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ABSTRACT

Modelling seismic data is a very important aspect in exploration seismology; it is
widely used in all the phases of seismic exploration. In this paper, a wave equation for
a structurally complex orthorhombic medium is derived and is then used to model data
over a thrust sheet model. The data generated is compared to the physical modelling data
showing that the traveltimes of both physical modelling data and the numerical data match.

INTRODUCTION

The velocity structure of the earth is fundamentally anisotropic, i.e. the velocity varies
with the direction of propagating of energy. Modelling algorithms which are used to model
seismic data currently do not take into account the velocity anisotropy. Seismic modelling
plays a very important role in exploration seismology. It is used in planning and designing
seismic surveys, processing of acquired data and in the interpretation of the data.

Anisotropy is an area of active research as shown by the number of publications over the
last few decades. Helbig (e.g. Helbig, 1980), Thomsen (e.g. Thomsen, 1986), Alkhalifah
(e.g. Alkhalifah et al., 1996), and Tsvankin (e.g. Tsvankin and Thomsen, 1994) have pub-
lished many papers on the topic of anisotropy. Alkhalifah (2000) derived a wave equation
for acoustic medium in the paper titled “Acoustic wave equation for VTI medium.” Later,
he proposed a scheme for numerically modelling seismic data in orthorhombic medium
(Alkhalifah, 2003). Zhang et al. (2002) extended Alkhalifah’s VTI formulation to TTI
medium.

The most common symmetry observed in the context of exploration seismology, is
Vertical Transverse Isotropy (VTI). VTI symmetry, as the name implies, is only valid when
the symmetry axis is vertical. The approximation of VTI symmetry is not valid when
the axis of symmetry is tilted, such as in structurally complex areas. The case in which
the axis of symmetry is not vertical is termed tilted transverse isotropy (TTI). Most of
the commercial seismic modelling programs that are available, like NORSAR and GX II,
simulate VTI medium, but can’t handle TTI medium. A more generalized medium with
two axes of symmetry is orthorhombic medium. In this paper we propose a technique to
model seismic data in structurally complex orthorhombic media.

ORTHORHOMBIC MEDIUM

Orthorhombic media, unlike VTI media has three mutually orthogonal planes of mirror
symmetry Tsvankin (2001); nine independent stiffness coefficients are needed to describe
this symmetry.

The most common example of orthorhombic symmetry in real geology is that of sedi-
mentary basins in a combination of parallel vertical fractures with vertical transverse sym-
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metry in the background. Bakulin et al. (2000) states that orthorhombic symmetry may be
the simplest realistic symmetry for many geophysical problems. This symmetry is illus-
trated in Figure 1.

FIG. 1. Orthorhombic symmetry. Courtesy (Tsvankin, 2001)

Stiffness matrix for Orthorhombic medium

The Christoffel equation for a orthorhombic media can written as follows:
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where ����� are the Christoffel’s coefficients, which are related to the velocities � ��� by �!�"�#������$&% � (2)

where % is the density. The Christoffel’s matrix shown in Equation 1 has nine independent
coefficients. This equation reduces to that of an equation in VTI media in the degenerate
case.

Anisotropy parameters in orthorhombic media

Tsvankin (2001) has introduced anisotropic parameters that characterize a wide range
of signatures for orthorhombic anisotropy. He used the orthorhombic anisotropy’s analogy
with VTI media to propose these parameters on the lines of Thomsen’s parameters for VTI
media.

There are five independent parameters which can be used to classify this media, they
are: '�( �*) , +,( �*) , '�( 
-) , +,( 
-) and +,( �*) .

The subscript refers to the normal direction of the symmetry axis; for example the sub-
script(2) refers to the . � axis, which defines the normal direction to the / . 
 � . �10 symmetry
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plane. ' ( �*) be written as: ' ( �*) � �2
�
435�����6 ����� (3)

+7( �*) be written as + ( �*) �98 �2
��;:<������= � 3 8 �����>3?������= �6 ����� 8 �����@3A������= (4)

It can be easily noted that ' ( �*) and + ( �*) are analogous to the parameters ' and + in VTI
media. The only difference is the coefficient �B��� is used to calculate + in VTI media, while
in orthorhombic media the coefficient ����� is used. The parameters in the / . � � . �C0 symmetry
plane can be written as: ' ( 
-) � �����@3A���������� � (5)

and +,( 
-) can be written as

+ ( 
-) �98 �����;:D�����B= � 3 8 �����>35������= �6 ����� 8 �����@35������= E (6)

The above four anisotropy parameters can be used to calculate the eight stiffness coeffi-
cients: ��
�
 � ����� � ����� � ����� � ����� � ����� � ����� and �2
�� . The only remaining stiffness �F
�� can be re-
placed with a dimensionless anisotropic parameter + ( �*) analogous to the coefficients + ( 
-)
and +,( �*) : + ( �*) �98 �2
��;:D������= � 3 8 �2
�
435������= �6 �2
�
 8 ��
�
;35������= E (7)

THEORY

The main objective of this paper is to develop a modelling algorithm which can be used
to model 3-D seismic data in structurally complex anisotropic medium. This modelling
technique will be implemented using a Finite Difference technique.

In order to derive the wave equation in TTI medium, we first examine the formulation
for phase velocity orthorhombic medium Daley et al. (1999).

WAVE EQUATION IN ORTHORHOMBIC MEDIA

The wave equation in orthorhombic medium can be written as equation 8. This equation
is derived in Appendix A.GIHGIJ � � 8  
�


G �G . � :  ���
G �GIK � :  ���

G �GML � :N 
��
G �G . GIK : N ���

G �GMKOGML :
N 
��

G �G . GML =
H

(8)

where
N 
��"� 6 8  
��P: 6  ����= N ����� 6 8  ���4: 6  ���B= and

N 
���� 6 8  
��4: 6  ��� The equation
(8) is the wave equation in Orthorhombic media. This equation can be solved using various
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techniques to model the data; in this paper, this equation is the solved using finite difference
method.

This equation is valid in flat layered orthorhombic medium. If the media were struc-
turally complex, we need to transform this wave equation to be valid in structurally complex
medium. The following method is used to achieve this transformation.

AXIS ROTATION IN 3-D ORTHORHOMBIC MEDIA

Up to this point we have defined the velocities,
 
�
 ,  ��� ,  ��� , N 
�� , N 
�� , N ��� , with

respect to the principal crystallographic axis. Therefore, for structurally deformed medium,
we need to rotate the system through the deformation angle. In a 2D system this rotation
from unrotated (primed) system to the rotated (un primed) system can be implemented
using the following scheme (Daley et al., 1999):

Q . LSR � QUTBV7W 8�X =Y3[Z2\-] 8-X =W_^a` 8�X = �BbcZ 8-X =
R Q .MdL d R E (9)

Using the above orthogonal matrix, the unrotated directional space derivatives can be
written in rotated coordinates as follows:

GG . � TBV7W X
GG .Md 3 W1^e` X

GGML d (10)

and
GGML � W_^a` X

GG .Md : T�V7W X
GGML d E (11)

Now we will generalize this rotation scheme to 3D media.

Rotation Matrices in 3D media

Rotation matrix is a matrix corresponding to a rotation of a set of points around a certain
axis, through some arbitrary angle X . Rotations can be represented by orthogonal matrices,
a matrix f is said to orthogonal when fgfih �kj . In 3D, the rotation about . 3 axis is
given by: lmon � �� T�VpW X 3 W1^a` X� W1^e` X T�VpW X

qr
� (12)

the rotation about

K 3 axis is given by:lm T�VpW X � W1^a` X� n �3 W1^a` X � T�V7W X
qr
� (13)

and the rotation about

L 3 axis is given by:lm TBV7W X 3 W1^e` X �W_^a` X TBV7W X �� � n qr E (14)
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Rotation scheme in generalized 3D media

Orthorhombic media, in contrast to VTI and Horizontal Transverse Isotropy (HTI) ,
which have only one axis of symmetry, has two axes of symmetry. The rotation scheme
can be easily explained by taking the example of 2D VTI media. Suppose we can transform
this media into a TTI media by using the transformation using the equation (9). Being a 2D
rotation, it is not necessary to specify the axis on which it is to be rotated. Now consider
a 3D VTI media to be transformed into a TTI media, the question arises, along which axis
should the media need to be rotated? The answer to this question depends on how the
velocity model is being setup. If the strike of the model is along the . 3 axis then the dip is
nothing but rotation along the

K 3 axis and the azimuth would be the rotation along the

L 3
axis. Therefore the the whole 3D rotation can be written as this matrix:lm . K L qr � lmsn � �� T�V7W X 3 W1^e` X� W_^a` X T�V7W X

qr lm TBV7W X � W1^e` X� n �3 W1^e` X � T�VpW X
qr

(15)lm T�V7W X 3 W_^a` X �W1^a` X T�V7W X �� � n qr
lm .MdK dL d

qr

Properties of rotation matrix

The following are the properties of rotation matrices:t Rotational matrices are not commutative therefore the order in which they are applied
is very importantt Rotational matrices are orthogonal matrices

Considering the non-commutative nature of these matrices, care should be taken on how
the rotational matrices are applied.

Rotation scheme in orthorhombic media

For simplicity’s sake let us considering only 2.5D media, with strike along the . 3 axis;
therefore rotation for the dip should be along the

K 3 axis; this rotation would transform
the background VTI symmetry to tilted transverse isotropy (TTI) symmetry. This being
orthorhombic media there is an other axis of symmetry which should be rotated. This
axis of symmetry is usually due to the presence of fractures perpendicular to the strike of
the model (Tsvankin, 2001). In structurally complex orthorhombic media the rotation of
orientation of these fractures can be treated as a rotation along the

L 3 axis.

Order of rotation

We follow a convention of applying rotation is across the

K 3 axis first, rotating the
VTI symmetry into TTI. The second rotation is then applied along the

L 3 axis, rotating the
orientation of the fractures. This being a 2.5D media there is no rotation across the azimuth.
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The final rotation matrix can be written as:lm . K L qr � lmon � �� T�VpW X 3 W1^a` X� W1^e` X T�VpW X
qr lmon � �� T�V7W X 3 W_^a` X� W1^e` X T�V7W X

qr lm .MdK dL d
qr

(16)

Equation (16) is solved for the slownesses in . �
K

and

L
rotations and substituted in the wave

equation (equation (8)); this equation is then solved using a fourth order finite difference
scheme to generate the numerical seismic data.

This equation is now tested on different models.

TESTING

This finite difference modelling algorithm is then tested on various homogeneous mod-
els with various anisotropy parameters and various orientations of axes of symmetry.

Model 1

The model 1 parameters are

t Velocity= u,v7wpwyx $7Zt '�( � = =0.2t +7( �*) =0.2t '�( 
-) =0.2t +7( 
-) =0.2t +7( �*) =0.2

A snapshot of the wave propagating is shown in Figure 2. The shot is located at the centre
of the model.

Model 2

The model 2 parameters are

t Velocity= u,v7wpwyx $7Zt '�( � = =0.2t +7( �*) =0.1t '�( 
-) =0.2t +7( 
-) =0.1
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FIG. 2. Snapshot of the wavefront in model 1.t +7( �*) =0.1

A snapshot of the wave propagating is shown in Figure 3. The shot is located at the centre
of the model.

FIG. 3. Snapshot of the wavefront in model 2.

Model 3

The model 3 parameters are

t Velocity= u,v7wpwyx $7Z
CREWES Research Report — Volume 17 (2005) 7
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t ' ( � = =0.2t +7( �*) =-0.2t '�( 
-) =0.2t +7( 
-) =-0.2t + ( �*) =-0.2

A snapshot of the wave propagating is shown in Figure 4. The shot is located at the centre
of the model.

FIG. 4. Snapshot of the wavefront in model 3.

Model 4

The model 4 parameters are

t Velocity= u,v7wpwyx $7Zt dip=
n wpzt fracture orientation=

n � zt '�( � = =0.2t +7( �*) =-0.2t ' ( 
-) =0.2t + ( 
-) =-0.2t +7( �*) =-0.2
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A snapshot of the wave propagating is shown in Figure 5. The shot is located at the centre
of the model.

FIG. 5. Snapshot of the wavefront in model 4.

Model 5

The model 5 parameters are

t Velocity= u,v7wpwyx $7Zt dip= u � zt fracture orientation=
n � zt ' ( � = =0.2t + ( �*) =-0.2t '�( 
-) =0.2t +7( 
-) =-0.2t +7( �*) =-0.2

A snapshot of the wave propagating is shown in Figure 6. The shot is located at the centre
of the model.
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FIG. 6. Snapshot of the wavefront in Model 5.

Model 6

The model 6 parameters are

t Velocity= u,v7wpwyx $7Zt dip= {|wpzt fracture orientation=
n � zt '�( � = =0.2t + ( �*) =-0.2t ' ( 
-) =0.2t +7( 
-) =-0.2t +7( �*) =-0.2

A snapshot of the wave propagating is shown in Figure 7. The shot is located at the centre
of the model.

Model 7

The model 7 parameters are

t Velocity= u,v7wpwyx $7Zt dip= } � z
10 CREWES Research Report — Volume 17 (2005)
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FIG. 7. Snapshot of the wavefront in medium Model 6.t fracture orientation=
n � zt '�( � = =0.2t + ( �*) =-0.2t '�( 
-) =0.2t +7( 
-) =-0.2t +7( �*) =-0.2

A snapshot of the wave propagating is shown in Figure 8. The shot is located at the centre
of the model.

THRUST SHEET MODEL

Leslie and Lawton (2001) acquired seismic data over a physical model of an anisotropic
thrust sheet. The physical model is illustrated in Figure 9. The algorithm described above
is now tested on this model.

Comparison between numerical and physical modelling data

Figure 10 allows for the comparison at the shot records acquired over the physical
modelling data and the numerical modelling data. It can be seen that the traveltimes in
both sections match with each other (Figure 10). The interesting section in the data is
where the dipping anisotropic section meets the surface. As the anisotropic layer’s fast
direction is oriented up wards towards the surface, a pull up in traveltime is expected. We
see a pull up in traveltime of the same magnitude in both the physical model data and the
numerical model data.

The energy below the main reflection in the numerical modelling data is due to edge
reflections.
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FIG. 8. Snapshot of the wavefront in medium model 7.

FIG. 9. Thrust sheet model (Courtesy Don Lawton).

12 CREWES Research Report — Volume 17 (2005)



Modelling orthorhombic media

FIG. 10. Comparison between numerical modelling data and physical modelling data.

Comparison between numerical and physical modelling data

Figure 10 allows for the comparison at the shot records acquired over the physical
modelling data and the numerical modelling data.

It can be seen that the traveltimes in both sections match with each other (Figure 10).
The interesting section in the data is where the dipping anisotropic section meets the sur-
face. As the anisotropic layer’s fast direction is oriented upwards towards the surface, a
pull up in traveltime is expected. We see a pull up in traveltime of the same magnitude in
both the physical model data and the numerical model data.

The energy below the main reflection in the numerical modelling data is due to edge
reflections.

CONCLUSIONS

In this paper we derived a wave equation for a TTI medium. We tested this equation
on various simple models and displayed snapshots. The algorithm is then applied to a
numerical version of a thrust sheet model. The data is then compared to the data acquired
on a physical version of the same model. In future, we plan to extend this method to 3-D
medium, and to improve the boundary condition implementation in the modelling code.
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APPENDIX A

In this section we derive the wave equation in orthorhombic medium; this derivation is based on (Daley,
2005). The linearized quasi-compressional ( ~P� ) Eikonal in transversely isotropic medium can be written as:�P�|�����p�F�-�����M� �4�-� �P���� ����� �P����S� ��� � �� � ��� �� � � �� ���

(A-1)

where � ��� �i�&� �;��� � � ���-� ���s� �;��� � ����� �*� (A-2)

Now let us assume a solution of the form:���>�p� �¢¡¤£7¥B¦��p§C¡¨¦_©,¡¤�¤ª2�|«o¬®2¯|°p±³²�´ µ·¶¹¸¨º�¸¤µ·»a¼�º1¼ � (A-3)

the pseudo-differential operators, with ½�¾ � � �e¿|� � and �¢©·À � � �a¿|� � can be written as:� �a¿ÂÁ ÃÃ ¡ (A-4)� �¢�aÀ � Á ÃÃ � ���Ä �¤��Á ÃÃ � � �
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Now rewriting equation A-1 in symmetric operator notation, for some operation Å�§�Æ as:� � � �;���¢� � � � � �� ���-��� � � � �7�¤�c� � ���¨�,�¢�c� �s� �7����Ç-Ç-�7� � �c�_��Ç�Ç-�p� � § �ÉÈF� (A-5)

where � �¨� �Ê�F� �;��� � � ����� � and for convenience a quantity ��Ç-ÇÌËÎÍ�Ï ÐSÑ ����Ò�Ó ÐÕÔ ÒÖ�¢×
has been

introduced. The partial derivative operations defined in equation A-4 are introduced by first multiplying
equation A-5 by �a¿MØ . It is assumed that equation A-5 operates on some function (potential) Ù such that some
force is defined by Ú �ÜÛ Ù and the resultant pressure is given by

�Ý�ßÞU� Þ Ù �iÞU� Ú �ÉÛáà Ù to obtain

Ã �� � �;��� Ã �� Ù � � Ã �� � ����� Ã �� Ù � � Ã � Ã � � � ��� Ã � Ã �_Ù �I� Ã �´ � Ã ��â� Ã �� � Ù �ÉÈ (A-6)

The above equation is the most general case, as it assumes that the anisotropic parameters �;ã are spatial
dependent, i.e., � ± ËÝ�;ä � � � �-� � � . It is often convenient to write a part of equation A-6 in terms of pressure
so that equation A-6 becomes

Ã �� � �;��� Ã �� Ù � � Ã �� � ����� Ã �� Ù � � Ã � Ã � � � �¨� Ã � Ã �1Ù ��� Ã �´ ���gÈ (A-7)

Equation A-7 is a wave equation in VTI media, and using the same analysis the equation in orthorhombic
media can be written as

Ã �� � � ��� Ã �� Ù � � Ã �� � � ��� Ã �� Ù � � Ã �� � � ��� Ã �� Ù � (A-8)� Ã � Ã � � � ��� Ã � Ã �_Ù � � Ã � Ã � � � � � Ã � Ã � Ù � � Ã � Ã � � � � � Ã � Ã �1Ù �I� Ã �´ ���ÉÈ
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