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ABSTRACT

To address the problems of irregular trace spacing and statics correction, simultane-
ous regularization and wave equation statics (WE statics) isimplemented by least-squares
inversion. In general, inversion is found to be intractablecurrently in 3D, so series ap-
proximation is made to reduce significantly the number of required integrals. The resulting
operator is suitable for both direct inversion, or for use with gradient methods.

Real and synthetic data are used to demonstrate the viability of the inversion. Synthetic
data show that even for severe velocity variation and topography, inversion converges to
an acceptable solution, and that aliasing is significantly reduced. Similarly for real data,
inversion is shown to return a regularized result with WE statics applied that is anti-aliased.

INTRODUCTION

An inversion for seismic data is given in Ferguson (2006) to correct for strong velocity
variation in the near-surface simultaneously with trace regularization. The wave equation
statics component of that method is implemented with an approach related to themigration
by deconvolution of Yu et al. (2006) where operator error associated with lateral hetero-
geneity (Etgen, 1994) is mitigated through least-squares inversion. Ferguson (2006) adds
regularization to least-squares inversion to regularize data and reduce operator error for
negligible additional cost. The analytic basis for this method results in a multidimensional
Fourier integral, and an approximation is developed there to reduce computational effort.
That approximation achieves efficiency through computation of only the central diago-
nals of the associated wavefield operators, so it is an approximation that has no analytical
justification. Here, a new analytic basis is provided for approximation through series ap-
proximation and truncation. This approach provides an analytic form that is used as a basis
for an improved inversion algorithm. This improved algorithm is based on implementation
of the Newton method (Tarantola, 1987, pg. 251, for example), but it has direct application
to gradient methods (Smith et al., 2009; Tarantola, 1987, pg. 239, for example) where it
may be used as a fast approximation to the preconditioning operator.

Central to the method presented here is the use of wave-equation operators to focus
irregular wavefields and reduce spatial aliasing. In this way, inversion is similar to regular-
ization methods that require a velocity model. Robertsson et al. (2008), for example, ap-
ply a normal-move-out (NMO) correction to data acquired with multicomponent streamer
prior to interpolation of crossline pressure measurements. In Güliünay (2003), to help en-
sure that the dip content of lower frequencies is similar to that of linear events in the input,
NMO correction is applied prior to prediction error filtering. In a least-squares inversion
that is similar to the approach proposed here, modified Stolt(Stolt, 1978) and Kirchhoff
(Schneider, 1978) operators are used by Trad (2003) to localize hyperbolic events and solve
a similar equation by gradient methods.
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A number of other interpolation / regularization methods are based on thef−xmethod
of Spitz (1991). Naghizadeh and Sacchi (2009) extendf−x interpolation for variable dips
using adaptive prediction filters. For regularization, Zwartjes and Sacchi (2007) extend
Spitz (1991) through the use of the non-uniform Fourier transform (NFFT) (Duijndam and
Schonewille, 1999, for example).

Under the heading of Fourier reconstruction methods, Hennenfent and Herrmann (2008)
demonstrate that random undersampling is better than regular undersampling. Abma and
Kabir (2006) use an iterative Fourier method to regularize data, and Duijndam et al. (1999)
use least-squares to estimate a regularized Fourier spectrum. In their method, Duijndam
et al. (1999) use energy-adaptive stabilization and noise adaptive weighting in a stable and
efficient regularization.

In this paper, a number of ideas from the above authors are adapted to the problem
of trace regularization and wave-equation statics application. Similar to Trad (2003), for
example, wave-equation operators are used to localize reflection energy, and weighting
operators are used to ensure stability and minimize noise. Here, rather than Stolt and
Kirchhoff operators, one-way operators are used to ensure accuracy and multipathing in
heterogeneous media.

From the general expression for regularization and redatumby the Newton method
(Ferguson, 2006), I depart from this development at the point of approximation of the
Hessian. Where Ferguson (2006) offers a sparse matrix-operator that is fast to compute,
an asymptotic expansion is developed here and then truncated. This results in significant
computational savings, and it makes this inversion tractable in 3D.

This approximate inversion is then tested on synthetic dataand real data. As a bench
mark, inversion (hereafter in this paper,inversion will represent the regularization / re-
datum method presented here) ofirregular, aliased data is compared to interpolation of
regular, aliased data that is interpolated using thef − x method∗ of Spitz (1991) followed
by WE statics. Equivalent results are found for this benchmark are found. Increasingly
irregular synthetic data reveal that, even in the presence of severe variation in velocity and
topography, and where data are extremely irregular and aliased, inversion restores missing
traces and removes traveltime effects. The real-data example shows similar results even in
the presence of strong topography, strong velocity variation, and severe trace decimation.

THEORY

Given monochromatic wavefieldψz at depthz, the Newton-method solution for extrap-
olated wavefieldψz+∆z is

ψz+∆z =
[

UA
−∆z We U−∆z + ε2Wm

]−1
UA
−∆z We ψz, (1)

whereWe andWm are a weighting operator and a minimum-length operator respectively,
andε2 is a scalar that controls the amount of smoothing (Ferguson,2006; Menke, 1989,

∗Though multi-dimensional regularization methods that outperformf − x interpolation exist (Zwartjes
and Sacchi, 2007, for example), they are not as widely available.
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pg. 53 - 54). It is assumed in equation 1 that input wavefieldψz is an irregularly sampled
wavefield that has been infilled with null traces in a prior processing-step. Prior infill
gives a wavefield that is regularly sampled, but one with significant error due to the null
traces. So that null traces don’t influence the solution, diagonal operatorWe weights live
traces and null traces, respectively, with unit value and zero value (Menke, 1989, pg. 54).
Minimum-length operatorWm ensures that the minimum-length solution is found (Menke,
1989, pg. 53 - 54). OperatorU−∆z and its adjointUA

−∆z are known as one-way operators
that move wavefields distance−∆z and+∆z along the depth axis respectively according
to a user-defined model of seismic velocity (Margrave and Ferguson, 1999).

Computationally,U−∆z andUA
−∆z are matrices that can be very large; for 2D data,

they may have hundreds or thousands of columns and a similar number of rows. In 3D,
computation of

[

UA
−∆z We U−∆z ψz (x′)

]

(x) within equation 1 is impossible (practically
speaking) in 3D currently.

Ferguson (2006) and Kühl and Sacchi (2004) explore different approximations to

S = UA
−∆z We U−∆z, (2)

for use within Hessian of equation 1. Kühl and Sacchi (2004) use phaseshift-plus-interpolation
(PSPI) (Gazdag and Sguazzero, 1984) within a conjugate gradient framework, and Fergu-
son (2006) computes and applies directly only a limited number of diagonals forS, and
then computes the inverse using an efficient LU operator. This latter inversion results in a
dip-limited operator related toω − x migration (Berkhout, 1985).

OperatorS transforms from space coordinatesx′ to wavenumber coordinates, and it
applies a nonstationary phase shift – operatorU−∆z does this. The result is then reversed
by UA

−∆z and transformed back to space coordinatesx. Once computed,S is added to
minimum-length operatorε2 Wm, and the result is inverted. The redatum aspect of the
inversion is actually implemented in equation 1 byUA

−∆z applied toWe ψz (the weighted
input). ExtrapolatorsUA

−∆z andU−∆z in S act together as a migration-deconvolution oper-
ator similar to that of Hu et al. (2001).

For arbitrary wavefieldψz, the action ofS can be written as a nonstationary convolution
(Margrave, 1998)

[Sψz (x′)] (x) =

∫

ψz (x′)S (x, x− x′) dx′, (3)

wherex andx′ are 2D space coordinates of output and input at recording surfacez respec-
tively, and

S (x, x− x′) =
1

(2π)4

∫

e−i[kx,y−x′]e−i[k′

x,x−y]α (y, k′x)∆z α̃ (y, kx)−∆z dkx dy dk
′

x. (4)

Two dimensional space coordinatey corresponds to datumz + ∆z, and wavenumberskx,
andk′x are wavenumber duals ofx andx′ respectively. Extrapolatorα is

α±∆z = e±i∆zkz , (5)
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and for temporal frequency|ω| = ω, wavenumberskz are

kz = ℜ
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wherek = ω
v
, andv is seismic velocity that varies laterally withy. This prescription for

kz ensures exponential decay in the evanescent region(kz = ℑ{kz}). Extrapolatorα̃−∆z

results from the application of diagonal weighting operator We to α−∆z.

As it is, operatorS is extremely costly to apply, and in 2D for example, cost is∝ N3

floating-point operations (flops) whereN is the number of traces (Ferguson, 2006).N3

is the cost of the inner loop of the inversion, and outside of it is a loop over temporal
frequency, and then a loop over depth. So, for hundreds of traces, frequencies, and depths,
inversion of a single trace gather can run for hours on a single processor. In 3D, cost of
the inner loop grows to∝ N8 flops as is shown in Appendix A (we are interested in the
order-of-magnitude-cost, so for simplicity, the number ofinline and crossline traces are
assumed here to be equal toN ). For a1000 × 1000 receiver array, for example, minimum
cost is∝ 1024 flops per frequency per depth.

Approximate Hessian

Because inversion is so costly, some kind of approximation must be considered. Begin
with equation 4, and introduce coordinatesξ = k′x − kx, k′x = ξ + kx, anddξ = dk′x to get

S (x, x− x′) =
1

(2π)4

∫

eiyξeix′kxe−ix[ξ+kx]α (y, ξ + kx)∆z α̃ (y, kx)−∆z dkx dy dξ. (7)

Expandα (ξ + kx)∆z as a Taylor series inkx according to

α (ξ + kx)∆z =
∞

∑

j=0

1

j!

[

∂
j
kx
α (kx)∆z

]

ξj, (8)

and then computey → ξ to eliminate an integral in favour of an infinite sum (that we may
expect to truncate later) so that

S (x, x− x′) =
∞

∑

j=0

1

j!

1

(2π)4

∫

e−ikx[x−x′]e−ix ξ ξj H (ξ, kx)j,∆z dkx dξ, (9)

where

H (ξ, kx)j,∆z =

∫

eiyξ
[

∂
j
kx
α (y, kx)∆z

]

α̃ (y, kx)−∆z dy. (10)

Then, because functionf and its spectrumF are related through

ij ∂j
xf (x) ↔

1

2π

∫

ξj F (ξ) e−iξ x dξ, (11)
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we may computeξ → x to eliminate another integral

S (x, x− x′) =
∞

∑

j=0

ij

j!

1

(2π)2

∫

e−ikx[x−x′]
[

∂j
x hj (x, kx)∆z

]

dkx (12)

where
hj (x, kx)∆z =

[

∂
j
kx
α (x, kx)∆z

]

α̃ (x, kx)−∆z . (13)

Our arrival at equation 12 involves elimination of two integrals (four integrals in 3D) in ex-
change for the cost associated with differential operatorsand an infinite sum. For practical
implementation, truncate series equation 12 ton <<∞ terms so that

S (x, x− x′) ∼
n

∑

j=0

ij

j!

1

(2π)2

∫

e−ikx[x−x′]
[

∂j
x hj (x, kx)∆z

]

dkx. (14)

The cost of this series is dominated by the sum overkx andj is ∝ N2× the number of
termsn in the series or∝ nN2 in 3D and∝ nN in 2D. Forn = 4 andN = 1000, for
example, 2D cost is∝ 103 flops per frequency per depth – a106 fold reduction in cost over
exact solution (equation 4). For 3D, cost is∝ 1012 flops per frequency per depth – a1012

fold reduction in cost relative to the exact solution (Appendix A).

IMPLEMENTATION

In this section, a basic description of the implementation of the inversion is presented.
For simplicity, components of the inversion will be rendered in a notation where bold
symbols represent matrices, for example,S ψ ↔ [S ψ (x′)] (x). To implement equation 14
we have

S ∼

4
∑

j=0

Sj, (15)

where, for example,
S0 = FFT{e⊙ h0} . (16)

In equation 16, FFT indicates fast Fourier transform overkx, e↔ e−i kx x, ⊙ indicates the
scalar product of matrices, and, from equation 13,

h0 = α∆z ⊙ α̃−∆z, (17)

whereα∆z ↔ ei ∆z kz , α̃−∆z = α−∆zWe (the weighting operator applied to extrapolator
α−∆z), andkz is given by equation 6 (now as a function ofx rather thany). For these
matrices,x varies along columns, andkx varies along rows. The next term,j = 1, in the
series equation 15 is

S1 = FFT
{

e⊙
[

h1D
1
]}

, (18)

whereD1 is a finite-difference operator for coordinatesx with rows[ · · · 1 − 1 · · · ]÷∆x,
∆x is trace spacing, and

h1 =
[

D1α∆z

]

⊙ α̃−∆z. (19)

TermsS2, S3, andS4 in equation 15 are constructed similarly.
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As an improvement to the preconditioning operator for gradient methods, we would
multiply S by minimum-length operatorWm, add ones to the main diagonal, and then
compute an approximate inverse of the result (Tarantola, 1987, pg. 251, for example).
To implement the Newton method, equation 1, we scaleWm by ε2, add this toS, and
then compute the inverse of the result. Extrapolated wavefield ψz+∆z (a vector) is then
calculated according to

ψz+∆z =
[

S + ε2Wm

]−1
UA

−∆zWeψz, (20)

whereWm is a finite-difference operator with rows[ · · · 1 − 2 1 · · · ] ÷ ∆x2. Vector
UA

−∆zWeψz in equation 20 is the result of matrixWe applied to input vectorψ∆z. Re-
call, ψ∆z is infilled with null traces in a prior step, soWe has ’1’s (live trace) and ’0’s
(null trace) along the main diagonal. The result is then phase-shifted byUA

−∆z and the
inversion operator is applied. Determination of scalarε2 is done by trial and error (Menke,
1989, pg. 52). In the current implementation, inverse[S + ε2Wm]

−1 is found through
LU decomposition (Press et al., 1999, pg. 48, for example).

The procedure outlined in this section is general in that it is a solution for one fre-
quency, one x-line wavenumber, and one depth step. For time-domain output,ψz+∆z is
computed for all positive frequenciesω of interest, and IFFTω → t is computed. For 3D,
equation 20 is applied iteratively for eachω and each x-line wavenumberky. This inversion
accommodatesv (x) variation (lateral variation) naturally through nonstationaryUA

−∆z and
U∆z. Herev (x,∆z), extrapolation depth∆z is split intoj small intervalsδzj so that

∆z =
n

∑

j=1

δzj, (21)

whereδzj is small enough that∂δzj
v (x, δzj) = 0. Based on equation 21, then,ψz+∆z is

computed recursively as

ψz+∆z = ψz+δz1+δz2
= INV2 {INV1 {ψz}} , (22)

for example, whereINV2 represents implementation of equation 20 for lateral velocity
variationv (x, δz2), andINV1 accommodates lateral velocity variationv (x, δz1). In gen-
eral, for∆z divided inton depth steps,

ψz+∆z = ψz+δz1+···+δzn
= INVn {· · · INV1 {ψz}} , (23)

where· · · indicates recursive application of inversionsINV2 throughINVn−1.

When elevation varies,∆z → ∆z (x), the recursive method of Reshef (1991) is em-
ployed. In this method, a zero wavefield is installed at the top of a regular grid where the
top of the grid is higher than the highest elevation. Then, based on the near-surface ve-
locity, the zero wavefield is propagated recursively inδzj intervals until a surface point is
reached. If receivers exist there, wavefield data are added at the ’live’ locations (Reshef,
1991). Similar to equation 5 in Reshef (1991), modifyWe at eachδzj to give unit weight
to ’live’ traces, and zero weight to traces elsewhere. Recursive inversion is then computed
according to equation 23 until a datum is reached.
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EXAMPLES

Two examples demonstrate regularization and WE statics by the inversion method pre-
sented here. The first example consists of two synthetic datasets that exhibit aliasing. The
first synthetic consists of a superposition of point sourcesand a line source in a medium
whose velocity varies linearly, and where the recording surface has significant elevation
change. Linear variation plays to the strength of the inversion in that convergence depends
(partially) on spatial derivatives of velocity (as in equation 12), and is presented as thebest
case of a heterogeneous medium. The second synthetic has the samegeometry as the lin-
ear example, but its step variation in velocity is presentedas a challenge to the inversion
method. Again, because convergence of the inversion depends on spatial derivatives, step
variation will reveal effects due to non-convergence. Aliasing in all examples is achieved
through random decimation of traces.

A real data example based on the Husky dataset (Stork, 1994) is then presented. A com-
mon source-gather from this dataset is severely decimated based on a common receiver-
gather that is very sparse and irregular. The required velocity model of the near-surface is
obtained through turning-wave tomography.

Synthetic data examples

Finite differences are used to generate synthetic data based on the velocity models
and source / receiver geometries of Figures 1a and b. These data are then decimated in
two stages of increasing severity and inversion is performed. Inversion is then followed
by phase-shift redatuming to the highest receiver elevation with the mean of the velocity
model as a reference velocity. Here, the mean velocity is used to reduce both evanescent
leakage and dip-limiting of diffraction tails.

Linear velocity variation

Data that correspond to the linear model in Figure 1a are given in Figure 2a. Here,
the original gather is decimated randomly from 512 traces to256. Inversion of these data
based on the velocity model of Figure 1a regularizes the traces and applies WE statics,
and the result is given in Figure 2b. Time variation due to elevation and velocity changes
is removed, and the event associated with the line source is now linear and continuous.
Diffractions associated with the point sources are reconstructed and continuous to high
dip. Aliased energy, as indicated in Figure 2c is now removedas can be seen in Figure 2d.

For comparison, the original gather is decimatedevenly (as opposed to randomly) from
512 to 256 traces (Figure 3a), and interpolation by thef − x method of Spitz (1991) fol-
lowed by WE statics is performed. Note, null traces used as place holders in Figure 3a are
removed prior tof − x interpolation. Though the styles of decimation are quite different
(random vs. even),f − x interpolation (aliased, even sampling) and regularization by in-
version (aliased, random sampling) are quite similar. Bothapproaches result in continuous
linear events and diffractions, and aliasing is eliminated.

The original gather is then decimated randomly to one third of the original number
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of traces (512 → 171, Figure 4a), and inversion is performed again. Though aliasing is
now more severe (Figure 4c), inversion returns continuous events (4b) and an unaliased
spectrum (Figure 4d).

Step velocity variation

As a challenge to the inversion presented here, a trace gather based on the step model of
Figure 1b is generated, and then decimated randomly from 512traces to 256 traces (Figure
5a). Though a large, discontinuous change in velocity (2000m/s→ 3725 m/s at 2.5 km
in Figure 1b) is present in this model, convergence of the inversion is sufficient such that a
good result is returned. As can be seen in Figure 5b, events are continuous though artifacts
(discussed in the next paragraph) are present at∼ 0.3 seconds between∼ 3000 m and∼
4200 m. Aliased energy (Figure 5c), as before, is now removed(Figure 5d).

Similar to the linear example, the original gather is decimated evenly (512→ 256
traces, Figure 6a), andf − x interpolation and WE statics are performed. Again, though
we compare random vs. even decimation, regularization of the randomly sampled gather
by inversion is comparable tof − x interpolation of the regular gather. Artifacts apparent
on the regularized gather (∼ 0.3 seconds between∼ 3000 m and∼ 4200 m, Figure 5b) are
present, to a slightly lesser extent, on the interpolated gather (Figure 6b). These artifacts
are due, presumably, to some shared aspect of these two very different algorithms. Com-
monalities might include wave-equation operators centralto both WE statics (here applied
following f − x interpolation) and inversion, or perhaps due to the finite-difference algo-
rithm employed to generate the input data. Regardless, the similarity of regularization and
interpolation under these extreme conditions lends confidence to the inversion method.

The original gather is then decimated randomly to one third of the original number
of traces (512 → 171, Figure 7a), and inversion is performed. Though aliasing isnow
more severe (Figure 7c), inversion returns continuous events (Figure 7b) and an unaliased
spectrum (Figure 7d).

Real data example

Figure 8 is a common-source gather obtained form the Husky dataset (Stork, 1994).
The elevation profile indicates 300 m of elevation change, and the corresponding spectrum
(Figure 8b) shows that data are not aliased. Five reflectors numbered 1 through 5 are
indicated on Figure 8a. Of these, arrows associated with reflectors 2 through 5 point to
distance 13 000 m – the distance associated with the datum level (lowest elevation). WE
statics will not time shift these reflectors at this distance, so they are indicated here and on
all subsequent examples as points from which direct comparison between input and output
is made. The marker for reflector 1 is offset from the others because, though it is a strong
event, it does not persist laterally to distance 13 000 m.

Velocity variation in the near surface is significant for this gather as can be seen in
Figure 9. This velocity model is obtained by turning-wave tomography, and it is based on
first breaks picked on the entire data volume. Velocity variation is strong in the vertical and
horizontal dimensions with a minimum velocity of 2900 m/s atthe surface and a maximum
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velocity of 4200 m/s at 300 m elevation. The combined effectsof topographic and velocity
variation result inpush up and pull down of reflections as is apparent, for example, in
Figure 8a – a flipped pattern of the topography is imprinted onall reflectors.

Though in the synthetic examples, interpolation of aliased, regularly sampled data,
and regularization of aliased, irregularly sample data return similar results, real data often
presents unforeseen challenges. So, to verify inversion, the common-source gather of Fig-
ure 8 is decimated evenly to half the number of original traces (306→ 153 traces, Figure
10a) so that an aliased spectrum results (Figure 10b). Thesedata are then interpolated by
both inversion and by thef − x method of Spitz (1991) wheref − x is followed by WE
statics. Thef − x result is given in Figure 11. Here, continuity of reflectors is preserved,
and lateral coherence of these events is enhanced when reflection events 1 through 5 are
compared to those on Figure 8a. The spectrum in Figure 11b shows successful de-aliasing
when compared to the aliased spectrum in Figure 10b.

The inversion result given in Figure 12 is comparable directly to thef − x result (Fig-
ure 11) in terms of reflector continuity. A small amount of ground-roll leakage is apparent
beginning at about 0.5 s to the left of the source location, and it is found to be the result
of the use of the chosen value forε (ε = 0.3). Whenε = 1, for example, ground roll is
mostly eliminated, but reflectors have awormy appearance. Values ofε < 0.3 result in
undesirable growth of amplitude. As shown in Figure 12 b, thedata are now de-aliased.
Note, during inversion, topographic variation is accommodated according to the adaption
of Reshef (1991) that is described in theImplementation section above. That is,We (im-
plicit in equation 22) is modified at eachδzj to give unit weight to ’live’ traces, and zero
weight to traces elsewhere. Actual missing traces are always given zero-weight, and zero-
weight is given to those traces lower than the depth associated with the current recursion.

The common-source gather is then decimated from the original 306 traces to 60 traces
or about 20% of the original number of traces. The 60 live trace locations coincide with
those from a common-receiver gather at the same location. Trace spacing is pseudo-
random. As Figure 13a shows, large trace gaps are present (for example between 750
m and 900 m distance), and the lateral extent of all reflectors, with the exception of reflec-
tor 5, is ambiguous due to severe aliasing. Severe aliasing is verified in the spectrum of
Figure 13b. Inversion of the data of figure 13a is given in Figure 14. Though based only on
60 traces, this regularization result is comparable to the 256 trace interpolations of Figures
11 and 12. A significant difference is found on reflector 1 – it lacks coherence laterally
beyond 10 100 m to the left from the marker. Reflection events 2through 5 are well con-
structed as can be seen on Figure 13a, and much of the aliasingis eliminated. Aliasing
does, however, appear to be present above 50 Hz between wavenumbers -0.01m−1 and 0
m−1. Here, a value of 0.5 is used forε is used to ensure stability at the expense of some
smoothness in appearance.

DISCUSSION

Though the development of Ferguson (2006) results in improvements in computational
efficiency, diagonal limiting provides little analytic insight, for example for error analy-
sis, or for development of further improvements, so the analytic approximation toS pre-
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sented here is desirable. The current work provides not onlya functioning inversion, it
also provides an analytic framework by which accuracy and computational cost may be
analyzed with precision. Experimentally, it is found that,as random trace decimation in-
creases significantly beyond one third, inversion begins tofail beginning with the largest
wavenumbers and highest frequencies within the evanescentregion. So, given the analytic
framework provided here, an exact analysis of error associated with trace decimation is
possible – the approximate and exact operators need only be compared for the highest fre-
quency and largest wavenumber of interest. Then, based on a maximum-allowable error
for this frequency / wavenumber combination, a minimum number of terms in the approx-
imate operator can be deduced with the assurance that error decreases with frequency and
wavenumber.

Adapted for an an entire survey, a few gathers spread across the entire aperture could be
procured, and a space dependent value forε could be constructed. Besides space variable
ε, there might be great advantage in the implementation of energy-adaptive stabilization of
Duijndam et al. (1999) wherebyε becomesω andz dependent as well.

Though not explored here, the approximation forS is expected to be suitable as a
preconditioning operator for gradient methods. Recently,WE regularization and redatum
is implemented as a gradient method (Smith et al., 2009), however, only identityI is used
there as a preconditioner. The use of at least one higher-order term ofS given in this paper
could drastically improve the rate of convergence and the quality of the solution.

CONCLUSIONS

In this paper, the problem of statics and irregular acquisition geometry are addressed
simultaneously by least squares. Statics are accommodatedin this inversion by the use of
one-way wave operators, and irregular sampling in space is accommodated using weight-
ing operators. A minimum smoothness criterion is used to ensure that a unique solution
is determined. Efficiency is assured through the use of series expansion of the Hessian.
Series expansion reduces the number of Fourier integrals from six to two, and under the
2D assumption, the number of integrals is reduced from threeto one. Computationally, it
is shown that proportional cost is reduced fromN8 tomN2, whereN is number of traces
in the inline and crossline directions, andn is a small scalar,n = 4 for example. Assuming
2D, proportional cost is reduced fromN3 to nN .

Real and synthetic examples are used to demonstrate the inversion. Synthetic data
show that inversion of irregular, aliased data andf−x interpolation of regular, aliased data
return equivalent results for the same number of traces. Significant topography and velocity
variation is present in the synthetic data so, for direct comparison, wave equation statics
(WE) are applied afterf − x interpolation. The synthetic data are decimated randomly to
one third the number of original traces, and the inversion result is found to be regularized,
redatumed, and anti-aliased.

Similar tests performed with real data show that, for regular, aliased data, inversion and
f − x interpolation return similar, anti-aliased results. When the real data are decimated
randomly to one fifth the number of traces, inversion still returns regularized data that are
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redatumed and anti-aliased.
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COMPUTATIONAL COST IN 3D

OperatorS (equation 4) is a nonstationary integral (Margrave, 1998) over six coor-
dinateskx → (kx1

, kx2
), y → (y1, y2), andk′x →

(

k′x1
, k′x2

)

. Because common inversion
algorithms are based on matrices, computational cost forS may be contemplated according
to how many floating-point operations (flops) are required toproduce matrixS (x̂, x̂− x′)
for one output location̂x. That is, operatorS maps the entire, arbitrary wavefieldψz to a
single output location̂x according to

[Sψz (x′)] (x̂) =

∫

ψz (x′)S (x̂, x̂− x′) dx′. (24)
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FIG. 5. Irregularly sampled synthetic data corresponding to the step model of Figure 1b. a) Aliased
data (256 traces spaced randomly). b) Regularization and WE statics by inversion. c) Spectrum of
a). d) Spectrum of b).
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1b. a) Aliased data (256 traces spaced evenly). b) Interpolation by the f −x method of Spitz (1991)
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FIG. 7. Irregularly sampled synthetic data corresponding to the step model of Figure 1b. a) Aliased
data (171 traces spaced randomly). b) Regularization and WE statics by inversion. c) Spectrum of
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FIG. 8. Common shot gather from the Husky dataset (Stork, 1994). a) Seismic data (306 traces
evenly spaced) plus an elevation profile. Triangles indicate coherent reflections. b) Spectrum of a).
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Inversion by equation 1, then, proceeds one output-location at a time according to

ψz+∆z (x̂) =

∫

[

S (x̂, x̂− x′) + ε2Wm

]−1
UA
−∆z (x̂, x̂− x′) We (x′) ψz (x′) dx′, (25)

where integration overx′ is written here explicitly, and extrapolatorUA
−∆z is parametrized

to map wavefieldψz to x̂. To estimate cost for fixed output locationx̂, S (equation 4) as an
N ×N matrix operator is

S (x̂, x̂− x′) =
1

(2π)2

∫

A (kx, k
′

x) e
i [kx,x′] e−i [k′

x,x̂]dkx dk
′

x, (26)

wherex′, kx andk′x each have dimensionN ×N , and

A (kx, k
′

x) =
1

(2π)2

∫

e−i [kx,y] ei [k′

x,y]α (y, k′x)∆z α̃ (y, k′x)−∆z dy. (27)

Here, we assume that the irregular input array of dimensionm× n, wherem andn are not
necessarily equal, is padded with null traces to dimensionN × N wherem ≤ N and / or
n ≤ N (i.e.,x′ has dimensionN ×N ).

For fixed wavenumberŝkx andk̂′x, A (equation 27) is a two-dimensional integral with

cost∝ N2 flops. Computationally, then,A
(

k̂x, k̂
′

x

)

resides within the inner-loop of an

iterative, 2D inversion. To consider total cost, keepkx = k̂x fixed, and compute matrix

A
(

k̂x, k
′

x

)

for all k′x - cost is∝ N2× the cost of eachA
(

k̂x, k̂
′

x

)

, or∝ N2 × N2 = N4.

Next, according to equation 26, multiply matrixA
(

k̂x, k̂
′

x

)

by 1
(2π)2

e−i [k′

x,x̂], and then sum

overk′x. Cost for this multiplication and then sum is∝ N2 and can be neglected when only
the highest order costN4 is considered. Repeat this processN2 times for eachkx, multiply

by ei [k̂x,x′] and sum intoS (according to equation 26) at each iteration. This cost, then, is
∝ N2 × N4 = N6 flops. Recall, however, that only a single output locationx̂ has been
produced. To compute the entire monochromatic wavefieldψ (x), the process above must
be repeatedN2 times for a minimum total cost∝ N2 ×N6 = N8.
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FIG. 10. Regularly sampled, but aliased, shot gather. a) Seismic data (145 / 306 traces evenly
spaced) plus an elevation profile. b) Spectrum of a).
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FIG. 11. Interpolation of Figure 10 by the f − x method of Spitz (1991) followed by WE statics. a)
Interpolated data. b) Spectrum of a).
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FIG. 12. Interpolation of Figure 10 and WE statics by inversion. a) Interpolated data. b) Spectrum
of a).
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FIG. 13. Irregularly sampled shot gather from the Husky dataset (Stork, 1994). a) Seismic data (60
/ 306 traces randomly spaced) plus an elevation profile. b) Spectrum of a).
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FIG. 14. Regularization of Figure 13 and WE statics by inversion. a) Regularized data.

24 CREWES Research Report — Volume 21 (2009)



REFERENCES

Abma, R., and Kabir, N., 2006, 3D interpolation of irregulardata with a POCS algorithm:
Geophysics,71, No. 6, E91–E97.
URL http://link.aip.org/link/?GPY/71/E91/1

Berkhout, A. J., 1985, Seismic Migration. Imaging of acoustic energy by wavefield extrap-
olation. A. Theoretical aspects: Elsevier.

Duijndam, A. J. W., and Schonewille, M. A., 1999, Nonuniformfast Fourier transform:
Geophysics,64, No. 2, 539–551.

Duijndam, A. J. W., Schonewille, M. A., and Hindriks, C. O. H.,1999, Reconstruction of
band-limited signals, irregularly sampled along one spatial direction: Geophysics,64,
No. 2, 524–538.

Etgen, J. T. E., 1994, Stability of explicit depth extrapolation through laterally varying
media,in 64th Ann. Internat. Mtg, Soc. of Expl. Geophys., 1266–1269.

Ferguson, R. J., 2006, Regularization and datuming of seismic data by weighted, damped
least-squares: Geophysics,71, No. 5, U67 – U76.

Gazdag, J., and Sguazzero, P., 1984, Migration of seismic data by phase-shift plus interpo-
lation: Geophysics,49, No. 02, 124–131.

Güliünay, N., 2003, Seismic trace interpolation in the Fourier transform domain: Geo-
physics,68, No. 1, 355–369.

Hennenfent, G., and Herrmann, F. J., 2008, Simply denoise: Wavefield reconstruction via
jittered undersampling: Geophysics,73, No. 3, V19–V28.
URL http://link.aip.org/link/?GPYSA7/73/V19/1

Hu, J., Schuster, G. T., and Valasek, P., 2001, Poststack migration deconvolution: Geo-
physics,66, No. 3, 939–952.

Kühl, H., and Sacchi, M. D., 2004, Least-squares wave-equation migration for AVP/AVA
inversion: Geophysics,69, No. 1, 262–273.

Margrave, G. F., 1998, Theory of nonstationary linear filtering in the Fourier domain with
application to time-variant filtering: Geophysics,63, No. 01, 244–259.

Margrave, G. F., and Ferguson, R. J., 1999, Wavefield extrapolation by nonstationary phase
shift: Geophysics,64, No. 4, 1067–1078.

Menke, W., 1989, Geophysical data analysis: Discrete inverse theory: Academic Press.

Naghizadeh, M., and Sacchi, M. D., 2009,f − x adaptive seismic-trace interpolation:
Geophysics,74, No. 1, V9–V16.
URL http://link.aip.org/link/?GPYSA7/74/V9/1

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P., 1999, Numerical
recipes in C: Cambridge University Press.

CREWES Research Report — Volume 21 (2009) 25



Reshef, M., 1991, Depth migration from irregular surfaces with depth extrapolation meth-
ods (short note): Geophysics,56, No. 01, 119–122.

Robertsson, J. O. A., Moore, I., Vassallo, M., Azdemir, K., Manen, D. J. V., and Azbek, A.,
2008, On the use of multicomponent streamer recordings for reconstruction of pressure
wavefields in the crossline direction: Geophysics,73, No. 5, A45–A49.
URL http://link.aip.org/link/?GPYSA7/73/A45/1

Schneider, W. A., 1978, Integral formulation for migrationin two-dimensions and three-
dimensions: Geophysics,43, No. 01, 49–76.

Smith, D. R., Sen, M. K., and Ferguson, R. J., 2009, Regularization and datuming using
least squares and conjugate gradients,in 71st Mtg., Eur. Assn. Geosci. Eng., V043.

Spitz, S., 1991, Seismic trace interpolation in thef − x domain: Geophysics,56, No. 06,
785–794.

Stolt, R. H., 1978, Migration by Fourier transform: Geophysics, 43, No. 01, 23–48, dis-
cussion and reply in GEO-60-5-1583.

Stork, C., 1994, Demonstration of MvA tomography with controls and constraints for de-
termining an accurate velocity model for prestack depth migration,in 64th Ann. Internat.
Mtg, Soc. of Expl. Geophys., 1338–1342.

Tarantola, A., 1987, Inverse problem theory: Elsevier Science.

Trad, D. O., 2003, Interpolation and multiple attenuation with migration operators: Geo-
physics,68, No. 6, 2043–2054.

Yu, J., Hu, J., Schuster, G. T., and Estill, R., 2006, Prestack migration deconvolution:
Geophysics,71, No. 2, S53–S62.
URL http://link.aip.org/link/?GPY/71/S53/1

Zwartjes, P. M., and Sacchi, M. D., 2007, Fourier reconstruction of nonuniformly sampled,
aliased seismic data: Geophysics,72, No. 1, V21–V32.
URL http://link.aip.org/link/?GPY/72/V21/1

26 CREWES Research Report — Volume 21 (2009)


