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Higher-order statistics: improved event resolution? 

David C. Henley and Arnim B. Haase 

ABSTRACT 
In any area where near-surface earth structure causes one or more small time delays in 

seismic energy transmission, a seismic trace can be represented as a bandlimited 
reflectivity signal convolved with a short sequence of scaled copy spikes, each spike 
representing the delay due to a particular travel path variation. If the pattern (distribution) 
of spikes or static time shifts can be determined, its effects can be removed from the 
seismic trace by an explicit deconvolution operation. Accurate estimation of the spike 
pattern (static distribution function), however, is a key difficulty. 

The cross-correlation between a multi-shifted seismic trace and a “pilot” reflectivity 
trace can be used to estimate the embedded static shift distribution function. For a trace 
consisting of the simple convolution of a reflectivity series and a short sequence of scaled 
static delay spikes, with no additive noise, the cross-correlation can perfectly extract the 
spike sequence. The cross-correlation is bandlimited by the mutual spectra of the input 
trace and pilot trace, however, and any noise present in the input time series degrades the 
resolution of the underlying spike sequence, the amount of degradation being inversely 
proportional to the bandwidth and to the S/N ratio. Hence, we seek an improved 
alternative to the cross-correlation as an event detector. 

The cross-bicorrelation function is a so-called “higher-order statistic” which 
decomposes the correlation between events on two time series into a two-dimensional 
correlation function, of which selected individual profiles may show better resolution 
between closely spaced or weak events than the conventional cross-correlation. 
Furthermore, the cross-bicorrelation function can be spectrally “normalized”, which 
increases its resolution further.  

Preliminary work shows that individual slices of the cross-bicorrelation function can, 
indeed have greater resolution than a cross-correlation. Selecting the appropriate slice of 
the function requires extra knowledge or interpretation, however, and the presence of any 
substantial amount of noise degrades the cross-bicorrelation function, reducing its 
advantage over the cross-correlation. The frequency-normalized cross-bicorrelation, 
however, appears to provide improved resolution; and there are tricks which may help to 
preserve this resolution in the presence of noise. 

INTRODUCTION 

Motivation—statics deconvolution 
Because of the nature of the transmission of seismic energy through the irregular near-

surface sediments, it is known that the conventional statics model whereby a seismic 
trace can be corrected for near-surface effects by application of a single static time shift is 
only approximately correct for most seismic data and quite inappropriate for some data 
sets. Under the conventional statics model assumptions, an uncorrected seismic trace can 
be regarded as having been convolved with a single time-shifted unit spike which 
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describes the single transmission delay of all seismic events through the surface 
weathered zone. In some near-surface settings, however, near-surface scattering can lead 
to an irregular pattern of energy arrivals along various neighbouring raypaths for any 
particular reflection. This motivates the extension of the single shift statics model to that 
of a seismic trace convolved with a small group, or distribution, of positive spikes, each 
with a slightly different shift. Each spike in this model represents the delay and signal 
strength along a particular raypath. This is the so-called “static distribution function” 
model. Such a model can simultaneously accommodate various raypath phenomena like 
multi-path transmission and interbed multiple reflection as well—anything that leads to 
the delayed reception of the basic reflection series at the geophone (see Fig. 1). Since 
there is no way to explicitly remove more than one time shift simultaneously from a 
seismic trace, we must consider the “distribution” of static shifts to be a wavelet to be 
removed from the seismic trace (Henley, 2004). Given a sufficiently accurate 
representation of the wavelet (or static distribution function), its effects can be removed 
from the seismic data via a match filter designed to convert the static distribution function 
to a single unshifted (but bandlimited) spike (see Fig. 2). This principle has been 
demonstrated on both model data and seismic field data (Henley, 2004). The key 
limitation of the method seems to be the accurate determination of the embedded static 
distribution function for each seismic trace. Methods tested thus far all rely on the cross-
correlation function computed between a given trace and either a neighbouring trace or a 
“pilot” or model trace of some kind. Although it can be modified by various ad hoc 
algorithms to more closely resemble a “distribution function”, the low inherent 
bandwidth of the cross-correlation limits the resolution of closely spaced (or low 
amplitude) “static spikes” convolved with a trace. This led us to explore alternative 
statistical methods for event detection. 

V1

V2

V1 >> V2 >> V3

S R1 R2 array

Raypath segments beneath surface points not vertical; no common static at each surface point 
Sources and receivers can be arrays, with different statics for each surface point in the array. 
Multiple raypaths possible between each source and receiver location (P1 and P2), due to buried 
velocity anomalies (V3)

Conventional statics assumptions violations

V3

P1 P2

 

FIG. 1. Schematic showing some circumstances that can lead to more than one static on a 
seismic trace. 
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The static deconvolution principle

 

FIG. 2. The static deconvolution principle demonstrated. A waveform, or short reflectivity 
sequence in a) is convolved with a series of five scaled positive spikes, or “statics”, in b) to yield 
the multi-shifted and smeared waveform in c), the input seismic trace. A bandlimited 
representation of the static distribution in d), as might be obtained from the trace c) using an 
unspecified correlation technique, is used with a bandlimited spike at zero time, in e), to derive a 
match filter in f). The match filter is applied to the seismic trace in c) to obtain the unshifted 
reflectivity sequence in g), which can be compared with the original input in h). If even an 
imperfect representation of the static distribution function b) can be obtained, for instance, the 
severely bandlimited version in d), the effects of the statics can be removed from the seismic 
trace. 

 

Higher-order statistics—the cross-bicorrelation function 
The standard cross-correlation function is one of a class of “second-order statistics”, 

so-called because it involves multiplication of input samples to only the second power. 
As stated by Lu and Ikelle (2001), second-order statistics define the limit of resolution for 
time series only if the time series are Gaussian processes. Seismic traces are, for the most 
part non-Gaussian, however, and their details may fruitfully be resolved using suitable 
statistics higher than second order. One such function is the cross-bicorrelation, which 
basically constitutes a simultaneous two-way correlation of one time series with another 
time series and itself. We can define the conventional cross-correlation of two input time 
series, ( )tx  and ( )ty , as 
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( ) ( ) ( )[ ]ττ += tytxErxy ,   (1) 

where [ ]E  is the expectation operator (in the discrete case, a normalized summation over 
the range of t ). The cross-bicorrelation between the same two time series is then defined 
by 

( ) ( ) ( ) ( )[ ]., 2121 ττττ ++= txtytxErxyx   (2) 

Each function has its corresponding Fourier transform, which in the case of the cross-
correlation function is the cross-spectrum, ( )ωxyP , defined as 

( ) ( ) ( )[ ]ωωω ∗= YXEPxy ,  (3) 

where ( ) ( )[ ]txFX =ω  is the Fourier transform of ( )tx  and ∗Y  is the complex conjugate of 
Y . For the cross-bicorrelation function, its Fourier transform is the cross-bispectrum, 

( )21 ,ωωxyxB , given by 

( ) ( ) ( ) ( )[ ]212121 , ωωωωωω += XXYEBxyx . (4) 

Following the usual conventions, auto-correlation, auto-bicorrelation, and various auto-
spectra can be defined simply by substituting the appropriate input time series and their 
corresponding indices. 

The cross-bicorrelation (Eq. 2) is a function of both 1τ  and 2τ , independent time shift 
variables. This means that the function itself forms a two-dimensional surface with 
various correlation peaks located at positions whose coordinates are discrete values of 

1τ and 2τ . These can be used to locate the particular events in the two input time series 
that contribute to the particular observed correlation peak. As well, the function can be 
summed (or projected) along either axis to yield a single one-dimensional output 
function. Summation over the variable 2τ  yields the autocorrelation of the input series 

( )tx , while summation over the variable 1τ  yields the cross-correlation of the two input 
time series. It should also be noted that there is a second, complementary cross-
bicorrelation function, ( )12 ,ττyxyr , in which the roles of the input time series ( )tx and 

( )ty are reversed. In this case, summation over 1τ  gives the autocorrelation of the input 
series ( )ty , while summation over 2τ  gives the cross-correlation of ( )ty and ( )tx . Hence, 
for example, 

( ) ( )∑=
1

212 ,
τ

τττ xyxxx rr , and  (5) 

( ) ( )∑=
2

211 ,
τ

τττ xyxxy rr .  (6) 

Spectral normalization, or “whitening”, can be used to extend the bandwidth of the 
correlation functions and hence potentially increase their resolution. To generate the 
normalized cross-correlation, ( )τγ xy , we start with the cross-spectrum ( )ωxyP , divide it 
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by the square root of the product of the individual auto-spectra, and take the inverse 
Fourier transform: 

( ) ( ) ( ) ( ){ }[ ]ωωωτγ yyxxxyxy PPPF 1−= .  (7) 

The normalized cross-bicorrelation, ( )21 ,ττγ xyx , is created in a similar way by dividing 
the cross-bispectrum by the auto-bispectrum, then inverse Fourier transforming: 

( ) ( ) ( )[ ]2121
1

21 ,,, ωωωωττγ xxxxyxxyx BBF −= . (8) 

The normalized cross-bicorrelation function can, like its unnormalized parent, be 
summed over either of its time indices to yield a whitened version of either the 
autocorrelation or the cross-correlation. The latter is similar to the better-known 
coherence function. 

IMPLEMENTATION 
The cross-bicorrelation function (Eq. 3) was coded in Fortran by A. Haase and tested 

in a rudimentary version on model data. Subsequently, the code was enhanced for use in 
the ProMAX package by D. Henley (2005), and the spectral normalization feature added. 
As a practical matter, since spectral division always carries the risk of instability due to 
the possible presence of very small amplitude values, a stability factor was inserted in the 
formula in equation 8: 

( ) ( ) ( ){ }[ ]λωωωωττγ += −
2121

1
21 ,,, xxxxyxxyx BBF , (9) 

where λ is a fractional additive constant scaled by the peak value of the auto-bispectrum, 
( )21 ,ωωxxxB . 

As implemented, the cross-bicorrelation function creates an output trace gather for 
each pair of input traces selected. The number of traces in the gather equals the number 
of time lags, n, specified by the parameters. The number of live samples in each trace of 
the output gather is also n, since the cross-bicorrelation function is a two dimensional 
function by definition.  

Figure 3 shows a bandlimited spike test model in which the first trace contains a single 
spike and all subsequent traces contain two spikes separated by increasing time delays. 
This model was used to demonstrate the utility of the cross-bicorrelation function for 
resolving closely spaced bandlimited events on seismic traces. 
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Bandlimited wedge spike model—8-12-55-70 Hz—spike 
separation 0 ms on trace 1, 20 ms on trace 41

0

240

480

m
s

Trace 1 Trace 25

 

FIG. 3. A model used for testing the resolution capabilities of the cross-bicorrelation function. The 
event separation on trace 25 is just visible for the bandwidth used. 

 First, however, we illustrate some features of the function. The cross-bicorrelation 
function displayed in Figure 4 has been computed using traces 1 and 25 of the input 
model. While this display is in the usual wiggle/var mode, the function can also be 
usefully displayed in grey-shade or colour contour mode, as in Figures 5 and 6, 
respectively. In each of the figures, the symmetric pattern of peaks and valleys constitutes 
a decomposition of the relationship between the two input traces in terms of the relative 
shifts between their individual events. By careful study of the two input traces, it is 
possible to determine exactly which events on each trace are responsible for each of the 
correlation peaks of their cross-bicorrelation function. 

A note on terminology: 
In what follows, the term “transpose” simply indicates that the cross-bicorrelation 

function displayed is the same as the “regular” function, except that the values have been 
reflected about the diagonal, and the τ2 axis is now the left axis of the plot, while the τ1 
axis is the top axis, rather than vice versa. 
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FIG. 4. The cross-bicorrelation function computed for traces 1 and 25 of the wedge model. The 
time shift variable τ1 denotes the relative shift between the two copies of trace 1, while the time 
shift variable τ2 denotes the relative shift between trace 1 and trace 25. The red line indicates the 
position at which the central autocorrelation profile is located; the green line marks the central 
cross-correlation profile, and the yellow line shows a possible choice for a profile through a 
secondary correlation peak. 
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FIG. 5. The cross-bicorrelation function for traces 1 and 25 of the wedge model displayed with a 
greyshade representation. 
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FIG. 6. The cross-bicorrelation function for traces 1 and 25 of the wedge model displayed in 
colour contour format. This representation best shows the relative heights of the various 
correlation peaks. 

INTERPRETATION METHODS 

“Slice” methods 

While the individual peaks in the cross-bicorrelation function can help identify the 
location and relative timing of contributory events, there are other ways in which to use 
the function for interpretation. The ones to be considered here can be classed according to 
two broad categories; “slice” methods, and “summation” methods. In the former, a single 
correlation profile, or “slice” is extracted from the 2-D cross-bicorrelation function along 
a trajectory defined in terms of the time lag coordinate axes. The “summation” methods, 
however, are characterized by a summation, along a specified direction, of some or all of 
the cross-bicorrelation function, both the summation trajectory and length being defined 
relative to the independent time lag coordinates of the function. 

As an obvious example of profile extraction, consider the cross-bicorrelation function 
shown in Figures 4-6. If we extract and replicate the curve parallel to the 1τ axis but 
passing through the centre (0,0) of the time lag axes, the result is shown in Figure 7; 
whereas the curve parallel to the 2τ axis passing through (0,0) is as shown in Figure 8. In 
the first case, the curve resembles the autocorrelation of trace 1 of the bandlimited spike 
model of Figure 3; while in the second, the curve resembles the cross-correlation of 
traces 1 and 25. In fact, both of these curves are more sharply peaked (more highly 
resolved) than the actual cross-correlation or autocorrelation functions, and on these 
noiseless model data, might actually be preferable for analysis purposes. In a similar 
fashion, we can select curves from the cross-bicorrelation function parallel to either of the 
time lag axes, but passing through a specific correlation peak, instead of the time lag 
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origin. Such curves can be used in an interpretive sense to highlight the correlation of 
relatively minor events in the input traces while de-emphasizing the more major 
correlations. Such a curve, replicated, is shown in Figure 9. Note here the relatively low 
correlation side lobes around the zero lag origin of this curve. 

-100
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s

τ1

Central profile of the cross-bicorrelation function in Figure 4

 

FIG. 7. This is the central profile (or trace) of the cross-bicorrelation function in Figure 4, 
repeated. Since it runs parallel to the τ1 direction, it is similar to the autocorrelation function; and it 
might properly be termed a “marginal” autocorrelation function. 
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Central profile of the transpose of the cross-bicorrelation
function in Figure 4

 

FIG. 8. This is the central profile of the transpose of the cross-bicorrelation function in Figure 4, 
repeated. Since it runs parallel to the τ2 direction, it is similar to the cross-correlation function. 
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Off-centre profile of the transpose of the cross-bicorrelation
function in Figure 4  

FIG. 9. This repeated profile corresponds to the off-centre position indicated in Figure 4 and is a 
subsidiary correlation within the overall cross-bicorrelation function. 
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FIG. 10. The transpose of the cross-bicorrelation function in Figure 6 (note the interchange of τ1 
and τ2 on the axes) has been remapped along trajectories of constant slope to change the 
alignment of the various correlation peaks. 

The correlation peaks of the cross-bicorrelation function in Figure 6 may not be 
uniform in cross-section. This means that a profile extracted from the cross-bicorrelation 
function perpendicular to the long axis of a given correlation peak may have a narrower 
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peak profile than one extracted parallel to this axis, and may thus show greater resolution 
of individual correlations. To assist in extracting a profile along a sloping trajectory, the 
samples of the cross-bicorrelation function can be “remapped” parallel to the desired 
trajectory. Figure 10 shows the example cross-bicorrelation function with its samples re-
mapped parallel to the slanted trajectory shown in Figure 6. Extraction and replication of 
the profile parallel to the new axis and through the origin results in Figure 11. Comparing 
with Figure 7, however, it can be seen that the event resolution is unchanged with this re-
oriented function, relative to the original. This means that in this particular case, contrary 
to appearances in Figure 6, the correlation peaks are apparently uniform in cross-section.  

-100
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s

τ2

Central profile of the transpose of the remapped cross-
bicorrelation function in Figure 10  

FIG. 11. The repeated central profile of the remapped transpose cross-bicorrelation function in 
Figure 10. Re-orienting the function has had little effect on the central profile. 

“Summation” methods 
Profile extraction can be used to analyze the details of correlation between the events 

on two input traces. However, there is no way to determine, a priori, which events on an 
input trace are legitimate signal and which may be additive random noise, except possibly 
to arbitrarily ignore correlation peaks in the cross-bicorrelation function smaller than a 
particular threshold. For this reason, summation methods can be useful in extracting the 
signal information from the cross-bicorrelation function. The simplest of these methods is 
simply to “project”, or sum the entire cross-bicorrelation function parallel to one of its 
time lag axes. When the summation is parallel to the 1τ axis, the result is the cross-
correlation of the input traces; and when the summation is parallel to the 2τ  axis, the 
autocorrelation of input trace 1 results. Figures 12 and 13 show the replicated 
summations along each of these two axes, respectively, for the cross-bicorrelation 
function in Figures 4-6. Comparing with Figures 7 and 8, we can see that the 
“projections” have different side lobes, from the summation of minor correlations, than 
the single extracted profiles, but similar resolution. Surprisingly, the re-mapping of the 
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cross-bicorrelation function as in Figure 10, and its projection, as in Figure 14, yields a 
function which exhibits better resolution than the projection of the original function in 
Figure 12. However, the side lobes are higher, reflecting the effects of constructive 
interference of the remapped subsidiary correlation peaks on the summation.  

Another summation technique which will be demonstrated later is that of partial 
summation, or weighted mixing, which is particularly useful for noisy data. While a 
projection collapses the cross-bicorrelation function into a single profile, another 
summation operator, the weighted partial sum, “running sum”, or “mixing” operation 
preserves larger features while smoothing out or cancelling smaller features which may 
be manifestations of random noise correlations. In this method, a mixing or smoothing 
step is applied along the axis perpendicular to the desired profile trajectory in order to 
smooth out fluctuations in the cross-bicorrelation function. Extraction of the desired 
single profile then preserves most of the correlation resolution while being less affected 
by noise correlation. 

Operationally, the mixing operation can be applied using various smoothing lengths 
and trace weighting functions; and it can be applied along any axis through the cross-
bicorrelation function. The single curve required for interpretation can then be extracted 
along a particular trajectory as described above. 

Spectral normalization 

Spectral normalization, as defined by Eq. 9, can lead to sharper and better defined 
correlation peaks in the cross-bicorrelation function, but at the risk of creating more 
spurious side lobes unrelated to legitimate time series events. Figure 15 shows the 
normalized cross-bicorrelation function for model traces 1 and 25, and Figure 16 displays 
its “cross-correlation” projection, which exhibits slightly greater resolution than the 
projection of the un-normalized function in Figure 14. However, if we remap the function 
along a slope aligned with the major axes of its major correlation peaks before projecting 
it, we get a much better resolved “coherence” function in Figure 17. On the other hand, 
the subsidiary correlation peaks also sum constructively to give increased background 
side lobes. In this case, if we extract the central profile of the remapped function instead 
of projecting the function, we get the result in Figure 18, with much reduced side lobes, 
and with better resolution than the projected normalized cross-correlation in Figure 16. 
Figures 17 and 18 both indicate that remapping the normalized cross-bicorrelation 
function is beneficial, due to the apparent elongation of the cross-section of the 
correlation peaks in Figure 15. Hence, while a cross-bicorrelation function in its 
unnormalized form may have nearly circular peak cross-sections, the normalized form 
may exhibit elongation of those cross-sections due, probably, to a different amount of 
whitening with respect to each of the function axes. 
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FIG. 12. Projection or summation of the cross-bicorrelation function in Figure 4 parallel to the τ1  
axis. This is the full cross-correlation function. 
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FIG. 13. Projection or summation of the cross-bicorrelation function in Figure 4 parallel to the τ2 
axis. This is the full autocorrelation function. 
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FIG. 14. The cross-correlation function obtained by projecting the remapped cross-bicorrelation 
function in Figure 10. 

-50 500 ms

-50

50

0

m
s

Transpose Cross-bicorrelation function of traces 1 and 25 of 
Figure 3 with spectral normalization applied.

τ2

τ1

Slope for remapping

 

FIG. 15. This transpose cross-bicorrelation function has been spectrally normalized to increase its 
resolution. Note that the energy in the function has been greatly concentrated at the two central 
peaks. 
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FIG. 16. Cross-correlation function projected from the normalized cross-bicorrelation function in 
Figure 15. The summation has reduced the apparently greater resolution. 
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FIG. 17. Cross-correlation function projected from the cross-bicorrelation function remapped 
along a slope indicated in Figure 15. The resolution of the event correlations is greater, but so is 
the constructive interference of the subsidiary correlation peaks. 

. 



Henley and Haase 

16 CREWES Research Report — Volume 17 (2005)  

-100

0

100

m
s

τ2

Central profile of the remapped normalized transpose cross-
bicorrelation function  

FIG. 18. Choosing the central profile of the remapped normalized cross-bicorrelation function 
leads to higer resolution as well as reduced background interference. 

Bandlimited wedge spike model—8-12-55-70 Hz—spike 
separation 0 ms on trace 1, 20 ms on trace 41. Random 
noise  rms S/N = 2.0
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FIG. 19. Bandlimited spike wedge model with random noise added prior to bandlimiting—the rms 
S/N = 2.0. 
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Bandlimited wedge spike model—8-12-55-70 Hz—spike 
separation 0 ms on trace 1, 20 ms on trace 41. Random 
noise  rms S/N = 1.0
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FIG. 20. Bandlimited spike wedge model with added random noise—rms S/N = 1.0. 

MODELS WITH NOISE 
In order to further explore the resolving potential of the cross-bicorrelation function, 

the function was generated for the same trace pair previously chosen from the synthetic 
wedge model. Here, however, bandlimited additive noise was introduced to the model at 
two different S/N levels to investigate the effects of noise on the various correlation 
function techniques described previously. Figure 19 shows the bandlimited spike wedge 
model of Figure 3, except that white random noise with rms S/N of 2.0 has been added to 
the traces before application of the bandpass filter. The same model with rms S/N of 1.0 
is shown in Figure 20. As in our previous results with noiseless data, traces 1 and 25 were 
used to illustrate the differences in resolution for the different coherent measures for the 
chosen bandlimits. In Figures 19 and 20 it can be seen that the additive noise significantly 
impacts the amplitudes of the model spikes, and hence is expected to degrade the 
resolution of coherence measures. 

S/N level 2.0 
Figures 21 and 22 show the regular and normalized cross-bicorrelation functions for 

the spike model with S/N = 2.0. The presence of noise is immediately apparent in the 
many new correlation peaks in both functions, although those in the normalized function 
appear to have lower amplitude relative to the main signal correlation peaks than those in 
the regular function. Because the amplitudes of the model spikes have themselves been 
altered by the additive noise, it becomes a little less clear which peaks in the cross-
bicorrelation function are the signal-related ones.  
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FIG. 21. Cross-bicorrelation function of traces 1 and 25 of the model shown in Figure 19. 
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FIG. 22. Normalized cross-bicorrelation function of traces 1 and 25 of the model in Figure 19. 

Figure 23 shows the central correlation curve extracted from the bicorrelation function, 
while Figure 24 shows the cross-correlation obtained from the projection of the function 
along the 1τ axis, for comparison. Figures 25 and 26 show the equivalent correlation 
curves for the normalized cross-bicorrelation function in Figure 22. In this case, similar 
to the results for the noiseless case, the extracted central profile is better resolved than the 
projection, or cross-correlation. Remapping along a slope, however, contrary to the 
noiseless results, seems to give no improvement in resolution, as shown in Figure 27. 
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 We hypothesized that partial summation methods would be most useful on noisy data, 
providing more resolution than a full projection and more noise cancellation than single 
profile extraction. We applied a weighted trace mix to the cross-bicorrelation function in 
Figure 21. Figure 28 shows the cross-bicorrelation function of figure 21 after a weighted 
trace mix of 21 traces with triangular weights. The central profile of this smoothed 
correlation is shown in Figure 29. A similar display for the remapped cross-bicorrelation 
function appears in Figure 30. Here, the remapping appears to have improved the 
function resolution, probably because of a favorable reorientation of smaller correlation 
peaks prior to the mixing operation. Figure 31 shows the smoothed normalized cross-
bicorrelation, and Figure 32 the central profile of this smoothed function. Normalization 
and partial summation methods both seem to provide modest improvements to the 
resolution of the cross-bicorrelation function when used on these mildly noisy data. 
Applying both in tandem does not necessarily provide incremental improvements, 
however. 
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FIG. 23. Central profile of the cross-bicorrelation function in Figure 21 
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FIG. 24. Projection of the cross-bicorrelation function in Figure 21—the cross-correlation function. 
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FIG. 25. Central profile of the normalized cross-bicorrelation function in Figure 22. 
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FIG. 26. Projection of the normalized cross-bicorrelation function in Figure 22—the cross-
correlation function. The function appears less well resolved than the central profile in Figure 25. 
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FIG. 27. In this case, remapping the normalized cross-bicorrelation function does not improve 
resolution. 
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FIG. 28. Cross-bicorrelation function smoothed laterally with 21 point triangular smoothing. 
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FIG. 29. Central profile of the smoothed cross-bicorrelation function in Figure 28. Compare with 
Figure 23. 
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FIG. 30. Remapping before smoothing appears to improve the resolution of the cross-
bicorrelation function, probably due to reorientation of subsidiary peaks. 
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FIG. 31. Normalized cross-bicorrelation function for noisy wedge model in Figure 19 after 21 point 
weighted lateral smoothing. 
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FIG. 32. Central profile of the smoothed normalized cross-bicorrelation function in Figure 31. In 
this case, smoothing yields little improvement. Compare with Figure 25. 

S/N level 1.0 
Although signal is still easily visible on most of the model traces in Figure 20 when 

the S/N is unity, we find that attempts to increase resolution by selecting appropriate 
correlation curves from the cross-bicorrelation function shown in Figure 33 are defeated 
by the noise. In this case, the projection of the function, or full cross-correlation is 
probably the best that can be done. The normalized cross-bicorrelation function and 
corresponding projected cross-correlation function are shown in Figures 34 and 35, 
respectively. In this case, the whitening of the result, as well as the summation, appear to 
improve the resolution marginally. Nearby interference peaks are higher than the 
principal correlations, however, so interpretation of the results becomes ambiguous. 
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FIG. 33. Cross-bicorrelation function for noisy wedge model in Figure 20. 
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FIG. 34. Normalized cross-bicorrelation function for noisy wedge model in Figure 20. 
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FIG. 35. Projection of the normalized cross-bicorrelation function in Figure 34. Subsidiary peaks 
are comparable to or larger than primary correlation peaks in this cross-correlation.  

SUMMARY OF RESULTS 
While it may be useful in detailed analysis of two input time series, the cross-

bicorrelation function, one of a family of so-called “higher order statistics” seems to be 
limited in its utility for increasing the detection resolution of individual events in seismic 
traces because of its sensitivity to noise. We have two sets of observations on the 
performance of the function, depending upon whether the input traces are contaminated 
with noise or not: 

Noise-free data 

• On noise-free data, the individual correlation peaks can be used to analyze the 
specific correlations between isolated spikes on the input traces 

• Individual correlation profiles selected from the cross-bicorrelation function 
may show better resolution than the regular cross-correlation created by the 
projection of the cross-bicorrelation function parallel to one of the time lag 
axes. 

• The normalized cross-bicorrelation function has greatly enhanced resolution of 
individual correlations within the bicorrelation, depending upon the stability 
factor used in the computation. 

• The spectrally normalized cross-correlation function projected from the cross-
bicorrelation function will usually show enhanced resolution with respect to 
the cross-correlation. 

• Re-mapping the cross-bicorrelation function along a slope defined by the 
alignment of the major axes of correlation peaks can result in enhanced 
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resolution of the coherence function, due to fortuitous cancellation of aligned 
correlations and anti-correlations. 

Noisy data 
The presence of even a modestly realistic level of noise consistent with the type of 

noise present on seismic data (additive bandlimited random noise) seems to degrade the 
performance of the cross-bicorrelation with respect to resolution improvement. However, 
for modestly noisy data: 

• Partial summation or weighted mixing followed by single profile extraction 
provides modestly improved event resolution compared to the standard cross-
correlation 

• The spectrally normalized cross-bicorrelation function provides improved 
event resolution as long as the required stability factor is relatively small (the 
larger the stability factor, the less the whitening). 

• Remapping of the cross-bicorrelation function can still improve resolution 
results, as long as subsidiary peak realignment does not lead to increased 
constructive interference. 

For very noisy data, the only resort may be collapsing the cross-bicorrelation function to 
the standard cross-correlation function. Even in this case, however, the options exist to 
remap the function or to weight the summation as a way to improve resolution or reduce 
side lobe energy; options that are not available when computing the cross-correlation 
from the usual formula (Equation 1).  

CONCLUSIONS 
This report has demonstrated the use of a so-called “higher order statistic” to analyze 

event correlation between two time series. This statistic, the cross-bicorrelation function, 
has been tested on a synthetic model, both with and without added noise. Preliminary 
results indicate that there are several techniques which may be used with the cross-
bicorrelation function to improve the resolution of individual events on input time series 
traces. It is not clear at this early stage, however, whether there is a universal technique, 
using the cross-bicorrelation function, which can consistently lead to significantly 
improved extraction of a “static distribution function”, the ultimate goal of this 
investigation. Further work is required, particularly with real data rather than models. 
One advantage of computing the cross-bicorrelation function is that the resulting 
decomposed correlation has components which can be weighted or otherwise modified 
prior to projection of the function to form the cross-correlation. 
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