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ABSTRACT 
This work develops and tests microseism event-classification techniques. Research 

was performed in collaboration with CREWES using microseismic data from Cold Lake, 
Alberta that was provided by Imperial Oil Ltd. The objective was to develop passive-
seismic signal classification algorithms capable of precisely and automatically 
distinguishing between microseismic events warranting further investigation from noise 
events that are generally not of interest. Novel methods involving frequency-filtering, 
event-length detection, and statistical analysis were developed. 

After extensive testing, it was found that developed statistical analysis algorithms 
performed best. Principal components analysis was applied to statistical analysis 
algorithm outputs to optimize classification. 

 A MATLAB® implementation scheme was created that yielded classification 
accuracies between 90% and 99.5% when tested on a wide range of datasets. Given that 
up to tens of thousands of microseismic events are detected daily at Cold Lake, this work 
could have significant future impact.  

INTRODUCTION 

Background 
Passive-seismic monitoring listens for small earthquakes (microseisms) that can occur 

when there are stress changes in a reservoir (Maxwell and Urbanic, 2001). As opposed to 
conventional surface-seismic acquisition techniques, passive-seismic monitoring does not 
employ a source to create elastic waves. Instead, spontaneous subsurface microseismic 
events are detected with sensors when they occur.  

Imperial Oil Limited is involved in oil sands production at Cold Lake, Alberta, 
Canada. At Cold Lake, hydrocarbon production comes from the Clearwater formation, 
which has a primarily sandstone lithology. This producing formation is buried over 400 
m deep at Cold Lake, and the bitumen contained within it has an American Petroleum 
Institute (API) gravity index of approximately 8° to 9°. Cyclic steam stimulation (CSS), 
which creates pressures and temperatures of approximately 320°C and 11 MPa, 
respectively in the Clearwater formation (Campbell, 2005), is required to extract the 
viscous bitumen. Mechanical issues in producing wells such as cement cracks or casing 
failures can result from the high pressures and temperatures associated with CSS. If 
undetected, these production issues could result in large cleanup costs, in addition to 
potential legal implications. A microseismic earthquake with its focus near the damaged 
area is created when these mechanical issues occur. Imperial Oil Limited operates a 
passive-seismic monitoring system at Cold Lake to proactively detect these microseisms. 
The Consortium for Research in Elastic Wave Exploration Seismology (CREWES) 
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Project at the University of Calgary was involved in this passive-seismic research with 
Imperial Oil. 

The passive-seismic monitoring system implemented at Cold Lake is present on 
approximately 75 production pads. Each pad has a centrally located monitoring well that 
records ground vibrations (including microseisms). The monitoring well is instrumented 
by a down-hole array of five or eight 3-component (3-C) geophone sondes connected to 
seismic recorders at the surface (Tan et al., 2006). Seismic recorders listen for discrete 
seismic events and store them as microseismic event files to disk for later review. For an 
array of five (eight) geophones, these digital event files contain fifteen (twenty-four) 
traces that display 1.365 seconds (1.5 seconds) of microseismic activity recorded by the 
3-component geophone sondes. Three traces are outputted from each 3-C geophone.  

Vendor-supplied event-classification software analyzes each created microseismic file 
and assigns a classification. If a file is classified as "good", this indicates that the 
software has decided that the event file warrants further investigation; conversely, if a file 
is classified as "noise", it is supposedly an event that is not of interest (Tan et al., 2006). 
Approximately 99% of all detected events are noise. Examples of "good" events worth 
further investigation include cement cracks around the casing in the wells, and casing 
failures. Examples of noise events include noise created by pump rods and passing 
vehicles (Campbell, 2005). When a “good” event is automatically detected followed by 
manual confirmation, an attempt is made to locate its hypocenter, its point of origin.  

Many microseismic “good” events tend to have impulsive arrivals, high P-wave 
arrival frequencies, and decreasing signal frequency with increasing time (Lee and 
Stewart, 1981). Figure 1 shows an example of a “good” event from the Cold Lake 
dataset, with P- and S-wave arrivals indicated. Empirically, it can be determined that this 
event is “good” due to the distinct and impulsive P- and S-wave arrivals. The decrease in 
frequency of the S-wave arrival compared to the P-wave can be seen. Figure 2 shows an 
example noise event, which is generally random and does not follow deterministic 
properties. The microseismic traces shown in Figures 1 and 2 have been normalized to 
the largest data value (in magnitude), and have any direct-current (DC) offset removed.   

 

FIG. 1. Example of a “good” event, with P- and S-wave arrivals indicated. Empirically, this event 
is “good” due to the distinct and impulsive P- and S-wave arrivals. The decrease in frequency of 
the S-wave arrival compared to the P-wave can be seen. 
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FIG. 2. Example of a noise event. Noise events are generally random and do not follow 
deterministic properties of “good” events. 

Objective 
The current event-file classification software present on the Cold Lake passive-seismic 

monitoring system has been known to misclassify a large portion of the received event 
files. This has resulted in many noise events being incorrectly identified as “good” 
events, often referred to as “false positives”. Manual investigation of misclassified files 
can become very costly and time-consuming.  

The purpose was to develop automatic and robust microseismic signal analysis 
algorithms capable of precisely classifying the microseismic event files generated by the 
passive-seismic monitoring system at Cold Lake. Compared to noise events, I observed 
that many "good" events generally have lower dominant frequency content, shorter P-
wave event-lengths, and flatter time-domain characteristics. Based on these observations, 
I developed classification algorithms involving frequency-filtering, event-length 
detection, and statistical analysis.  

After extensive testing on microseismic data from Cold Lake, it was determined that 
the developed statistical analysis algorithms demonstrated the strongest classification 
performance. Principal components analysis (PCA), a multivariate data reduction 
technique, was applied to statistical algorithm outputs for optimized microseismic file 
classification. A MATLAB® application was developed and tested on three microseismic 
datasets from Cold Lake, yielding classification accuracies between 90% and 99.5%. 
Given that up to tens of thousands of microseismic events are detected daily at Cold 
Lake, this application could have significant future impact.    

ALGORITHMS 
Compared to noise events, I observed that many "good" events generally have lower 

dominant frequency content, shorter P-wave event-lengths, and flatter time-domain 
characteristics. Based on these observations, classification algorithms involving 
frequency-filtering, event-length detection, and statistical analysis were developed.  
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Frequency filtering 
In practical applications, there are four main filter responses that rely on 

approximations (e.g. Maundy, 2005): the Butterworth, Chebyshev, Inverse-Chebyshev, 
and Cauer. Three of them -- the Butterworth, Chebyshev, and Inverse-Chebyshev 
responses -- were used to distinguish “good” events from noise.     

The Butterworth response has a maximally flat attenuation characteristic in the 
passband as frequency increases (an advantage) and a monotonically increasing 
attenuation characteristic in the stopband (e.g. Haykin and Van Veen, 2003). The 
transition region between the passband and stopband limits of the Butterworth filter, 
however, is less sharp, a disadvantage, than that of a different response, such as the 
Chebyshev.  

The Chebyshev response has an “equiripple” attenuation characteristic in the passband 
(e.g. Zhou and McMechan, 1999) and a monotonically increasing attenuation 
characteristic in the stopband. The passband equiripple characteristic pertains to 
oscillations in the frequency response, which is a disadvantage of the Chebyshev filter; 
however, this response provides greater stopband attenuation than the Butterworth 
response for a given filter order, which is advantageous (e.g. Maundy, 2005).  

The Inverse-Chebyshev response contains a maximally flat attenuation characteristic 
in the passband and an equiripple characteristic in the stopband. For a given minimum 
stopband attenuation, an Inverse-Chebyshev filter will require a lower order than a 
Butterworth filter (an advantage). When designing band-elimination topologies, however, 
the Inverse-Chebyshev response requires circuit realizations with high complexity (e.g. 
Maundy, 2005).  

To provide a diverse set of frequency responses and optimize the aggregate 
performance of these classification algorithms, each of the Butterworth, Chebyshev, and 
Inverse-Chebyshev frequency response approximations were modeled as filters in 
MATLAB®. Results obtained from the Inverse-Chebyshev and Butterworth filters follow.  

Detailed mathematical theory pertaining to filter frequency responses is provided in 
literature by Sheriff and Geldart (1995); Haykin and Van Veen (2003); as well as 
Maundy (2005), among others. For conciseness and brevity, this theory is not repeated 
here.   

Low-pass Inverse-Chebyshev filter 

A fourth-order low-pass Inverse-Chebyshev filter with a 100 Hz lower stopband limit 
and 36 Hz upper passband limit was created. This filter provides at least 40 dB 
attenuation in the stopband and does not attenuate passband frequencies by more than 
0.25 dB. Figure 3 shows the magnitude response for this filter. 

Figures 4 and 5 show the “good” and noise traces from Figures 1 and 2 after low-pass 
filtering. The magnitude of the peak data value in Figure 4 (approximately 0.5) is 
significantly higher than that of Figure 5, which is approximately 0.13.   
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FIG. 3. Amplitude response of low-pass Inverse-Chebyshev filter.   

 

FIG. 4. Result of low-pass filtering the “good” trace in Figure 1.   

 

FIG. 5. Result of low-pass filtering the noise trace in Figure 2.   

 

High-pass Butterworth filter 

A fourth-order high-pass Butterworth filter with a 215 Hz upper stopband limit and 
398 Hz lower passband limit was created. This filter provides at least 25 dB attenuation 
in the stopband and does not attenuate passband frequencies by more than 3 dB. Figure 6 
shows the magnitude response for this filter.  

Figures 7 and 8 show the “good” and noise traces from Figures 1 and 2 after high-pass 
filtering. The magnitude of the peak data value in Figure 7 (approximately 0.05) is 
significantly lower than that of Figure 8, which is approximately 0.7.  
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FIG. 6. Amplitude response of high-pass Butterworth filter.   

 

FIG. 7. Result of high-pass filtering the “good” trace in Figure 1.   

 

FIG. 8. Result of high-pass filtering the noise trace in Figure 2.   

 

Event-length detection  
The impulsive P-wave event-lengths in many “good” traces are usually significantly 

shorter than noise event-lengths. This set of classification algorithms determines the first-
arrival event-lengths. 
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STA / LTA algorithm 

This time-domain algorithm continuously calculates ratios of short-term averages 
(STA) to long-term averages (LTA) of microseismic energy. This is the STA/LTA 
technique (Ambuter and Solomon, 1974) demonstrated by Munro (2005). The STA/LTA 
ratio will significantly increase at the onset of a microseismic event; conversely, this ratio 
will significantly decrease at the event’s termination. Calculating the time interval 
between the onset and termination of a microseismic event yields its approximate length.  

To demonstrate an application of this algorithm to microseismic event detection, 
assume there are N data samples in the microseismic trace under examination. Take the 
sampling frequency to be fs. Define S as the length of the STA window in seconds 
containing p data points. Similarly, define L as the length of the LTA window in seconds 
containing q data points. Then, 

 
s

pS
f

= ; (1) 

and 

     
s

qL
f

= .                                               

Let ai represent the amplitude of an arbitrary data point in the microseismic trace with         
i = 0, 1, 2, …, N-1.  The relationship between a point in time ti and the index “i” is 

 i
s

it
f

=  (2) 

The following application of this algorithm was found to work best for microseismic 
event-length determination. To perform the first STA / LTA calculation, the LTA 
window was positioned such that it calculated a long-term energy average from the 
beginning of the trace at t = 0  to the time t = L. Using equation 2, this corresponds to 
data point indices from i = 0 to i = Lfs. The STA window was positioned such that it 
calculated a short-term energy average of the trace from the time t = L – S to the time        
t = L. This corresponds to data point indices from i = (L-S)fs to i = Lfs. Let STAx and LTAx 
represent the xth short-term and long-term energy calculations, respectively. Let Rx signify 
the xth calculated STA / LTA ratio. The STA / LTA algorithm applied here starts with x = 
1 followed by subsequent single data point energy window advancements until a 
significant increase in Rx is seen, indicating the detection of the P-wave arrival. The 
termination of the event is detected through a significant decrease in Rx. If no event is 
detected, then calculations of Rx terminate when the energy windows reach the end of the 
microseismic trace.  The corresponding equations for STAx, LTAx, and Rx are 
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Continuous-time frequency analysis 

I observed that the high-frequency content of many microseismic traces usually 
increased significantly at the onset of an event and decreased significantly at the event’s 
termination. 

A developed method to pick the onset and termination times of microseismic events 
was to continually analyze the frequency characteristics of a select number of points in 
the microseismic trace. A continuous-time frequency analysis was performed by 
supplying a moving frequency transform window. This developed technique is similar to 
the Gabor transform (e.g. Feichtinger and Strohmer, 1998) and S-transform (Stockwell et 
al., 1996) techniques which represent frequency transform methods that can be localized 
in time. These transform methods are useful when dealing with signals that are not 
stationary, such as earthquake seismograms (e.g. Stockwell et al., 1996).  

For discrete signals, the discrete Fourier transform (DFT) is used to determine 
frequency characteristics. The generalized definition of the DFT is 
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(e.g. Margrave 2007). In equation 4, n corresponds to the indices of the time-series 
elements fn (with n = 0, 1, 2, 3, …, N-1), m corresponds to the indices of the frequency 
elements fm (with m = 0, 1, 2, 3, …, N-1), and N is the number of time series data points 
in the examined signal.   

For the developed algorithm, equation 4 was localized to select groups of time series 
data points in a microseismic trace. Let an examined microseismic trace sampled at a 
frequency fs contain N data points. Let di represent an arbitrary data point in this trace 
with i = 0, 1, 2,…, N-1. Let W represent a fast Fourier transform (FFT) window 
containing k data points where k < N. Define Wp as the pth data point contained in W, with 
p = 0, 1, 2, … , k-1. The fast Fourier transform (FFT) is a built-in MATLAB® function 
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that calculates the discrete Fourier transform using an optimized method to reduce 
computation time. 

To start, W is positioned at the beginning of an examined microseismic trace, and an 
FFT of data points from d0 to dk-1 is applied. The k time-series elements are transformed 
to k frequency elements. Let fm represent the mth frequency element of the transformed 
data (with m = 0, 1, 2, 3, …, k-1) contained in the window W. For this algorithm, 
equation 4 can be rewritten as 
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The Nyquist frequency is defined as 
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Let Fm represent the frequency (in Hz) that each corresponding transformed frequency 
element fm pertains to. The expression for Fm will depend on whether k is odd or even. If 
k is even, the equation is  
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whereas if k is odd, the expression is   
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Equations 7a and 8a correspond to positive frequencies, while equations 7b and 8b 
correspond to negative frequencies. Comparing these equations with equation 6, note that 
|Fm| ≤  fNYQ  for all m. 

After the FFT step is complete, the power spectral density (PSD) of the frequency 
elements fm is calculated. Let Pm represent the PSD magnitude corresponding to a 
transformed frequency element fm given by 

 Pm = fm fm
* = | fm| 2 (9) 

where “*” represents the complex conjugate operator. If the time series contained in W is 
real, as expected for a microseismic trace, then it can be shown that the amplitude 
spectrum of the transformed elements, |fm|, is an even function in frequency (e.g. Haykin 
and Van Veen, 2003), implying that Pm is an even function in frequency as well. Thus, 
transformed elements corresponding to negative frequencies can effectively be ignored, 
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as they are redundant, and this analysis can be restricted to positive frequencies to reduce 
computation time. The elements in Pm are then placed in a single column of a 2-D matrix 
whose rows and columns correspond to frequency and time, respectively.  

The above procedure is repeated as the window W moves forward by single data point 
increments until the end point of this window reaches dN-1. High frequency content in the 
calculated PSD can be examined to determine the onset and termination times of an 
event.     

Figure 9 displays the “good” microseismic trace shown in Figure 1 with this 
continuous-time Fourier transform algorithm applied to it. This trace has N = 4096 and      
fs = 3000 Hz. The size of the fast Fourier transform window applied is k = 100. The 
vertical lines near a time of 0.4s depict the onset and termination temporal locations of 
the P-wave arrival. The lowest (highest) PSD amplitudes are depicted in blue (red). There 
is a sharp increase in high frequency content at the onset of the event, and a sharp 
decrease in high frequency content at the event’s termination. The calculated length of 
the P-wave event was 35 ms. Similarly, Figure 10 shows the noise trace in Figure 2 with 
this transform applied. The noise event-length was calculated to be 547 ms, significantly 
longer than the calculated P-wave event-length of 35 ms. 

 

 

FIG. 9. Continuous-time Fourier transform PSD plot of “good” trace shown in Figure 1 using an 
FFT window size of k = 100. The color scale ranges from blue (low amplitude) to red (high 
amplitude). A sharp increase in high frequency content can be seen at the onset of the P-wave 
arrival, while a sharp decrease in high frequency content can be seen at the event’s termination. 
The calculated event-length was 35 ms.  
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FIG. 10.  Continuous-time Fourier transform PSD plot of noise trace shown in Figure 2 using an 
FFT window size of k = 100. The color scale ranges from blue (low amplitude) to red (high 
amplitude). A sharp increase in high frequency content can be seen at the onset of the noise 
event, while a sharp decrease in high frequency content can be seen at the event’s termination. 
The calculated event-length was 547 ms.  

Statistical analysis 
Compared to noise traces, I observed that “good” microseismic traces generally 

contain lower signal variance, higher central data distribution, more frequent oscillations, 
and greater signed amplitude differences between adjacent time-series data points. 
Statistical analysis classification algorithms were developed based on these observations. 

Threshold algorithm 

This algorithm was developed based on “good” microseismic traces generally 
containing lower signal variance than noise traces. As an example, define gi (ni) as the 
signed amplitude of the ith time series data point corresponding to the “good” (noise) 
trace shown in Figure 1 (2), for i = 0,1, 2,…, N-1, where N is the total number of data 
points in the time series. For the microseismic traces depicted in Figures 1 and 2,             
N = 4096. 

Define variance of the time series corresponding to the “good” (noise) trace as σ2
g 

(σ2
n).  Then, for the zero-mean signal (DC offset has been removed) depicted in Figure 1, 

for example,  
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The variance of the noise trace σ2
n simply corresponds to replacing g with n in 

equation 10.  

The “good” microseismic trace in Figure 1 has a variance of 0.0128, while the noise 
trace in Figure 2 has a variance of 0.0293. By empirically examining these two figures, a 
higher noise trace variance would be expected. Over the whole trace, the noise trace 
contains visibly larger deviations from the mean compared to the “good” trace. The 
likelihood of dataset points existing a given distance away from its mean is proportional 
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to variance and can be quantified by applying “Chebyshev’s inequality”.  For detailed 
theory pertaining to Chebyshev’s inequality refer to literature authored by Lange (2003); 
Therrien and Tummala (2004); Miller and Childers (2004); Mitzenmacher and Upfal 
(2005); and Suhov and Kelbert (2005). For brevity and conciseness, this theory is not 
repeated here. 

Chebyshev’s inequality is given as  

 2

[X]Pr(| X [X] |  )a
a

− ≥ ≤ VARE  (11) 

(e.g. Suhov and Kelbert, 2005), where X is a random variable with expected value E[X] 
and variance VAR[X], a is a strictly positive constant (a > 0), and “Pr()” represents event 
probability. Within the context of this discussion corresponding to microseismic signal 
analysis, X pertains to arbitrary time series data points, E[X] = 0, and VAR[X] pertains to 
microseismic signal variance.        

By examining equation 11, it can be seen that Chebyshev’s inequality states that a 
larger dataset variance corresponds to an increase in the expected maximum number of 
data points lying outside a mean-centered window of width 2a (or single-sided width a). 
The developed “Threshold” algorithm applies equation 11 in a simple manner.  

Define a window w existing from a w a− ≤ ≤ . This window is centered at the mean of 
examined microseismic traces, which is zero. The “Threshold” algorithm simply 
determines the fraction of time series data points that lie outside the threshold limits a±  
of the window w. This fraction can then be used for microseismic signal classification. 
The “good” trace in Figure 1 has 20.8% of its time series data points outside the window 
w, while the noise trace in Figure 2 has 68.2% outlying data points.  

Histogram algorithm 

I observed that the time series signed amplitude distribution of “good” traces tended to 
be more heavily concentrated near the time axis than noise traces, as can be seen in the 
“good” and noise traces in Figures 1 and 2, respectively. One tool that can be used to 
examine and quantify data distribution is a histogram.  

Assume that the signed amplitude of the ith data point in an N-point discrete time 
series is di. For example, this time series could be one of the microseismic signals shown 
in Figures 1 or 2. Assume that both positive and negative values are present in this time 
series. Let dmax denote the largest positive value in the time series, and dmin denote the 
largest negative value. Assume there are n histogram bins each with a bin width of b. In 
this simple case, the total number of histogram bins, n, can then be calculated as 

 max mind d
n

b
−⎡ ⎤= ⎢ ⎥⎢ ⎥

, (12) 

where “ ⎡ ⎤⎢ ⎥
” signifies rounding upwards to the closest integer. Let mk represent histogram 

bin k for 0,1,2,... 1k n= − . One possible method is to position the lower boundary of the 
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first bin m0 on dmin, the second bin m1 on dmin + b, and so on.  Thus, mk would record the 
total number of points that fall in the range ( 1)min i mind kb d d k b+ ≤ < + + .  The notation 

 [ ( 1) ];     0,1, 2,..., 1 k min i minm d kb d d k b k n→ + ≤ < + + = −  (13) 

will be used to signify this.   

An issue that arises when creating a histogram includes determining the optimal bin 
width b (or equivalently, through equation 12, the total number of bins n). It is desired to 
choose b (or n) such that the data distribution is well represented. If b is too large, critical 
information may be smeared across a single bin. That is, the frequency structure of the 
data may not be appropriately emphasized. Conversely, if b is too small, fluctuations in 
the histogram that may appear important could be the simple result of random data 
variation over a small interval.  

Statistics literature has attempted to determine how to optimally choose b. Three well-
known equations to estimate b have been developed by Sturges (1926), Scott (1979), as 
well as Freedman and Diaconis (1981).  These equations are not optimally applicable for 
all datasets, as they are typically applied for estimating b (or equivalently n) when time 
constraints do not allow for empirical determination of this bin width. In general, if time 
permits, it is best to empirically choose b to suit the dataset of interest.  

 A “Histogram” microseismic classification technique was developed. The histogram 
parameters were empirically chosen to best fit the given microseismic dataset. A total of 

n = 99 histogram bins, each of width b = 2
99

 were applied. The data limits were taken to 

be dmin = -1 and dmax = +1 to obtain a symmetrical histogram about the zero-mean signals. 
Referring to equation 13, histogram bin k (k = 0,1,2,…,98), represented by mk, would thus 

record the total number points that fall in the range 2 2( 1)1 1
99 99i

k kd +− + ≤ < − + . Using 

the notation in equation 13 for this example gives 

 2 2( 1)1 1 ;     0,1, 2,...,98. 
99 99k i

k km d k+⎡ ⎤→ − + ≤ < − + =⎢ ⎥⎣ ⎦
 (14) 

After histogram generation, the data occurrence recorded in a central bin 

(corresponding to 
2
nk ≈  , roughly speaking) can be examined for microseismic signal 

classification.  

If the 50th histogram bin (k = 49) is examined, the “good” trace depicted in Figure 1 
has 34.6% of its time series data points lying in the 50th bin range, while the noise trace in 
Figure 2 only has 10.7% of its points in this range. Figures 11 and 12 show histogram 
plots corresponding to the “good” and noise traces depicted in Figures 1 and 2, 
respectively, plotted on consistent vertical axes for comparison. Note the higher central 
concentration of data points pertaining to the data point distribution of the “good” trace, 
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as compared to the noise trace, which shows data distribution spread out to a larger 
degree.   

 

FIG. 11. Histogram plot of “good” trace depicted in Figure 1 with 99 histogram bins corresponding 
to amplitude ranges from -1 to +1. 

 

FIG. 12. Histogram plot of noise trace depicted in Figure 2 with 99 histogram bins corresponding 
to amplitude ranges from -1 to +1. 

Specialized Zero-Crossing Count algorithm 

I observed that microseismic noise signals tend to oscillate more frequently about the 
time axis. Additionally, I observed that the magnitudes of signed amplitude differences 
between adjacent time-series data points were generally greater for noise microseismic 
traces compared to “good” traces. Essentially, this observation implies that “good” traces 
generally contain minimal signal noise. Noise that was observed in microseismic “good” 
traces had relatively low amplitude compared to microseismic noise traces. Alternatively 
stated, it was observed that, compared to noise traces, “good” traces often have less 
sporadic sequential time-series behaviour about its mean.           

To illustrate the above observations, the “good” and noise traces in Figures 1 and 2 are 
plotted as discrete time-series in Figures 13 and 14 from an example time interval of 
1.14s to 1.15s. A very fine time interval is used in these figures to illustrate the signed 
amplitude difference between adjacent time-series data points corresponding to the 
example “good” and noise traces. Note that in Figure 14, corresponding to the noise 
trace, there are more instances where adjacent data points have opposite signs compared 
to the “good” trace in Figure 13. This is related to the observation that “good” traces 
oscillate less than noise traces. An additional important observation is that the 
magnitudes of signed amplitude differences between adjacent time-series data points are 
larger for the noise trace than the “good” trace, including areas where adjacent data 
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points change polarity. Based on these observations the “Specialized Zero-Crossing 
Count” algorithm was developed.  

Define a window v that exists in the signed-amplitude range z v z− ≤ ≤ . First, all the 
time-series data points that fall within v are set to zero. Essentially, this zeroing step sets 
all data points close to the time axis to zero and removes low-amplitude noise. As the 
signed amplitudes of adjacent time-series data points in microseismic noise signals 
generally vary to greater degrees compared to “good” traces, this zeroing step will tend to 
preserve polarity reversals (sign changes) in adjacent data points on noise traces, but 
eliminate many of these polarity reversals on “good” traces. Thus, this step helps to 
further improve the discrepancy between “good” and noise traces to improve 
classification accuracy.  

 

 

 

 

FIG. 13. Discrete time-series plot of example “good” trace for t = 1.14s to t = 1.15s. The horizontal 
line represents zero amplitude to better view polarity reversals. Fewer polarity reversals between 
adjacent data points are seen compared to the noise trace in Figure 14. Additionally, the 
magnitudes of signed amplitude differences between adjacent time-series data points are smaller 
compared to the example noise trace.    

 

FIG. 14. Discrete time-series plot of example noise trace for t = 1.14s to t = 1.15s. The horizontal 
line represents zero amplitude to better view polarity reversals. More polarity reversals between 
adjacent data points are seen compared to the “good” trace in Figure 13. Additionally, the 
magnitudes of signed amplitude differences between adjacent time-series data points are larger 
compared to the example “good” trace.       



Tan, Bland, and Stewart 

16 CREWES Research Report — Volume 19 (2007)  

After the zeroing step is applied, the total number of valid polarity reversals between 
adjacent data points is totaled, and that total is divided by the total number of trace data 
points to obtain a fractional measurement. A valid polarity reversal corresponds to 
adjacent data points changing from a strictly positive to a strictly negative value, or vice-
versa.  

With the zeroing step applied for z = 0.01, the “good” trace in Figure 1 had only one 
valid polarity reversal out of 4096 total data points, corresponding to a percentage of 
0.0244%. The noise trace in Figure 2 had 298 valid polarity reversals corresponding to a 
percentage of 7.28%.  

To illustrate the value of applying the zeroing step to eliminate low-amplitude noise 
present in the time series, consider the case where it is omitted. If this zeroing step is not 
applied, the “good” trace in Figure 1 would have 302 polarity reversals out of 4096 points 
(7.37%), while the noise trace in Figure 2 would have 550 polarity reversals (13.43%). 
Thus, omitting the zeroing step, only 1.82 times more polarity reversals would be seen in 
the noise trace compared to the “good” trace. With the zeroing step applied, 298 times 
more polarity reversals are seen in the noise trace compared to the “good” trace.    

MULTIVARIATE DATA REDUCTION 
After extensive testing, it was found that the developed statistical analysis algorithms 

have the highest potential for maximally accurate microseismic file classification. These 
algorithms were the Threshold, Histogram, and Specialized Zero-Crossing Count 
methods.     

It is desired to examine the outputs from these three statistical algorithms for accurate 
microseismic file classification. As these three algorithm outputs result in a three-
dimensional data space, multivariate data reduction (i.e. reducing the effective 
dimensionality of the data from three to one or two) would simplify file classification. 
The multivariate data reduction technique employed is referred to as principal 
components analysis. 

Principal components analysis (PCA) is a linear technique that transforms a dataset 
with many variables to a new set of variables that are orthogonal and uncorrelated, called 
the “principal components” of the dataset (e.g. Jackson, 1991). PCA can also be thought 
of as representing an N dimensional dataset with N orthogonal basis vectors (principal 
components) such that data projected onto the first principal component have the highest 
variance and thus best characterize the dataset (e.g. Shlens, 2003). The Threshold, 
Histogram, and Specialized Zero-Crossing Count statistical algorithms yielded the most 
accurate classification results. Thus, PCA was applied to the outputs of these three 
algorithms for improved classification accuracy. Restricting PCA to the three statistical 
algorithm outputs was seen to yield improved classification performance over applying 
PCA to all developed algorithm outputs.   

Refer to literature authored by Dunteman (1989), Jackson (1991), Lupton (1993), 
Jolliffe (2002), Smith (2002), and Shlens (2003), for mathematical theory pertaining to 
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PCA. Application of PCA theory from this literature to microseismic file classification 
will be shown here.  

To illustrate the application of PCA to microseismic file classification, a diverse 
example test dataset of 540 microseismic files from 28 different production pads will be 
used. The correct file classification is known, as these files were previously manually 
classified as “good” or noise. 

Define a matrix A containing normalized data measurements pertaining to the 
statistical analysis algorithm outputs for this example test dataset. Normalization is a 
necessary step when applying PCA. In this case, normalization pertains to dividing each 
row of A by the largest value found in that row. The matrix A will be a 3 540×  matrix 
whose rows correspond to different algorithm outputs, and whose columns correspond to 
different microseismic files. Assume that the normalized results from the Threshold, 
Histogram, and Specialized Zero-Crossing Count algorithms are placed in the first, 
second, and third rows of A, respectively. Each row of A contains the normalized average 
algorithm outputs corresponding to the three traces in the microseismic file that have the 
strongest “good” characteristics. For example, the element a15 is the normalized average 
fraction of data points lying outside a predefined window (Threshold algorithm) 
corresponding to the three traces in the fifth microseismic file that contain the lowest 
fraction of outlying points. Figures 15, 16, and 17 show plots of normalized algorithm 
measurements contained in the first, second, and third rows of A, respectively.     

Figure 15 shows the normalized Threshold algorithm output, which corresponds to the 
normalized fraction of data points that lie outside a predefined window. This window is 
defined from -0.006 to +0.006 in this example. Each gray square (black diamond) 
corresponds to the calculated and normalized Threshold algorithm output pertaining to a 
manually confirmed “good” (noise) file. The calculated and normalized results from the 
known “good” and noise files are plotted in overlapping horizontal regions to best view 
vertical overlap between the normalized “good” and noise results. Ideally, no overlap 
between calculated and normalized algorithm outputs of known “good” and noise files is 
desired to perform perfect classification. In Figure 15, reasonable vertical separation is 
seen between the “good” and noise points; however, vertical overlap can be seen. For 
example, in this figure there are 6 gray squares (“good” file outputs) that are above the 
lowest black diamond (a noise file output). From a different perspective, there are 32 
black diamonds (noise file outputs) that are below the highest gray square (a “good” file 
output).  

Figure 16 shows the normalized Histogram algorithm output, which corresponds to the 
normalized fraction of points that are contained in a “middle” data bin. In this example, 
99 evenly spaced bins corresponding to amplitude ranges from -1 to 1 were created, and 
the normalized fraction of data points that fell within the range of the 51st bin is shown. 
Reasonable vertical separation is again seen between “good” and noise outputs; however, 
some vertical overlap still exists. There are 7 gray squares (“good” file outputs) that are 
below the highest black diamond (a noise file output). From a different viewpoint, there 
are 50 black diamonds that are above the lowest gray square.  



Tan, Bland, and Stewart 

18 CREWES Research Report — Volume 19 (2007)  

Figure 17 shows the normalized Zero-Crossing Count algorithm output, which 
corresponds to the normalized fraction of signal polarity reversals after low-amplitude 
noise is removed. In this example, data points with a magnitude less than 0.006 were set 
to zero. Vertical separation is seen between “good” and noise outputs. Vertical overlap is 
present, however, as is seen with 68 gray squares (“good” file outputs) above the lowest 
black diamond (a noise file output). Additionally, 19 black diamonds fall below the 
highest gray square.   

PCA aims to reduce the vertical overlap between normalized algorithm outputs 
pertaining to known “good” and noise files to obtain optimal microseismic file 
classification. This was achieved by projecting the measured data shown in Figures 15 to 
17 onto the dataset’s principal components. It has been shown in the cited literature that 
the principal components of a dataset are equivalent to the unit-length eigenvectors of the 
dataset’s covariance matrix. 
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FIG. 15. Normalized Threshold algorithm output. There are 6 gray squares (“good” file outputs) 
above the lowest black diamond (a noise file output) and 32 black diamonds below the highest 
gray square. 
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FIG. 16. Normalized Histogram algorithm output. There are 7 gray squares (“good” file outputs) 
below the highest black diamond (a noise file output) and 50 black diamonds above the lowest 
gray square.  
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Figure 17. Normalized Zero-Crossing Count algorithm output. There are 68 gray squares (“good” 
file outputs) above the lowest black diamond (a noise file output) and 19 black diamonds below 
the highest gray square.  
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For example, let TTc , HHc , and ZZc  represent the calculated variance of the normalized 
Threshold, Histogram, and Specialized Zero-Crossing Count algorithm outputs, 
respectively, over all 540 files in the example dataset. Also let  THc , TZc , and HZc  
represent the calculated covariance between the normalized Threshold-Histogram, 
Threshold-Zero Crossing Count, and Histogram-Zero Crossing Count algorithm outputs, 
respectively, over all 540 files in the example dataset. It is also necessary to mean-correct 
the rows of the measurement matrix A to zero prior to formulating the covariance matrix. 
The symmetric 3 3×  covariance matrix C of the dataset can then be defined as 

 
TT TH TZ

TH HH HZ

TZ HZ ZZ

c c c
c c c
c c c

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

C . (15)    

The first row of C contains covariance values that involve the Threshold algorithm 
outputs; the second row contains values that involve the Histogram algorithm outputs; 
and the third row contains values that involve the Specialized Zero-Crossing Count 
algorithm outputs.        

Thus, for this symmetrical 3 3×  covariance matrix, there will be three corresponding 
unit-length orthogonal eigenvectors each representing a single principal component of the 
dataset. The eigenvalue of each eigenvector is equivalent to the data variance when 
projected onto the eigenvector. The eigenvector with the largest corresponding 
eigenvalue represents the first principal component of the dataset and is orientated in the 
direction of maximum data variance. The eigenvector with the second largest 
corresponding eigenvalue represents the second principal component of the dataset, and 
so on. For detailed mathematical theory pertaining to PCA, refer to the cited literature. 

After mean-correction, the normalized measurement data contained in the matrix A 
was projected onto the principal components of this example dataset containing 540 
microseismic files. Figures 18, 19, and 20 show this data after projection onto the first, 
second, and third principal components, respectively.  
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FIG. 18. Dataset projected onto first principal component. No vertical overlap is seen between 
“good” (gray squares) and noise (black diamonds) points. For this specific test dataset, perfect 
classification accuracy could be achieved using PCA and examining this component.   

In Figure 18, no vertical overlap exists between the “good” and noise data points, 
which clearly suggests that file classification using Figure 18 corresponding to PCA 
application would be improved over attempting to empirically classify files with the 
normalized raw measurements shown in Figures 15 to 17. Figures 19 and 20 correspond 
to noise components in the data and are not useful for microseismic file classification. 
Thus, for this dataset, PCA has reduced the effective dimensionality from three to one
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FIG. 19. Dataset projected onto second principal component. No useful information can be 
extracted in this example. 
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FIG. 20. Dataset projected onto third principal component. No useful information can be extracted 
in this example. 
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Figure 18 suggests that if PCA is used for multivariate data reduction, all 540 files 
from 28 different pads in this specific example dataset could be classified to perfect 
accuracy. This obviously will not always be the case for all datasets, but applying PCA 
does result in improved classification accuracy over simply observing individual 
algorithm outputs for classification.       

IMPLEMENTATION RESULTS 
In addition to strong classification performance, the statistical analysis algorithms 

swere also found to be the most computationally efficient, a required characteristic when 
potentially classifying tens of thousands of microseismic files daily. I created a 
MATLAB® program implementation that applied principal components analysis to 
statistical algorithm outputs for file classification. 

First, it was required to obtain principal components from a reference dataset. To 
ensure classification robustness, this dataset should be as diverse as possible. The 
statistical algorithm outputs pertaining to an incoming microseismic file to be classified 
were then projected onto the principal components obtained from the reference dataset. 
Depending on the principal components found from the reference dataset, data projected 
onto one or more of these principal components can be analyzed for microseismic file 
classification.   

When the developed program implementation was applied to a specific dataset where 
most files originated from five production pads, a microseismic file classification 
accuracy of 99.5% was obtained. Testing on a more diverse dataset with files from 28 
different pads yielded a classification accuracy of 98.8%. An exhaustive test on 
microseismic files from 72 different production pads resulted in a 90% accuracy. Given 
that up to tens of thousands of microseismic events are detected daily at Cold Lake, this 
application could have significant future impact.   

CONCLUSIONS 
Microseismic signal classification algorithms involving frequency filtering, event-

length detection, and statistical analysis were developed and tested on microseismic data 
from Cold Lake, Alberta, Canada. These algorithms were based on the observations that, 
compared to microseismic noise, “good” microseismic signals pertaining to events of 
interest generally contain lower dominant frequencies, shorter first-arrival event-lengths, 
lower signal variance, higher central data distribution, and less sporadic sequential time-
series behaviour about its mean.   

After extensive testing, we have seen that the developed statistical analysis algorithms 
perform best. A MATLAB® program implementation was created that applied principal 
components analysis, a multivariate data reduction technique to statistical analysis 
algorithm outputs. This application demonstrated classification accuracies between 90% 
and 99.5% when tested on various microseismic datasets from Cold Lake. Given that up 
to tens of thousands of microseismic events are detected daily at Cold Lake, this work 
could have significant future impact.    
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