

, 0,p A A p A A
p p p

∂Γ ∂Γ ∂Γ= + = = +
∂ ∂ ∂  (A.31) 

 
( ) ( )12 12 12

2 12 66 1 12 66
1 2 3

, , 0p A A p A A
p p p

∂Γ ∂Γ ∂Γ= + = + =
∂ ∂ ∂  (A.32) 

 
( ) ( )23 23 23

3 23 44 2 23 44
1 2 3

0, ,p A A p A A
p p p

∂Γ ∂Γ ∂Γ= = + = +
∂ ∂ ∂  (A.33) 

so that the partial derivatives of ΠΓ  and Γ  have the form 
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11 33 11 22
33 11 22 11

22 33 13 12 23
33 22 13 12 232

i i i i i

i i i i i

p p p p p

p p p p p

∂Π ∂Γ ∂Γ ∂Γ ∂Γ= Γ + Γ + Γ + Γ +
∂ ∂ ∂ ∂ ∂

∂Γ ∂Γ ∂Γ ∂Γ ∂Γ⎡ ⎤Γ + Γ − Γ + Γ + Γ⎢ ⎥∂ ∂ ∂ ∂ ∂⎣ ⎦

Γ

 (A.34) 

and 

 

11 22 33
22 33 11 33 11 22

12 13 23
13 23 12 23 12 13

11 22 332 2 2
23 13 12

23 13 12
11 23 22 13 33 12

2

2

i i i i

i i i

i i i

i i i

p p p p

p p p

p p p

p p p

∂ ∂Γ ∂Γ ∂Γ= Γ Γ + Γ Γ + Γ Γ +
∂ ∂ ∂ ∂

∂Γ ∂Γ ∂Γ⎡ ⎤Γ Γ + Γ Γ + Γ Γ −⎢ ⎥∂ ∂ ∂⎣ ⎦
∂Γ ∂Γ ∂ΓΓ − Γ − Γ −
∂ ∂ ∂

∂Γ ∂Γ ∂Γ⎡ ⎤Γ Γ + Γ Γ + Γ Γ⎢ ⎥∂ ∂ ∂⎣ ⎦

Γ

 (A.35) 

With the above equations it is possible to construct a computer algorithm that can be 
used to compute the exact vector components of the group velocity, given appropriate 
initial conditions. From these expressions for these 3 vector components other related 
quantities such as the magnitude of the group velocity and the azimuthal and polar angles 
describing the direction of the group velocity vector may be obtained. 


