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Charles P. Ursenbach and Arnim B. Haase 

ABSTRACT 
Spherical-wave reflection coefficients are normally calculated using a zero-phase 

wavelet. The purpose of this study is to clarify whether phase affects reflectivity, and to 
explain the observed results. Numerical experiments show that zero-phase, rotated-phase, 
and linear-phase wavelets give identical reflectivities, but that minimum-phase wavelets 
give slightly different AVO results in a region beyond the critical angle, even though they 
share the same amplitude spectrum. Expressing the reflectivity calculation as a weighted 
integral of plane-wave coefficients provides insight into these results. The weighting 
functions for zero- and minimum-phase wavelets differ from each other. In particular, 
although the central part of the weighting does not differ appreciably, the edges differ 
significantly in ways that mimic the differences between reflection coefficient curves. 

INTRODUCTION 
Previous studies of spherical-wave AVO behavior (Haase, 2004) have shown the need 

for spherical-wave modeling near critical points. In these studies we have employed three 
different wavelets to date: Ormsby, Ricker, and Rayleigh.  In all cases these were zero-
phase, which is the simplest form of a wavelet, and is relevant to many cases of AVO 
modeling and inversion. 

However, the question arises whether the phase has an influence on the reflectivity. 
Intuition might suggest that the calculated reflectivity is independent of phase because of 
two techniques employed in our methods:  1) The reflection coefficient is calculated from 
the envelope of the trace, so that instantaneous phase does not enter in. However, this 
does not necessarily proscribe a role for the spectral phase.  2) The reflection coefficient 
is normalized by the amplitude of a wave reflected in the same manner but with a plane-
wave coefficient of unity.  Thus phase contributions in the numerator and denominator 
could cancel; but strictly speaking this would only occur if they can be taken outside of 
integrals in both cases.  If the phase is frequency dependent this would not be the case, so 
the question is reasonable to pose. 

As described in this report, we approach the question as follows: 

1. Develop a computer code for calculating spherical-wave reflection coefficients 
with non-zero phase wavelets. 

2. Produce an appropriate set of test wavelets. 

3. Produce reflection coefficient curves. 

4. Analyze the results. 
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THEORY 
As described elsewhere, a code developed by Haase (2004) calculates spherical-wave 

reflection coefficients by performing a numerical p-integration to obtain the ray-parallel 
displacement spectrum of Equation 1 at several frequency points: 

 ray( ) ( )U ω φ ω= ⋅∇r  (1a) 
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Here ω is the frequency, rray is a unit vector in the ray direction at the receiver, φ is the 
spectrum of the displacement potential, A is an arbitrary scale factor, t is the time, p and 
ξ1 are horizontal and vertical slownesses above the interface, RPP is the plane-wave 
reflection coefficient, J0 is a zeroth-order Bessel function, r is the source-receiver offset, 
and z and h are the vertical distances from the interface to the receiver and source. 

Given the displacement spectrum, a time-trace can be obtained by multiplying by the 
wavelet spectrum and integrating over frequency, and from this trace the maximum of the 
envelope yields a reflectivity estimate.  This is converted to a reflection coefficient by 
dividing by an estimate employing RPP = 1. 

The current program based on equation 1 was modified to accept complex-valued 
wavelet spectra. 

We have previously put forward an alternate approach to calculating spherical-wave 
reflection coefficients (Ursenbach and Haase, 2004).  This requires the use of Rayleigh 
wavelets and involves analytic integration over the frequency prior to the p-integration.  
The only phase forms which are consistent with this analytic integration are constant 
phase and linear phase.  As shown below, these yield reflection coefficients identical to 
those obtained with zero-phase wavelets.  Developing this type of program is therefore 
not of interest in the study of non-zero phase wavelets. 

One result of the Rayleigh-wavelet approach is however useful here.  The final result 
of that method is that spherical-wave reflection coefficients can be written 

 spherical
PP PP( ) ( , ; wavelet) ( ) (cos )i iR W R dθ θ θ θ θ

Γ
= ∫  (2) 

where θi is the angle of incidence, θ is an integration parameter [where d(cosθ)=–

α1(p/ξ1)dp, and α1 is P-wave velocity above the interface], Γ is a complex integration 
path, and W is a normalized weighting function which depends on wavelet parameters.  
For Rayleigh wavelets W is an analytic function.   

In principle, the spherical-wave reflection coefficient for any wavelet can be written in 
the form of equation 2.  The only difference is that in general W is not known 
analytically.  It can be represented numerically, though, and as this will be useful in our 
later analysis, we give the expression for this in equation 3 (derived in the appendix), 
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where w is the wavelet spectrum, 2 24R r z≡ +  is the  reflected ray distance from source 
to receiver, and tshift is the time of the envelope maximum for a wavelet at t = 0 (i.e., tshift 
= 0 for all zero-phase wavelets). Thus we have substituted t in equation 1b with the 
estimated time of arrival of the envelope maximum, namely R/α1 + tshift. 

As indicated above, equation 3 will assist in analyzing the results of this paper. 

RESULTS 
Equation 1 is applied to the calculation of spherical-wave reflection coefficients. All 

calculations are based on an earth model specified by the parameters in Table 1. The 
interface is defined to be 500 m below both the source and receiver. The only further 
information required for a calculation is a wavelet specification. 

Table 1. Two-layer, elastic interface model employed in calculations. 

 Density (kg/m3) P-wave velocity (m/s) S-wave velocity (m/s) 

Layer 1 2400 2000 879.88 

Layer 2 2000 2933.33 1882.29 

 

Six wavelets are employed for six different calculations. Four are Ormsby wavelets, 
each with a trapezoidal band defined by the parameters 5/15-80\100 Hz, and two are 
Rayleigh wavelets defined by the parameters n = 4 and f0 = 40 Hz. In detail they are 

1. Zero-phase Ormsby (φ(ω) = 0°) 

2. Constant-phase Ormsby (φ(ω) = 60°) 

3. Linear-phase Ormsby (φ(ω) = ω /10s-1) 

4. Minimum-phase Ormsby 

5. Zero-phase Rayleigh 

6. Minimum-phase Rayleigh 

The constant- and linear-phase wavelets (2 and 3) are generated from zero-phase by 
multiplying the spectra by the necessary factors. The minimum-phase wavelets (4 and 6) 
are generated from their zero-phase analogues using the CREWES MATLAB toolbox 
routine tomin. The spectra of the wavelets, along with their amplitudes, are shown in 
Figure 1. 
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FIG. 1: The spectra of wavelets used in spherical-wave reflection coefficient calculations. The 
blue line shows the real part, the red the imaginary part, and the dotted black line the envelope 
(or zero-phase wavelet). In detail they are a) minimum-phase Ormsby, b) constant-phase 
Ormsby, c) linear-phase Ormsby, and d) minimum-phase Rayleigh. 

a) 

b) 

c) 

d) 
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In Figure 2 we compare the four spherical-wave reflection coefficients resulting from 
use of wavelets 1 through 4. Not all lines are visible, and this is because the results for 
zero-, constant- and linear-phase wavelets are identical. The result for the minimum-
phase wavelet is somewhat different however. The ripples typically seen in the post-
critical region for the zero-phase wavelet are now absent, and instead there is a smooth 
approach to the plane-wave result. 

 

 

FIG. 2: Spherical-wave reflection coefficient curves for four different Ormsby wavelets which 
share the same amplitude spectrum but differ in phase. The blue and black curves are identical to 
and hidden by the green line. 

In Figure 3 we compare the two Rayleigh wavelet results. In this case the zero-phase 
wavelet does not produce oscillatory post-critical behavior, but differences still exist in 
this region.  
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FIG. 3: Spherical-wave reflection coefficient curves for two different Rayleigh wavelets which 
share the same amplitude spectrum but differ in phase. 

DISCUSSION 
The results show clearly that spherical-wave reflection coefficients beyond the critical 

angle do depend on phase specification. The changes do not affect the overall shape of 
the reflectivity curve, but do modify its behavior in this post-critical region. 

To understand this difference in behavior, we can look at the weighting functions, 
which, for general wavelets, are given by equation 3. In Figure 4 we show the weighting 
functions for the zero-phase and minimum-phase Ormsby wavelets. The angle of 
incidence is specified as θi = 40° and the function is plotted against the integration 

parameter θ. The main central lobes of the real (a) and imaginary (b) parts are similar for 
the two wavelets, but the tail regions are more extended and oscillatory for the zero-phase 
wavelet. In Figure 5 we show the same functions but for the Rayleigh wavelet. In this 
case, there is again more difference in the tails, but neither is markedly extended beyond 
the other. 
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FIG. 4: Weighting functions for Ormsby wavelets calculated using equation 3. The red line 
represents the result using a minimum-phase wavelet, and the black line the zero-phase. Real 
components are shown in a) and imaginary components in b). 

 

FIG. 5: Weighting functions for Rayleigh wavelets calculated using equation 3. The red line 
represents the result using a minimum-phase wavelet, and the black line the zero-phase. Real 
components are shown in a) and imaginary in b). 

We note that the main lobe is similar for both the Ormsby and Rayleigh wavelets. This 
part of the function is likely determined by the average frequency, which is 50 Hz for 
both wavelets. We show in Figure 6a the variation of |W | with f0, and in Figure 6b the 
variation with n, for Rayleigh wavelets in both cases. This shows that the lobe height is 
most strongly influenced by f0, and that the influence of n is mostly on the wings. 
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FIG. 6: The envelope of the weighting function W for Rayleigh wavelets. a) Variation with f0 (with 
n = 4). b) Variation with n (with f0 = 40 Hz). Note that both parts have the same vertical scale 

We have seen in another report in this volume (Ursenbach & Haase, 2006) that 
extended, oscillatory tails in the weighting function are associated with post-critical 
oscillations in the reflectivity curve, both for monochromatic waves, and for narrow-band 
Rayleigh wavelets. In this present study all the wavelets considered are reasonably wide-
band, but one of them, the zero-phase Ormsby, has notably sharp slope discontinuities. 
Thus smooth, wide-band wavelets appear to yield spherical-wave reflection coefficients 
which sample a compact range of plane-wave reflection coefficients, while wavelets with 
narrow or jagged bands sample a wider range of plane-wave coefficients and do so less 
smoothly. 

CONCLUSIONS 
Spherical-wave reflection coefficients can vary with wavelet phase, even if the 

amplitude is held constant. Constant-phase and linear-phase results do not differ from 
those for zero-phase, but minimum-phase wavelets do yield different reflection 
coefficients in a region just above the critical angle. The overall trend of the reflectivity 
curve is not affected, so that the differences may not be critical in applications to seismic 
exploration. 

Spherical-wave reflection coefficients are weighted integrals of plane-wave reflection 
coefficients, and the differing results described above result from different weighting 
functions. Thus the formulation of spherical-wave reflection coefficients in terms of 
weighting functions helps to provide insight into post-critical behavior. 
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APPENDIX 
From equation 1 and the subsequent discussion we begin by writing the spherical-

wave reflection coefficient as 
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Setting t = R/α1 + tshift, and reversing the order of integration yields 
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Finally we change the variable of the p-integration to cosθ. Thus the differential (p/ξ)dp 

becomes [–d(cosθ)/α1], and W may then be extracted by comparison with equation 2. 

 


