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ABSTRACT

In this report we summarize an extension of Fourier analysis for the solution of the wave
equation with a non-constant coefficient corresponding to an inhomogeneous medium. The
underlying physics of the problem is exploited to link pseudodifferential operators and
phase space path integrals to obtain a marching algorithm that incorporates the backward
scattering into the evolution of the wave. This allows us to successfully apply single-sweep,
one-way marching methods in inherently two-way environments, which was not achieved
before through other methods for this problem.

INTRODUCTION

Understanding wavefield propagation and the construction of efficient, approximate
numerical algorithms have been important issues in many industrial settings for many
years. Mathematicians, physicists, and other applied scientisits, in fields as diverse as
ocean acoustics, electromagnetics, medical imaging, optical design, and seismic explo-
ration, have struggled with these issues. Wave propagation in complex environments is a
classical problem that has been attacked by a variety of approaches over the years, includ-
ing (1) direct wavefield approximations (e.g., perturbation theory, asymptotic ray theory,
Gaussian beams) and (2) computational partial differential equation (pde) methods (e.g.,
finite differences, finite elements, spectral methods, wavelets). However, these approaches
can often be problematic. Approximation methods often offer some physical insight, but
they may be limited to specific parameter regimes, not properly accounting for the un-
derlying physics outside of these regimes. Computational pde methods, in the frequency
domain, in particular, can often be prohibitively expensive and time consuming for large
scale problems involving large data sets. Moreover, the computational pde methods do not,
in general, reveal the underlying physics in a transparent manner.

Rather than considering a wide range of wave propagation formulations in this project,
we will focus on seismic imaging applications. The problem is illustrated in Figure 1,
which shows the Marmousi synthetic velocity model for an area off the coast of West
Africa. Even though this is a relatively simple, two-dimensional, constant density, scalar
model, there is complex fine layering, fault lines, velocities ranging from1500 m/s to
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FIG. 1. Marmousi synthetic velocity geological model.

almost6000 m/s, regions with very strong gradients, a reservoir, and regions exhibiting
pronounced focusing and defocusing phenomena. The idea is to set off explosive sources
along the surface, and from the collected reflection data along the surface, construct an
appropriate image of the substructure. In other words, we want to construct images of the
Marmousi model, from the synthetic data, that accurately reflect the complex model struc-
ture (at least to the extent that this inverse process will allow). In the seismic industry, of
course, these reconstructions are done with actual field data sets, which inherently contain
limited and noisy data. An image of this model computed in 1998 is illustrated in Figure 2.

FIG. 2. Image of Marmousi model computed in 1998. Figure from Romero et al. (2000)

One of the most commonly used techniques for seismic imaging is seismic depth mi-
gration. Kirchhoff migration is based on applying asymptotic ray theory for the wave prop-
agation process. While the workhorse of the seismic industry, and very appealing from
a physics standpoint, this high-frequency asymptotic method is inadequate for modelling
wave propagation in Marmousi-type environments at the lower end of typical experimental
seismic bandwidths (say between10− 30 Hz). This can be contrasted with wave equation
migration methods based on computational pde methods and the locally-homogeneous-
medium (LHM) approximation to the wavefield extrapolator (the Generalized Phase Shift
Plus Interpolation (GPSPI) algorithm). Computational pde methods can often result in ex-
cessively large linear systems. The GPSPI algorithm is based on the industry belief that
the LHM approximation to the wavefield extrapolator is an exact statement of the global
propagation process (at least for range-independent models). This, unfortunately, is not the
case outside of a strictly homogeneous medium.
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The specific problem considered is the following. Construct a wave propagation model,
at the level of the fixed-frequency, scalar Helmholtz equation, which can form the basis for
wave equation migration algorithms. This wave propagation model should be a full-wave
model, so as to be appropriate over the entire seismic bandwidth, and computationally
faster and physically more transparent than pde-based methods, all the while providing a
complete mathematical framework in which to examine, correct, and extend the GPSPI
algorithm. It would also be very convenient if the computational realization of this model
ran (in principle) exactly in the same manner as the GPSPI algorithm. In other words, we
want to combine the physical insight and relative computational speed of GPSPI with the
numerical accuracy of a complete pde-solver-based algorithm. Essentially, we want the
best of both worlds for a seismic migration algorithm.

We will approach this problem through the application of what is loosely referred to
as “phase space and path integral” methods, which were developed primarily in the quan-
tum physics and theoretical mathematics (pde) communities. The principal aims of this
approach are to (1) exploit well-posed, one-way marching methods in inherently two-
way global problems, (2) exploit the correspondences between classical wave propagation,
quantum physics, and microlocal analysis (modern mathematical asymptotics), and (3) ex-
tend Fourier analysis to inhomogeneous environments. Since this is a brief report, and
these “phase space and path integral” methods have a rather involved and extensive litera-
ture, we will introduce them essentially through the homogeneous medium case, and rely
on the citations in the References section for the detailed story.

HOMOGENEOUS MEDIUM

We begin with the full wave equation which models the propagation of waves in a
medium. For simplicity we will work in two dimensions (everything can be extended to
arbitrary dimension).

(
∂2

x + ∂2
z −

1

c2(~x)
∂2

t

)
ψ(~x, t) = S(~x− ~xs, t− t0), (1)

wherex is the propagation direction,z is the transverse direction,c(~x) is the speed of sound
in the medium,S(~x, t) is a source term,t is time, and~x = (x, z).

We consider a wavefieldψ(~x, t) = φ(~x)e−iωt, whereω is the frequency, and assume
that the sourceS(~x, t) is a delta distribution in both position and time. By taking a Fourier
transform in the time variable we obtain the Helmholtz equation, which describes the prop-
agation of a single frequency wave:

(
∂2

x + ∂2
z + k̄2K2(~x)

)
φ(~x) = −δ(~x− ~xs), (2)

whereK(~x) is the refractive index of the medium at the point~x, andk̄ = ω/c0.
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To gain physical insight, we consider a homogeneous medium in whichK(~x) = K0,
and solve (2) away from the source:

(
∂2

x + ∂2
z + k̄2K2

0

)
φ(x, z) = 0. (3)

We can formally separate the solution into two non-interacting waves: the right-going wave
φ+, and the left-going waveφ−:

(
i

k̄
∂x + B

)
φ+(x, z) = 0, (4)

and (
− i

k̄
∂x + B

)
φ−(x, z) = 0, (5)

where

B ≡
(

K0
2 +

1

k̄2
∂2

z

)1/2

. (6)

The equations above are a formal factorization of expression (3). To make sense ofB,
consider the Fourier transform of (3). The equation forφ+(x, z) is as follows:

i

k̄
∂xφ

+(x, z) +

∫

R

dp(K2
0 − p2)1/2eik̄pzφ̂+(x, p) = 0. (7)

whereφ̂+(x, p) is the Fourier transform ofφ+(x, z). Similarly, we can write an equation
for φ−(x, z).

It is well known that the fundamental solution to this one way wave equation can be
represented essentially as a first order Hankel function of the first kind, which can be ex-
pressed by the following identity:

G+(x, z|0, z′) = lim
N→∞

∫

R2N−1

N−1∏
j=1

dzj

N∏
j=1

k̄

2π
dpj

· exp

[
ik̄

N∑
j=1

[
pj(zj − zj−1) +

x

N
(K2

0 − p2
j)

1/2
]]

. (8)

The fundamental solution representation in (8) may appear rather involved for what is
essentially a Hankel function identity. However, it is exactly in the form of a phase space
path integral representation from quantum physics, and it is this form that will be used to
represent the wavefield solutions in the more general inhomogeneous cases. Moreover, the
form of (8) immediately results in a marching computational algorithm.

We can use the above expression to construct a marching algorithm, as follows:

φ+(x + ∆x, z) =

∫

R

dpeik̄pz
[
eik̄∆x(K2

0−p2)1/2

φ̂+(x, p)
]
. (9)
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We recognize this as a formula involving forward and inverse Fourier transforms:

φ+(x + ∆x, z) = F−1
[
eik̄∆x (K2

0−p2)1/2

F
[
φ+(x, z), p

]
, z

]
. (10)

This algorithm is simple, well-posed, and incorporates all the physics of the homogeneous
problem.

TRANSVERSELY-INHOMOGENEOUS MEDIUM

Now we consider a slightly more complex case than the completely homogeneous
medium. We introduce dependence ofK along thez axis, the transverse direction. Solving
this problem will naturally lead us to the solution of the general problem in which we also
have dependence onx, the propagation direction.

As in the homogeneous case, right- and left-going waves are decoupled. In both the
transversely-inhomogeneous and homogeneous medium cases, there are physical, right-
and left-travelling wave fields, as follows from simple separation of variables arguments.
An explicit representation of (4), written for the transversely-inhomogeneous case, is pro-
vided by the theory of pseudodifferential operators from the modern mathematical theory
of asymptotics, in addition to more formal operator construction methods developed in the
quantum physics community. These developments enable the explicit construction of non-
trivial functions of non-commuting operators, such as the formal square-root operator in
(6) with the constant index of refraction replaced by its local, transversely-inhomogeneous
value. The equation for the right-going wave is given in the Weyl pseudodifferential oper-
ator calculus by:

i

k̄
∂xφ

+(x, z) +

k̄

2π

∫

R2

dp dz′ ΩB

(
p,

z + z′

2

)
exp(ik̄p(z − z′))φ+(x, z′) = 0, (11)

where the operator symbolΩB satisfies the composition equation:

ΩB2(p, q) = K2(q)− p2

=

(
k̄

π

)2 ∫

R4

dt ds dy dw

· ΩB(t + p, s + q)ΩB(y + p, w + q) exp(2ik̄(sy − tw)). (12)

The form of (11) is exactly the same as in the homogeneous case, except that the
square root function is replaced byΩB. In the homogeneous medium limit,ΩB reduces
to (K2

0 − p2)
1/2. This is a representation of the formal square root operator from the Weyl

pseudodifferential calculus. The operator is defined through its square, as is the case in
functional analysis.
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It may seem strange that we are effectively replacing a linear partial differential equa-
tion with a quadratically nonlinear, nonlocal composition equation (12). However, it will
turn out that these symbolsΩB can actually image the environments directly. Moreover,
approximations made at the level of the symbol will have a far greater range of validity
than the corresponding approximations made at the level of the wavefield. These points are
discussed in the literature citations.

We have the same path integral and algorithm as the one we described for the homoge-
neous case. The difference is that(K2

0 − p2)1/2 is replaced by:

hs
B(p, q) =

(
k̄

π

) ∫

R2

ds du ΩB(s, u)e−2ik̄(q−u)(p−s). (13)

While exact solutions for specific profilesK2(z) have been constructed, applications
to seismo-acoustic wave propagation, imaging, and inversion will depend upon uniform
asymptotic expansions of the operator symbol. ForΩB(p, q) this takes the general form:

ΩB(p, q) ∼ (
K2(q)− p2

)1/2
+ uniform terms throughO(1/k̄2), (14)

in the high-frequency (̄k → ∞) limit. The details of the exact solution constructions and
the explicit form and derivation of (14) are best left to the literature citations. The most
important point is the following. While the modern mathematical theory of asymptotics
and constructions from quantum physics provide the necessary mathematical framework to
explicitly derive our equations, the asymptotic solution of the composition equation (12)
lies outside of both of these areas. The reason for this is, essentially, that these theories and
examples from quantum physics are based on propagation of singularities arguments (think
time domain wave propagation), while the Helmholtz equation is a smoothing problem
(think frequency domain wave propagation). Constructions like (14) require going beyond
the modern mathematical theory of asymptotics and examples from quantum physics.

Assuming that we can computeΩB numerically, or asymptotically approximate it, then
we can use it in the following marching algorithm:

φ+(x + ∆x, z) ≈
∫

R

dp exp(ik̄pz)
[
exp(ik̄∆xhs

B(p, z))φ̂+(x, p)
]
, (15)

or, in Fourier transform notation:

φ+(x + ∆x, z) ≈ F−1
[
exp(ik̄∆xhs

B(p, z))F
[
φ+(x, z), p

]
, z

]
. (16)

GENERALLY-INHOMOGENEOUS MEDIUM

In the homogeneous and transversely-inhomogeneous media we were able decouple
the right- and left-going waves. We were able to formally factor the Helmholtz equation.
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However, in a generally-inhomogeneous medium, in whichK depends on both the trans-
verse and propagation directions, the right- and left-going waves are inherently coupled. In
a general inhomogeneous medium, backscattering may be present – the problem becomes
global in nature (see Figure 3) . The problem is inherently two-way. It is straightforward to
construct one-way wave equations in the transversely-inhomogeneous and homogeneous
cases since the physics already gives us independent one-way wave equations. But how
can we construct one-way wave equations in this general case? The answer lies in con-
sidering the general scattering problem for the geometry of Figure 3. Applying invariant
imbedding methods enables the construction of the reflection and transmission operators
associated with the generally-inhomogeneous block. Transforming this scattering picture
into a boundary-value picture, in terms of Dirichlet-to-Neumann operators and the total
wavefield and its normal derivative, produces the desired result. We get a one-way equation
to construct the operator, and a one-way wave equation, in terms of the operator, governing
the total wavefield. The detailed treatment can be found in the literature citations.

FIG. 3. Schematic of inhomogeneous block.

In a similar manner to the homogeneous and transversely-inhomogeneous models, the
right-going field is governed by:

(
1

k̄
∂x + Λ+(x, b)

)
φ(x, z) = 0, (17)

(and similarly for the left-propagating field). From (17) we note thatΛ+ is the Dirichlet-to-
Neumann operator. In fact the square root operatorB is the transversely-inhomogeneous
DtN operator as well.

The one-way wave equation is:

1

k̄
∂xφ(x, z) +

k̄

2π

∫

R2

dp dz′ ΩΛ+

(
x, b; p,

z + z′

2

)
exp(ik̄p(z − z′))φ(x, z′) = 0 (18)

whereΩΛ+ is the symbol in the Weyl calculus corresponding toΛ+.

TheΛ+(x, b) operator encapsulates the two-way scattering behaviour of the block be-
tweenx and b. That is,Λ+(x, b) contains all information about the block’s internal re-
flections and transmissions betweenx andb. By solving the series of internal scattering
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problems that the wavefield encounters as it propagates into the block, the inherently cou-
pled problem is decoupled into independent wavefield components, resulting in the desired
one-way wave equation. We march one way (fromb to x) to constructΛ+ (which de-
scribes the two-way wave behaviour), and then we march the other way to obtain the total
wavefield.

A short, formal derivation of the one-way equation defining the DtN operator is the
following. Taking the partial derivative with respect tox of equation (17), applying (17),
and using the original Helmholtz equation result in the marching equation forΛ+ is:

1

k̄
∂xΛ

+(x, b) =
(
Λ+(x, b)

)2
+ B2(x), (19)

with the initial condition:Λ+(b, b) = −iB(b).

The composition equation forΩΛ+ is:

1

k̄
∂xΩΛ+(x, b; p, q) =

(
k̄

π

)2 ∫

R4

dt ds dy dw ΩΛ+(x, b; t + p, s + q)

· ΩΛ+(x, b; y + p, w + q) exp(2ik̄(sy − tw)) + K2(x, q)− p2, (20)

with initial condition:ΩΛ+(b, b; p, q) = −iΩB(b; p, q). Equation (20) is just the expression
of (19) in the Weyl pseudodifferential operator calculus.

As in the transversely-inhomogeneous case, we avoid solving the composition equation
(20) by applying uniform asymptotics. While computational algorithms exist that solve
nonlocal Riccati-type equations like (20), the uniform asymptotic approximation of the
operator symbol is the key to a computationally feasible algorithm. More details can be
found in the literature citations.

We have extended the homogeneous Fourier analysis to the general inhomogeneous
case. The path integral representation of the fundamental solution is:

G+(x, z|x0, z
′) = lim

N→∞

∫

R2N−1

N−1∏
j=1

dzj

N∏
j=1

k̄

2π
dpj·

· exp

[
ik̄

N∑
j=1

[
pj(zj − zj−1) + i

∆x

N
hs

Λ+(xj, b; pj, zj)

]]
, (21)

where

hs
Λ+(x, b; p, z) =

k̄

π

∫

R2

dsdtΩΛ+(x, b; s, t) exp
(−2ik̄(q − t)(p− s)

)
. (22)
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We usehs
Λ+(x, b; p, z), the symbol in the standard calculus, because it is computationally

more efficient. Again, the marching computational algorithm takes the same form as the
homogeneous medium construction.

This concludes our approach to modelling the two-way wave propagation problem us-
ing a one-way marching algorithm.

DISCUSSION

We have introduced one-way methods into an inherently two-way problem. In a generally-
inhomogeneous medium, even though the source wave is a one-way wave, once it enters
an inhomogeneous environment, internal scattering produces a two-way wavefield. Our
model describes these complex behaviours through a pseudodifferential operator, which
allows us to employ a one-way marching algorithm to numerically solve for the wavefield.

Throughout the theory examples from various fields of physics have guided us. Wave-
field splitting, invariant imbedding, and phase space (Weyl pseudodifferential, Fourier in-
tegral operator and path integral) methods were used to reformulate the problem in terms
of an operator that includes all scattering physics. There are both physically insightful and
mathematically succinct ways to derive governing equations for this scattering operator.
We have chosen to present this material as reasonable generalizations of the easily derived
results for a homogeneous medium. The results, in effect, provide an extension of Fourier
methods to inhomogeneous environments.

The methods and algorithms, especially the uniform asymptotic expansion of the DtN
operator, mentioned in this report, are broadly applicable in many different areas of industry
as outlined previously.

The developments in this paper provide the framework for seismic depth migration
imaging. The uniform asymptotic approximations of the operator symbols extend the
well known GPSPI algorithm. Figure 4 illustrates the Marmousi image produced with
the leading-order square root function term alone (GPSPI). The inclusion of the uniform
terms implied in (14) will result in even greater resolution.
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