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Seismic modeling of acid-gas injection in a deep saline reservoir 

Charles P. Ursenbach and Donald C. Lawton 

ABSTRACT 
A number of projects involve the injection of acid gas into non-commercial reservoirs 

as a means of disposal. Acid gas removed from natural gas is composed of carbon 
dioxide, hydrogen sulfide, methane, and other residual gaseous hydrocarbons. It may also 
contain water, but this is often removed prior to acid-gas injection.     

A case is studied of non-aqueous acid gas injection into a saline dolostone reservoir. 
Seismic monitoring of an injection plume requires knowledge of acid gas acoustic 
properties, and for a non-aqueous acid gas these can be calculated using the Peng-
Robinson equation of state. Gassmann’s equation can then be used to describe fluid 
substitution, if the assumptions of Gassmann’s equation are valid. However the 
assumption that fluids do not interact with the rock matrix must be considered carefully 
in view of the acidity of the injected fluid, particularly for carbonate rocks. Studies have 
not yet clarified the rate of reaction of acid gas with carbonate rocks. However, a mineral 
such as dolomite will react more slowly than calcite, and it is therefore reasonable to 
assume that substantial reaction will occur on a longer time scale than the early stages of 
injection. This would justify using the standard Gassmann’s equation to monitor initial 
injection progress.  

The feasibility of monitoring is judged by the sensitivity of traveltimes and reflection 
coefficients to fluid substitution. Using acid-gas properties from the Peng-Robinson 
equation of state and fluid substitution effects from Gassmann’s equations, the traveltime 
difference is seen to be on the order of a quarter millisecond for each 10 m thickness of 
the acid-gas plume for average dolostone properties, and up to a half millisecond for 
softer dolostones. Minor changes in reflection coefficient are also observed, but full 
analysis with well logs would be required for a useful assessment of this effect. 

INTRODUCTION 
Carbon dioxide (CO2) and hydrogen sulfide (H2S) are common byproducts of the 

energy industry. A course of remediation which is being explored is to sequester them in 
subsurface reservoirs. Deep saline reservoirs are one attractive target. Acid gas injection 
is becoming a method of choice (as a replacement for flaring) at smaller gas wells where 
it is not economical to build traditional facilities for scrubbing. For such injection 
programs to work it would be desirable to track the progress of the injection plume via 
seismic monitoring. To study the feasibility of monitoring, one should first carry out 
modeling studies of fluid substitution, to gain insight into the ability of the seismic 
method to distinguish pre- and post-injection states of the reservoir medium. The purpose 
of this study is to carry out fluid substitution calculations for the modeling of an injection 
process. 

Seismic fluid substitution modeling is commonly based on the Gassmann equation, 
which requires knowledge of density and moduli for the rock matrix and for its fluid 
contents, both before and after injection.  It also rests upon certain assumptions, and in a 
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non-standard application such as this it may be important to revisit the validity of some 
assumptions. In particular it is important to consider whether there is interaction between 
fluid and rock matrix, which is assumed to be absent in the Gassmann formulation. At 
least two types of interaction with acidified fluids are conceivable: dissolution of 
carbonate minerals, and precipitation of carbonates in the presence of basic 
aluminosilicate minerals (Holloway, 2007). The case we will consider involves the 
carbonate mineral dolomite, which could then undergo dissolution. This would occur at a 
slower rate than, say, calcite, and we assume in this initial study that this process will 
occur on a longer time scale than the injection program, in which case the non-interaction 
assumption would be valid for the present study.  This question would of course be more 
significant in monitoring long-term storage than in monitoring the initial injection. 

In studying fluid substitution it is also important to know in what manner the native 
and injected fluids interact.  Three possible modes are displacement (in which the flooded 
region contains 100% injected gas), heterogeneous mixing (which results in a patchy 
mixture of native and injected gases), and dissolution (in which the two fluids are mixed 
to form a new homogeneous fluid). Holloway (2007) suggests that the time of dissolution 
could be on the order of a few thousand years, so we will not consider this mode. For 
simplicity we will assume a model in which brine is initially wholly displaced by acid gas 
in the injection process, and will defer consideration of patchy mixing to a future study. 

PROBLEM STATEMENT 
Given information on a deep saline reservoir, and on an injected acid gas, we wish to 

carry out fluid substitution calculations in order to assess whether surface seismic may be 
feasibly used to monitor progress of the injection plume. 

The following information is given: For the reservoir we know temperature, pressure, 
porosity, and general lithology. We also know the salinity of the pre-existing brine. We 
do not know exact thickness and do not possess well logs.  For the acid gas we know 
composition (including that it is non-aqueous). A typical set of known information is 
given in Table 1. 
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Table 1. Known parameters relating to fluid injection problem. 

Reservoir Parameters Acid Gas Parameters 

Temperature 40°C Composition (mole fraction):  

Pressure 9465 kPa        Carbon dioxide (CO2) 0.745 

Porosity 0.10        Hydrogen sulfide (H2S) 0.193 

Lithology Dolostone        Water (H2O) 0 

Salinity 120,000 ppm       

Thickness estimate 8 – 30 m          

 

The above information represents one case of interest that will be used for 
concreteness; however this report is more concerned with developing methodology that 
may be applied or adapted to a variety of acid-gas injection scenarios. 

PROPOSED METHOD 
Given the information above, the general approach to this problem will consist of the 

following steps: 

1) Determine acoustic properties (at reservoir temperature and pressure) of 
relevant fluids. Normally for the present case this would consist of only the 
pre-existing brine and the injected acid gas, but as we will see, in this instance, 
the properties of non-saline water will be required as well.  

2) Obtain elastic properties of the reservoir rock for some reference saturated 
state, and the elastic properties of the mineral(s) comprising it. Normally the 
reference state would be the original brine-saturated state, but because of the 
absence of well logs, we will choose the water-saturated state as a reference, as 
we can estimate its elastic properties from existing literature. 

3) Determine the change in reservoir elastic properties due to fluid substitution 
via Gassmann’s equation.  

We will consider each of these steps in detail 

Determining fluid properties 
Three fluids are of interest in this case, water, brine and non-aqueous acid gas. 

Properties of water and brine 

The acoustic properties of water and brine (i.e. density and P-wave velocity) are 
readily determined from available empirical relations, if the salinity of the brine is known 
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and is due to the species NaCl. These expressions are available, for instance, in Batzle 
and Wang (1992) or Mavko et al. (1998). 

Properties of acid gas 

Acid-gas, while a key player in refining operations, has not been much on the 
exploration or development radar before now.  Thus its acoustic properties have not been 
well-investigated.  We will therefore describe in detail the method employed for 
calculation of these properties. 

A variety of approaches are possible for calculating properties of acid gas.  We follow 
the recommendation of Carroll (2002a) who has shown that the Peng-Robinson equation 
of state (Peng and Robinson, 1976) provides an adequate description of non-aqueous acid 
gas. If water is present, then further modifications are required (Carroll, 1992, 2002b).  
The presence of water in acid gas adds the additional complication that CO2, H2S and 
CH4 all form solid hydrates (Carroll, 1998). The system we consider here involves only a 
non-aqueous acid gas. 

An equation of state is typically expressed as P = P(T,v,{xi}), where P is pressure, T is 
temperature, v is molar volume, and xi is the mole fraction of the ith species. In detail the 
Peng-Robinson equation of state is written 

 
( )

( ) ( )
RT a TP

v b v v b b v b
= −

− + + −  (1) 

where the constant b and the temperature-dependent function a(T) are defined in 
Appendix A. 

Given T, v and {xi} it is straightforward to calculate P from equation 1.  In this application 
however we begin with T, P and {xi} and seek to calculate the density (ρ) and the bulk modulus 
(K). From these we can also calculate the speed of sound (VP). The procedure for doing this is 
described by Batzle and Wang (1992) and is outlined in Figure 1. We describe below each of the 
steps in Figure 1 in more detail. 
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FIG. 1.  A flow diagram outlining the procedure for obtaining fluid acoustic properties from a P-V-
T equation of state. The composition, {x i}, is assumed to be held constant in all differentiations 
and integrations.  

1) Molar volume – Equation 1 can be solved for v by rearranging it into a cubic 
equation and applying standard solution methods (e.g. Press et al., 1988).  

 3 2 2 2( ) [ ( ) 3 2 ] [ ( )] 0Pv Pb RT v a T Pb RTb v b Pb RTb a T+ − + − − + + − =  (2) 

A cubic equation possesses either one or three real solutions.  If there is one solution, 
then the acid gas is either gas, liquid, or a supercritical fluid. If there are three solutions 
then the acid gas is on or near a gas-liquid phase coexistence line. In this latter case the 
larger real solution is the gaseous molar volume and the smaller is the liquid molar 
volume. 

2) Density – The average molar weight, ( )i ii
MW x MW=∑ , divided by the molar 

volume, v, yields the mass density, ρ. 

3) Isothermal compressibility – Differentiating equation 2 with respect to P at constant 
T and then solving for ( / )Tv P∂ ∂  allows one to construct an analytic expression for the 
isothermal compressibility. 

4) Isobaric thermal expansivity – As in the preceding item, one can differentiate 
equation 2 with respect to T at constant P and then solve for ( / )Pv T∂ ∂ .  This is the 
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central component of the isobaric expansivity. This procedure is slightly more 
complicated than obtaining the compressibility, however, as the differentiation will also 
involve derivatives of a(T ). The precise form of a(T ) is given in Appendix A. 

5) Heat capacity departure – The difference between real and ideal isobaric heat 
capacities can be expressed as an integral, as indicated in Figure 1 (Sandler, 1999, eq. 
4.4-10). In practice it is more convenient to convert it into an integral over v, as shown in 
Appendix B. In the next step the full heat capacity, including the ideal contribution, is 
required. This may be calculated from data on molecular geometries and vibrational 
frequencies, as described in Appendix C. 

6) Adiabatic compressibility – Sound waves pass too quickly through earth media to 
allow for significant dissipation of energy.  Therefore they are associated with adiabatic 
rather than isothermal compressions and dilations.  The adiabatic compressibility can be 
computed using the standard thermodynamic relation in Figure 1. 

7) Bulk modulus – The reciprocal of the adiabatic compressibility yields the bulk 
modulus. 

The above computations were implemented as a Java applet for distribution to sponsors, 
for acid gases composed of an arbitrary mixture of CO2, H2S, N2, methane, ethane, and 
propane. This applet also implements calculations of other pore fluids, as described in 
Batzle and Wang (1992). 

Determining reservoir rock properties 
Normally the elastic properties of a reservoir are estimated from well-log data, 

especially if P-wave and S-wave sonic logs are available.  This section addresses the case 
when such data is not available. In this case we can make use of literature data to estimate 
reasonable values for the elastic properties of water-saturated dolomite of known 
porosity. 

Our source for literature data is Mavko et al. (1998), p. 292-293. Graphs are presented 
there for correlation of various quantities, along with best-fit correlations. The three 
results of interest to us are 

 P [km/s] 6.6067 9.3808V φ= −  (3) 

 S [km/s] 3.5817 4.7194V φ= −  (4) 

 3
P[g/cm ] 1.8439 0.13786Vρ = +  (5) 

Thus for a given porosity one can estimate three typical elastic properties for water-
saturated dolomite. From the scatter of data in the graphs, one can also visually estimate 
an uncertainty in each of these values. 

The data employed in forming equations 3-5 was obtained at a variety of pressures 
(10, 15 and 35 MPa). As a future refinement, one could contemplate using the pressure of 
the reservoir to more narrowly and correctly define these estimates. 
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We also require elastic properties (or at least bulk modulus and density) of the mineral 
dolomite, CaMg(CO3)2, of which the rock matrix is composed. Again we turn to data 
from Mavko et al. (1998, p. 308) which lists three values for these properties.  We have 
used the average of all listed values for our calculation. 

Fluid substitution calculations 

The most common (though not the only) approach to performing fluid substitution 
calculations is to use the Gassmann equation (Mavko et al., 1998): 

 

2

skel

mineral
satd skel

skel
2

fluid mineral mineral

1

1

K
K

K K K
K K K

φ φ

⎛ ⎞
−⎜ ⎟

⎝ ⎠= + −+ − . (6) 

This expresses, subject to various assumptions, the bulk modulus of a fluid-saturated rock 
(Ksatd) with porosity φ in terms of the bulk moduli of the dry rock skeleton (Kskel), the 
mineral of which the skeleton is composed (Kmineral), and the saturating fluid (Kfluid). 

It is useful in fluid substitution exercises to be able to solve for the bulk modulus of 
the dry rock skeleton, Kskel. This inversion can be carried out analytically in the following 
way. First, rewrite equation 6 without Kskel by defining a new quantity α: 

 

2
skel

satd mineral
mineral

fluid mineral

(1 ) , 1 KK K
K

K K

αα αφ α φ= − + ≡ −−+ . 

Next, rearrange this result to isolate α. The result is 

 

mineral satd satd

fluid fluid mineral

mineral satd

fluid mineral

1

1

K K K
K K K
K K
K K

α φ
φ φ

− + −
=

+ − − . 

Finally, replace α with its definition and rearrange to isolate Kskel: 

 

mineral
satd mineral

fluid
skel

mineral satd

fluid mineral

1

1

KK K
K

K K K
K K

φ φ

φ φ

⎛ ⎞
− + −⎜ ⎟

⎝ ⎠=
+ − − . (7) 

This result is attributed to Zhu and McMechan (1990). 



Ursenbach and Lawton 

8 CREWES Research Report — Volume 19 (2007)  

Before using equations 6 and 7 for fluid substitution, first note that Kmineral, Kskel, and φ 
do not change with different fluids in the pore.  (One could argue this, but, as discussed in 
the introduction, it will be assumed for the present study.) On the other hand, Kfluid and 
Ksatd do change with a change in fluid. 

To carry out fluid substitution, we begin with the reference state. The known 
properties of water-saturated dolomite (Kfluid(water), Ksatd(water), Kmineral, and φ) are 
substituted into equation 7 to obtain Kskel. Then we use equation 6 with known values of 
Kfluid(brine) and Kfluid(acid gas) to obtain Ksatd(brine) and Ksatd(acid gas). 

One also needs to find how shear-wave properties and density change with fluid 
substitution. This is somewhat less involved than finding Ksatd. The shear modulus is 
(under Gassmann assumptions) invariant to the fluid, so that μskel = μsatd(water) =  

μsatd(brine) = μsatd(acid gas), where  μ = ρVS
2.  The fluid dependence of density is given 

by the equation  

 ρsatd = ρskel  + φ ρfluid. (8) 

This can be used with data for the water-saturated state to obtain ρskel, and then with brine 

and acid gas fluid data to obtain ρsatd(brine) and ρsatd(acid gas).  Alternatively, ρskel can be 
first obtained from  

 ρskel = (1− φ)ρmineral (9) 

Once one has all elastic properties for the brine and acid-gas saturated states, one can 
obtain velocities as well, and then one can perform seismic modeling to assess whether 
seismic monitoring will be able to follow progress of the injection plume. 

RESULTS 

We have used the data of Table 1 and the prescriptions of the previous section to 
calculate elastic properties after fluid substitution.  As the composition of the acid gas is 
not fully defined in Table 1, it is assumed that the remaining 6.2% consists of methane 
gas.  The results are collected in Table 2. 
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Table 2.  The following results are obtained using the parameters of Table 1. Digits in brackets in 
the final two rows should be rounded, and are given only to show the progress of the calculations. 

Medium ρ  (g/cm3) K (GPa) μ (GPa) VP (km/s) VS (km/s) 

Fluid properties 

Water 0.9957 2.377 - 1.545 - 

Brine 1.081 3.008 - 1.668 - 

Acid gas 0.432 0.0332 - 0.277 - 

Reservoir rock properties 

Dolomite 
mineral 2.87 80.1 48.7 7.11 4.12 

Water sat’d 
dolostone 
(typical 
value) 

2.6 51 25 5.7 3.1 

Water sat’d 
dolostone 
(normal 
range) 

2.5-2.7 - - 5.2-6.2 2.7-3.7 

Fluid substitution results 

Brine sat’d 
dolostone 

2.6(1)* 

2.6(9)** 
53.(8) 25 

5.7(8) * 

5.6(9) ** 

3.0(9) * 

3.0(5) ** 

Acid gas 
sat’d 

dolostone 

2.5(4) * 

2.6(3) ** 
40.(0) 25 

5.3(7) * 

5.2(8) ** 

3.1(3) * 

3.0(8) ** 

* Result using equation 8     ** Result using equation 9 

APPLICATION OF RESULTS 

Monitoring fluid substitution in the subsurface can be accomplished by a variety of 
methods, depending on what properties are most sensitive to a change in fluid. Two 
characteristics of seismic data that can be influenced are traveltime through the reservoir 
and amplitude variation with offset (AVO) at the top or bottom of the reservoir. 
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Traveltime calculations 
The difference in two-way traveltime for a P-wave traveling vertically through a 

reservoir containing either brine or acid gas is given by 

 
1 12

(acid gas) (brine)P P

T d
V V
⎛ ⎞

Δ = −⎜ ⎟
⎝ ⎠

, (10) 

where d is the thickness of the reservoir.  Using data from Table 2 we find that there is a 
0.26 ms increase in two-way traveltime after fluid substitution, for each 10 m thickness of 
the reservoir. This result is unaffected by whether equation 8 or 9 is used in the 
calculation. 

Because precise information is not available on the elastic properties of the reservoir, 
it is also of interest to see how this traveltime difference estimate varies with properties 
of the reservoir.  To accomplish this, the calculations of Table 2 and equation 10 were re-
executed several times for various values of VP from 5.2 to 6.2 km/s.  The results are 
shown in Figure 2. 

 

FIG. 2.  The effect of reservoir rock VP on two-way traveltime differences resulting from fluid 
substitution. 

For the softer end of the range, traveltime differences are about 0.5 ms per 10 m thickness 
of the reservoir.  This is a measureable amount and suggests that seismic monitoring may 
be feasible. Of course if VP is at the lower end of its range, then VS and ρ, which are 
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positively correlated with VP, are likely at the lower end of their ranges as well.  
However, if we recalculate Figure 2, adjusting VS and ρ in synchrony with VP, then a 

similar graph is obtained, but with Δt ranging from about 0.17 to 0.47 ms, rather than 
from 0.12 to 0.53 ms. 

AVO calculations 

The reflectivity at a boundary of the reservoir is influenced not only by the elastic 
properties of the reservoir, but also the properties of the bounding media.  This 
information can be obtained from well logs, but in the absence of such, we will assume 
that the surrounding media are composed of the same rock as the reservoir, but simply 
contain brine rather than acid gas.  Again using data from Table 2 we can calculate the 
plane-wave Zoeppritz coefficients, with results displayed in Figure 3. 

 

FIG. 3. Reflection coefficient curves defining RPP(θ ) at the top and bottom of an acid gas layer. 
The rock matrix is assumed to be constant across the interfaces, with brine saturation above and 
below the reservoir. 

The AVO trends shown in Figure 3 do not suggest a very strong response, but more 
complete modeling with well logs would be required before drawing any final 
conclusions on the use of AVO for seismic monitoring of this injection. 
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For completeness, in analogy to Figure 2, we can consider how varying VP affects 
RPP(0), and these results are shown in Figure 4.  Again, for softer reservoirs, the picture is 
improved, if only moderately. 

 

FIG. 4.  The effect of reservoir rock VP on vertical reflectivity [RPP(0)] at the top of the injection 
chamber, given the same assumptions as in Figure 3. 

CONCLUSIONS 

We have performed calculations relevant to the fluid substitution problem for acid gas 
injection into a deep saline reservoir.  In doing so we have made a number of 
assumptions: 

• The injected acid gas fully displaces the native brine, rather than mixing with it. 

• The Gassmann assumptions are satisfied.  In particular, the injected acid gas does 
not react with the dolomite reservoir rock on the timescale of the injection 
program. 

• The properties of the dolomite matrix can be estimated from a range of typical 
values found in the literature. 

• Methane accounts for the fraction of the acid gas which is not CO2 or H2S. 

Based on these assumptions, we have shown that, for every ten meters thickness in the 
injection chamber, a vertical seismic signal will likely have a 0.26 ms longer two-way 
traveltime than through the brine-saturated reservoir. This is based on average properties 
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of dolostone.  For dolostone on the softer end of the spectrum, 0.5 ms change is more 
likely.  Changes in reflection amplitudes resulting from fluid substitution do not appear as 
promising for injection monitoring, but well log based analysis would be necessary to 
draw firm concluisions. 
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APPENDIX A – PENG-ROBINSON EQUATION OF STATE 
The Peng-Robinson equation of state (Peng and Robinson, 1976; also in numerous 

chemical engineering textbooks) is given by 

 
( )

( ) ( )
RT a TP

v b v v b b v b
= −

− + + −  (A1) 

where, for a single-component fluid, 

 
2 2

( ) 0.45724 ( , )c
r

c

R Ta T T
P

α ω= ⋅ , (A2) 

 0.07780 c

c

RTb
P

= , (A3) 

 1/ 2 1/ 21 (1 )rTα κ= + − , (A4) 
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 20.37464 1.54226 0.26992κ ω ω= + − , (A5) 

 /r cT T T= , (A6) 

and where Tc (critical temperature), Pc (critical pressure), and ω (acentric factor) are properties 
tabulated for various compounds (see e.g. Reid et al., 1987). 

For a multicomponent fluid, a and b in equations A2 and A3 become subscripted (so 
that ai refers to the ith component) and the a and b in equation A1 become defined as 

 (1 )i j ij i j
i j

a x x a aδ= −∑∑ , (A7) 

 i i
i

b x b=∑ , (A8) 

where xi is the mole fraction and δ ij is a binary interaction coefficient, empirically 
determined for each pair of components (e.g. Sandler, 1999, p. 410). 

APPENDIX B – HEAT CAPACITY DEPARTURE 
Isobaric heat capacity is defined as the temperature derivative of the enthalpy at 

constant pressure: 

 P
P

HC
T

∂⎛ ⎞= ⎜ ⎟∂⎝ ⎠ . (B1) 

In this and all other thermodynamic derivatives in this appendix, we will assume 
implicitly that composition is held fixed as well.  

The heat capacity departure is the difference between real and ideal (denoted *) heat 
capacities, at the same temperature, pressure and composition, which we can write as 
follows: 

 * ( ) ( * *) ( *)P P P V P V V VC C C C C C C C− = − − − + −  (B2) 

where CV is the isochoric heat capacity. Using standard thermodynamic relations we may 
replace the three terms in parentheses as follows: 

 
2 ( *)*P P

VT

TV U UC C nR
T

α
β

∂ −⎛ ⎞− = − + ⎜ ⎟⎝ ⎠∂  (B3) 

where T is temperature, V is volume, α is the isobaric thermal expansivity, βT is the 
isothermal compressibility, n is the number of moles, R is the ideal gas constant, and U is 
the internal energy. We will return to equation B3, but first recall that from the First Law 
of Thermodynamics we have 
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 dU PdV TdS= − + , (B4) 

 
T T

U SP T
V V

∂ ∂⎛ ⎞ ⎛ ⎞= − +⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠ , (B5) 

and, through one of the Maxwell relations, 

 
T V

U PP T
V T

∂ ∂⎛ ⎞ ⎛ ⎞= − +⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠ . (B6) 

For an ideal gas equation B6 reduces to 

 
* * ( / )* 0

T V V

U P nRT nRT VP T T
V T V T

∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − + = − + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠∂ ∂ ∂ , (B7) 

so that U* = U*(T ) is independent of V.  Now as a mathematical identity we can write 

 [ ]( *)* ( , ) * ( , )
V

T

U UU U dV U T V U T V
V∞

∂ −⎛ ⎞− = + → ∞ − → ∞⎜ ⎟⎝ ⎠∂∫ . (B8) 

However U → U* as V → ∞ so that the term in square brackets vanishes, and invoking 
equation B7 then yields 

 *
V V

T V

U PU U dV P T dV
V T∞ ∞

⎡ ⎤∂ ∂⎛ ⎞ ⎛ ⎞− = = − +⎢ ⎥⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠∂ ∂⎣ ⎦
∫ ∫ . (B9) 

Next apply the isochoric temperature derivative to equation B9 to obtain 

 
2

2

( *) V

V V V V

U U P P PT dV
T T T T∞

⎡ ⎤⎛ ⎞∂ − ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − + +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠∂ ∂ ∂ ∂⎝ ⎠⎢ ⎥⎣ ⎦
∫ . (B10) 

Now can return to equation B3 which may be expressed as 

 
2 2

2*
V

P P
T V

TV PC C nR T dV
T

α
β ∞

⎡ ⎤⎛ ⎞∂
− = − + ⎢ ⎥⎜ ⎟∂⎝ ⎠⎢ ⎥⎣ ⎦

∫ . (B11) 

We can perform a change of variables to molar volume, v, in the integration, 

 
2 2

2 2

V v

V v

P PT dV n T dv
T T∞ ∞

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂
→⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

∫ ∫ , (B12) 

and then dividing by n yields the molar heat capacity departure, 
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2 2

, , 2*
v

P m P m
T v

Tv PC C R T dv
T

α
β ∞

⎡ ⎤⎛ ⎞∂
− = − + ⎢ ⎥⎜ ⎟∂⎝ ⎠⎢ ⎥⎣ ⎦

∫ . (B13) 

This expression is easier to implement with the Peng-Robinson equation of state than the 
integral over P in Figure 1, as the integral over v can be performed analytically.  This 
expression is given without derivation in Eq. 5-5.3 of Reid (1987). 

APPENDIX C –IDEAL MOLAR HEAT CAPACITY 
The ideal heat capacity is added to the heat capacity departure to form the full heat 

capacity.  Ideal molar heat capacities for a given compound depend only on temperature 
and have coefficients for empirical fittings of these functions which have been tabulated 
for many compounds. A variety of fittings are extant in the literature, each valid over a 
different temperature range, with varying accuracy.  For the small molecules present in 
acid gas mixtures, it is straightforward to calculate the ideal heat capacities directly from 
statistical mechanics, and this removes any limits on their use. 

First we note that 

  , ,P m V mC C R= +    (ideal gas),  (C1) 

where R is the ideal gas constant.  (All quantities in this appendix refer to the ideal gas.) 
The isochoric ideal molar heat capacity can be expressed as a sum of translational, 
rotational, vibrational, and electronic components: 

  , , , , ,
t r v e

V m V m V m V m V mC C C C C= + + + . (C2) 

Typical reservoir temperatures are high enough that the equipartition theorem is valid for 
translational and rotational modes, but low enough that no excited electronic states are 
populated for typical reservoir species, so these terms contribute simply as follows: 

 ,
3

,
2

t
V mC R=  (C3) 

 ,

0,              monatomic species
,             linear molecule      

(3/2) ,      nonlinear molecule

r
V mC R

R

⎧
⎪= ⎨
⎪
⎩

, (C4) 

 , 0e
V mC = . (C5) 

At reservoir temperatures, some higher vibrational levels are populated, but not enough to 
satisfy equipartition. Therefore we employ the temperature-dependent statistical 
mechanical expression 
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2

, sinh
v i
V m

i i

C R η
η

⎛ ⎞
= ⎜ ⎟⎝ ⎠∑ , (C6) 

 
1
2 2

i
ii

hc
kT kT
ωη ν= = , (C7) 

where h is Planck’s constant, ħ = h / (2π), k is Boltzmann’s constant, ωi is a fundamental 
vibrational frequency of the molecule, and the wavenumber (commonly used for 
tabulation of molecular frequencies) is (2 )i i cν ω π= .  The sum is over all vibrational 
modes in the molecules, where for a molecule containing M atoms, 

 

0,               monatomic species
number of vibrational modes 3 5,     linear molecule      

3 6,     nonlinear molecule
M
M

⎧
⎪= −⎨
⎪ −⎩

. (C8) 

In programming equations C1-C8, it is useful to test against an empirical fitting of this 
function, such as found in Reid et al. (1987) or Sandler (1999). 

 


