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ABSTRACT

The purpose of this paper is to establish the close connection between minimum phase
conditions for signals and outer functions in spaces of analytic functions. The character-
ization through outer functions is physically motived, more precise mathematically, and
opens up results from complex analysis. In particular, we show not all spectra are possible
for minimum phase signals, and give alternative formulas for computing minimum phase
equivalent signals.

INTRODUCTION

The minimum phase condition for signals is a useful notion in signal processing, in-
cluding seismic data analysis, where in many situations, certain physical processes pro-
duce signals that have the characteristics of “minimum phase." For instance, the blast from
a seismic shot (dynamite source), or the impulse from an air gun is often assumed to be
minimum phase. A plausible physical argument for this observation is that in such pro-
cesses, most of the energy occurs near “the beginning” of the signal, a property shared with
minimum phase (see Karl (1989) and Oppenheim and Schafer (1998)). Certain data pro-
cessing algorithms assume the signal under study is of this form, in order to make a more
accurate recovery of that signal. Wiener spiking deconvolution, and Gabor deconvolution,
are two such instances.

However, this condition is somewhat problematic. The classical definition of minimum
phase (minimum phase lag) comes from linear systems theory, and it is not clear that all
the properties of such systems can be transfered to analogous properties of signals. For
instance, for a one-dimensional, discrete linear filter, the transfer function of the system is
assumed to be in the form of a rational function (a polynomial divided by another poly-
nomial); the minimum phase condition is then a statement about the location of zeros and
poles for the rational function. For general signals, however, one cannot assume their spec-
tra are always well-represented by rational functions; in particular, a signal does not easily
reveal its zeros and poles, and such poles and zeros can move about rapidly even for small
variations of the signal.

An alternate description of the minimum phase condition as “causal, stable signals with
causal, stable inverse” is also less than satisfactory, as it is not obvious why a signal should
even have a convolutional inverse. For instance, a finite energy signal on the real line
can have no convolutional inverse, since the convolution of two finite energy signals is an
integrable function, and never equals to the convolution identity, which is the Dirac delta
distribution. As another instance, the discrete sampled step function

(1, 1, 1, . . . , 1, 0, 0, 0, . . .) (1)
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fails the “stable causal inverse” property, yet it could be considered minimum phase for
physical reasons: it has most of its energy up front, and is the limiting case of a minimum
phase signal (1, r, r2, . . . , rN , 0, 0, 0, . . .), as r increases to 1.

Properties of minimum phase systems (rational functions) do not automatically extend
to signals; for instance the phase delay of a signal may be a highly singular function, and its
derivative (identified as the group delay) may not even exist. The proofs for the minimum
energy delay often assume the system has a rational form, which is not appropriate for
signals, and so better proofs are required.

Finally, it is common practice to compute minimum phase signals using the Hilbert
transform. This can be difficult as the Hilbert transform is a singular integral typically
evaluated as a Cauchy principal value and care must be taken to ensure that this is done
correctly, especially in the case of computing from real random data. The “Hilbert trans-
form pair” property of the log amplitude and phase of a minimum phase signal is known
for rational functions, but care must be taken in the case of signals. Zeros in amplitude
spectrum are a special problem that needs to be addressed.

In this paper, we give an alternative characterization of signals which concentrate their
energy near their start. Making a connection with classical complex analysis, such a signal
will be identified as precisely one whose spectrum is an outer function in a suitable Hardy
space. A key property demonstrated is that the spectrum must not have too many zeros, and
so it is impossible to find minimum phase signals with arbitrarily specified spectra. Sta-
ble formulas are then presented to compute the minimum phase counterpart of any causal
signal.

SAMPLED SIGNALS AND ANALYTIC FUNCTIONS

We restrict our attention to time series of the form f = (. . . , f−2, f−1, f0, f1, f2, . . .),
which can be considered as a data samples of some signal. The case of signals on the real
line is considered in Appendix II.

A sampled signal f = (. . . , f−2, f−1, f0, f1, f2, . . .) is bounded if

|fn| ≤ M for all n; (2)

stable if
∞∑

n=−∞

|fn| < ∞; (3)

finite energy if
∞∑

n=−∞

|fn|2 < ∞; (4)

and causal if
fn = 0 for all n < 0. (5)

Given a bounded, causal signal, a complex analytic function F (z) is defined by the power
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series

F (z) =
∞∑

n=0

fnz
n, (6)

which converges for any complex number z = x + iy in the unit disk

D = {z ∈ C : |z| < 1}. (7)

For stable signals, it is easy to see that the function F (z) is just an extension of the Fourier
transform f̂ (or spectrum) of the signal, since its values on the boundary of the disk just
gives the usual spectrum for the signal,

F (e2πiθ) =
∞∑

n=0

fne
2πinθ = f̂(θ), 0 ≤ θ ≤ 1, (8)

where θ is the normalized frequency. The Fourier coefficients of F recover the original
signal, as

fn =

∫ 1

0

F (e2πiθ)e−2πinθdθ. (9)

For finite energy signals, this extension gives a square integrable function on the circle, and
the Plancherel theorem indicates that the total energy is given as the integral∫ 1

0

|F (e2πiθ)|2dθ =
∞∑

n=0

|fn|2. (10)

For other causal signals (not stable, not finite energy), it is not always the case that the
corresponding analytic function can be extended to the circle. It is useful to introduce the
Hardy space H1(D) as the set of analytic functions F (z) defined from causal, bounded
signals, that have the additional property that the norm

||F || = lim
r→1

∫ 1

0

|F (re2πiθ)|d θ (11)

is finite.† These are the functions that can be extended to the circle as a simple limit
F (e2πiθ) = limr→1 F (re2πiθ). Equivalently, the Hardy space H1(D) can be defined as
the set of integrable functions on the circle, whose negative Fourier coefficients all are
identically zero.

The conclusion of this section is that causal signals are very well described by analytic
function in a Hardy space, of which there is much known mathematically.

†It is possible to define more general Hardy spaces Hp(D) for any number 1 ≤ p ≤ ∞ but we will not
need them here.
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CAUSAL SIGNALS AND SPECTRUM

In many geophysical applications, we wish to find a causal, minimum phase signal with
a given amplitude spectrum. For instance, in deconvolution, the source signature wavelet is
found as the minimum phase signal with amplitude spectrum determined by a smoothing
of the amplitude spectrum of recorded seismic data.

What is often ignored in practice is that there restrictions on what the amplitude spec-
trum can be. For a causal signal, there cannot be too many zeros. in practice, it is un-
derstood that filling in the zeros with a small constant gives a computable function. But
it is important to note that this is more than a computational difficulty: certain amplitude
spectra do not come from causal signals. For instance, it is impossible to have a perfectly
bandlimited amplitude spectrum for a causal signal, even for a signal of infinite length.
That would mean, for instance, that it is impossible to find a causal signal whose spectrum
corresponds to a band limited delta spike. The reason is the following theorem:

Theorem 1 Suppose f = (f0, f1, f2, . . .) is a bounded causal signal with corresponding
analytic function F (z) =

∑
fnz

n in the Hardy space H1(D). Then the log of the amplitude
spectrum of the signal

log |f̂(θ)| = log |F (e2πiθ)| (12)

is integrable.

The details are in Hoffman (1962) and Helson (1995). The point is that if the spectrum
is zero on, say, an interval, then the log spectrum is minus infinity on an interval, and that
cannot be integrated. On the other hand, a few isolated zeroes in the spectrum are not a
problem since a logarithmic singularity is integrable.

As an example of the confusion that can arise, we look at computing the minimum
phase version of a band limited delta spike. This can be done directly in MATLAB using
the “rceps” function, or by other methods involving a numerical Hilbert transform. The
problem is that the log amplitude spectrum is used in the calculation, which equals minus
infinity at many points, which interferes with the calculation. A common fix is to replace
log |f̂(θ)| with log(|f̂(θ)|+ ε), where ε > 0 is a small stabilization parameter.

However, as we see in Figure 1, as this stabilization parameter decreases to zero, the
resulting signal does not converge to a stable result. In fact, as ε → 0, the major bump in
the signal moves off to the right. The problem is not in choosing the right stabilization;
the problem is that no causal signal can have that prescribed spectrum with an interval of
zeroes.

FRONT LOADED SIGNALS

The key physical property of minimum phase signals that makes them useful in applica-
tions is that the energy is concentrated near the front of the signal. Here, we make that our
main definition, and show that the usual examples of minimum phase signals are covered
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FIG. 1. Four versions of a stabilized min phase signal, using stabilization values .1, .001, .00001,
.0000001.
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by this case. We also show it is a more general notion that covers more signals, and has an
extremely useful characterization in Hardy spaces.

Definition 2 We say a causal signal f = (f0, f1, f2, . . .) is front loaded if its partial ener-
gies are maximized, relative to any other casual signal with the same amplitude spectrum.

That is, if g = (g0, g1, g2, . . .) is any other causal signal with amplitude spectrum
|ĝ(θ)| = |̂f(θ)|, then

N∑
n=0

|gn|2 ≤
N∑

n=0

|fn|2, for each N = 0, 1, 2, . . .. (13)

As a simple example, consider the causal signals f = (2, 1, 0, 0, 0, . . .) and g = (1, 2, 0, 0, 0, . . .).
The signals have the same amplitude spectra, but f has more energy in the 0-th entry than
does g, so it seems more front loaded. In fact, it is more front loaded than any signal with
the same amplitude spectrum.

Our main mathematical result is that these front loaded signals correspond to a well-
understood class of functions in Hardy space.

Theorem 3 Suppose f = (f0, f1, f2, . . .) is a bounded, causal signal with corresponding
analytic function F (z) in the Hardy space H1(D). Then f is front loaded if and only if
F (z) is an outer function.

That is, F (z) can be written in the form

F (z) = λ exp

(∫ 1

0

e2πiθ + z

e2πiθ − z
u(e2πiθ)d θ

)
(14)

where u is a real-valued integrable function on the unit circle, and λ is a complex number
of modulus one.

The details are given in Appendix I. The point is, front loaded signals precisely cor-
respond to outer functions, which are given by a specific integral. The function u in the
integral is just the log amplitude spectrum of the signal, so we have a precise formula to
compute the minimum phase equivalent of any causal signal.

We also note in the following theorem that front loaded generalizes the usual notion of
minimum phase.

Theorem 4 Suppose f = (f0, f1, f2, . . .) is a causal stable signal with causal stable in-
verse. Then f is front loaded and the analytic function F (z) is outer.
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This theorem follows immediately from an exercise in Hoffman (1962): the signal
f defines an analytic function F (z) and the inverse signal has analytic function 1/F (z).
Since both F (z) and its reciprocal are in the Hardy space, that function must be outer.

For filters, the transfer function is a rational function in z−1 and is precisely F (z−1).
The causal stable filter, with causal stable inverse, is equivalent to having F (z−1) with all
its zeros and poles of that inside the unit disk.

It is worth noting at least one example that shows the front loaded condition is more gen-
eral than the “causal stable signal with casual stable inverse.” The signal f = (1, 1, 0, 0, 0, . . .)
is casual and stable, but its convolutional inverse f−1 = (1,−1, 1,−1, 1,−1, . . . ) is not sta-
ble. So f is not strictly speaking a minimum phase signal in the classical sense. But it is
front loaded, the power series function F (z) = 1 + z is indeed outer, and thus f can be
reconstructed directly from its amplitude spectrum.

HILBERT TRANSFORM CALCULATION OF FRONT LOADED SIGNALS

We show how to compute a front loaded signal using a the Hilbert transform. The main
steps are as follows. Given a causal signal g with amplitude spectrum |ĝ(θ)|, we define two
real-valued functions u, v on the circle as

u(e2πiθ) = log |ĝ(θ)|

v(e2πiθ) =

∫ 1

0

cot(π(θ − φ))u(e2πiφ)dφ,

where we see v is just the convolution of u with the cotangent function; this is Hilbert
transform on the unit circle‡. The equivalent front end loaded signal f has spectrum f̂(θ) =
exp

(
u(e2πiθ) + iv(e2πiθ)

)
, and the signal f itself can be recovered using the inverse Fourier

transform.

The reason this works is as follows. The front loaded signal f will have the same
amplitude spectrum as g and so the real-valued function defining the corresponding outer
function F (z) is given by

u(e2πiθ) = log |ĝ(θ)|. (15)
The outer function is now expressed as

F (z) = exp

(∫ 1

0

e2πiθ + z

e2πiθ − z
u(e2πiθ)d θ

)
, (16)

and so we let log F (z) = u(z) + iv(z) with

u(z) =

∫ 1

0

Re

[
e2πiθ + z

e2πiθ − z

]
u(e2πiθ)d θ,

v(z) =

∫ 1

0

Im

[
e2πiθ + z

e2πiθ − z

]
u(e2πiθ)d θ,

‡In the Fourier transform domain, the Hilbert transform acts as multiplication by i ∗ sgn(n), the Fourier
series coefficients of the cotangent.
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where u(z), v(z) are conjugate harmonic functions on the unit disk. Setting z = re2πiφ and
letting r → 1 we see in the integral for v(z) = v(re2πiφ) that

Im

[
e2πiθ + re2πiφ

e2πiθ − re2πiφ

]
=

2r sin(2π(φ− θ))

1− 2r cos(2π(φ− θ))− r2
→ cot(π(φ− θ)) (17)

as r → 1. And that v(e2πiφ) is given by the convolution of u with the cotangent, which is
the Hilbert transform.

NON-SINGULAR INTEGRAL FORMULA FOR A DISCRETE, MINIMUM
PHASE SIGNAL

Given an outer function F (z), the Fourier coefficients can be computed by integrating
along an interior circle of the unit disk, so

fn =
1

rn

∫ 1

0

F (re2πiφ)e−2πinφ dφ, any r < 1 . (18)

This is not singular, since the function F (z) is continuous on the interior circle. From the
previous section, one obtains a formula for F (z) at interior points, and thus

fn =
1

rn

∫ 1

0

exp

(∫ 1

0

e2πiθ + re2πiφ

e2πiθ − re2πiφ
log |F (e2πiθ)| dθ

)
e−2πinθ dφ, (19)

where |G(eiθ)| is the amplitude spectrum of the desired signal, assumed to be known. Pro-
vided F does not vanish on the circle, this double integral is not singular.

In a numerical calculation, the desired amplitude spectrum |F | is either given, or com-
puted from sample data using the FFT. The inner integral is approximated by a sum at the
given discrete points;. The exponential is computed at these discrete points, and an inverse
FFT used to compute the fn.

In the case of a zero in the spectrum, it might be best just to factor out that zero and do
the reduced calculation.

SUMMARY

We have shown a more general definition of minimum phase signals, which we call
front loaded signals, referring to the essential physical property that such causal signals
maximize the amount of energy at the beginning (front) of the signal. Mathematically, this
is equivalent to the property that the Fourier transform (or spectrum) of the signal is an
outer function in a Hardy space of analytic functions.

We also note that both causal signals and minimum phase signals have restrictions on
their spectrum. In particular, one cannot take an arbitrary amplitude spectrum and hope to
find the minimum phase signal corresponding to it. There is an essential restriction on the
density of zeros in the amplitude spectrum.

The Hilbert transform can be used to compute the front loaded equivalent of any causal
signal. We also present alternative, non-singular integral formulas for computing the front
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loaded equivalent, obtained by analytically extending the Fourier transform of a causal
signal to the interior of the unit disk in the complex plane.

In summary, we have produced a mathematically rigourous definition of minimum
phase signals that is both physically meaningful and computationally useful.
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APPENDIX I: PROOFS

Outer functions in the Hardy space H1(D) were defined in Theorem 3. The following
important theorem characterizes some key properties of outer functions.

Theorem 5 Let F be a nonzero function in H1(D). The following are equivalent:

i) F is an outer function;

ii) log |F (0)| =
∫ 1

0
log |F (e2πiθ)|d θ;

iii) the functions znF (z), n ≥ 0, span H1(D);

iv) F is an extreme point in ball of radius R = ||F ||1 in H1(D).

v) If G is any other function in H1(D) such that |G| = |F | almost everywhere on the
unit circle, then |G(z)| ≤ |F (z)| for each point z in the open unit disk;

vi) if G is any function in H1(D) with G/F integrable on the unit circle, then G/F is in
H1(D);

A bounded analytic function G(z) is called inner if |G(eiθ)| = 1 a.e. on the unit circle.

Every analytic function in H1(D) can be factored into a product of an inner function
times an outer function, unique up to a multiplicative factor of modulus one. The inner
function contains the zeros of the function, in the precise sense that it is the product of a
Blaschke product, and a singular function. Any analytic function G(z) with the same

These results are stated in Hoffman, or offered as exercises.

We now prove that outer implies front loaded, and conversely.

Theorem 6 Suppose f is a causal signal with F (z) is outer. Then f is front loaded.

Proof: We must show that if g is another signal with the same amplitude spectrum, then
for each N ≥ 0, the partial energies satisfy

N∑
n=0

|gn|2 ≤
N∑

n=0

|fn|2, for all N , (20)

From item vi) of Theorem 5, the function C(z) = G(z)/F (z) is an inner function in
H1(D). Since |C(eiθ)| = 1 a.e., the inner function is square-integrable on the circle and
corresponds to a square summable causal sequence c. Fix N ≥ 0 and let f̃ be the truncated
sequence

f̃ = (f0, f1, . . . , fN−1, fN , 0, 0, 0, ...) (21)
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and set g̃ = c ∗ f̃ . Since f and c are causal, the full and truncated convolutions agree for
the first N + 1 terms, so one has

g̃n = gn, for 0 ≤ n ≤ N . (22)

Thus, the partial energies satisfy

N∑
n=0

|gn|2 =
N∑

n=0

|g̃n|2 ≤
∞∑

n=0

|g̃n|2 =
∞∑

n=0

|f̃n|2 =
N∑

n=0

|fn|2 (23)

where the equality in the middle follows from the Plancheral theorem on L2(T), noting that
|G̃| = |CF̃ | = |F̃ | a.e. on the unit circle. QED

The converse is quite easy:

Theorem 7 Suppose f is a front loaded signal. Then F (z) is outer.

Proof: Let G(z) be an outer function in H1(D) with |G| = |F | on the unit circle,
corresponding to a casual sequence g. Since f is front loaded, its partial energy at zero is
bigger than that for g, so

|F (0)| = |f0| ≥ |g0| = |G(0)|. (24)

On the other hand, by v) of Theorem 5, the outer function G(z) satisfies

|G(0) ≥ |F (0)|. (25)

Combining the two inequalities shows |F (0)| = |G(0)| and thus by ii) of Theorem 5, we
have

log |F (0)| = log |G(0)| =
∫ 1

0

log|F (e2πiθ)|dθ. (26)

Hence F (z) is outer. QED

APPENDIX II: CONTINUOUS TIME SIGNALS

This work generalizes to continuous signals on the real line. The key ideas are that the
Fourier transform of a causal signal f : R → C extends to an analytic function on half the
complex plane by

F (z) =

∫ ∞

0

f(t)e2πitzdt, Im(z) > 0, (27)

since the exponential decay cause by the choice of Im(z) > 0 makes the integral converge
nicely. The Hardy space H2(R) is defined as the image of the square integrable causal
functions under this transform. Again we have inner and outer functions, and the various
factorization theorems.

We show here that a causal signal whose Fourier transform is outer, is necessarily front
loaded.
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Theorem 8 Suppose f is a causal signal in L2(R) with Fourier transform an outer function
in H2(R)), and g is another causal signal with the same amplitude spectrum. Then for each
T ≥ 0, the partial energies satisfy∫ T

0

|g(t)|2 dt ≤
∫ T

0

|f(t)|2 dt. (28)

Proof: Since g the same amplitude spectrum as f , it is also in L2(R+). By the factoriza-
tion theorem, the corresponding Fourier transform functions F (z), G(z) in the Hardy space
are related by an inner function C(z), with G(z) = C(z)F (z). Since |C(x)| = 1 a.e.
on the real line, the inner function is in H∞ and corresponds to a distribution c(t) on the
positive real line. Fix T ≥ 0 and let f̃ be the truncated signal

f̃(t) = f(t) for 0 ≤ t ≤ T , (29)
= 0 otherwise, (30)

and set g̃ = c ∗ f̃ . Since f and c are causal, the full and truncated convolutions agree up to
T , so we have

g̃(t) = g(t), for 0 ≤ t ≤ T . (31)

Thus, the partial energies satisfy∫ T

0

|g(t)|2 dt =

∫ T

0

|g̃(t)|2 dt ≤
∫ ∞

0

|g̃(t)|2 dt =

∫ ∞

0

|f̃(t)|2 dt =

∫ T

0

|f(t)|2 dt (32)

where the equality in the middle follows from the Plancheral theorem for H2(R) functions,
noting that |G̃| = |CF̃ | = |F̃ | a.e. on the real line. QED

At this point, we are not able to show that front loaded implies outer.
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