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ABSTRACT

In numerical wavefield propagation, it is useful to decompose a complex geological re-
gion into small local regions of nearly constant velocity, and propagate pieces of the wave-
field through each region separately. The total wavefield is then obtained by reassembling
all the pieces.

We show here how this decomposition/reassembling is captured mathematically using
a windowing procedure which is accurately described by so-called generalized frames. By
applying frame theory, we show that a collection of local wavefield propagators combined
via a suitable partition of unity, remains a stable propagator, which is a highly desirable
property in numerical simulations. These results apply more generally to combinations of
linear operators that are useful for many nonstationary filtering operations.

INTRODUCTION

In many geophysical algorithms for seismic imaging, our research teams in CREWES
and POTSI have been using Gabor multipliers with non-uniform windows as a basic tool
for performing non-stationary filtering, non-stationary deconvolution, and wavefield propa-
gation in inhomogeneous media. The intuition behind this idea is that a complex geological
region, such as the salt-dome cross section indicated in Figure 1, can be broken up into a
few simpler regions as shown in the middle of the figure, and any physical phenomenon
such as wave propagation can be simulated separately in each region, and recombined to
produce a final total result.

The basic mathematical tool we use for this involve numerical windows, and algorithms
that act separately on the windowed data, followed by perhaps additional windows to refine
and recombine the results. While this methodology has led to useful numerical tools, there
has been a lack of mathematical theory to describe the details of how the process works,
and with it, a lack of theoretical results on the accuracy, stability, and extensibility of the
method.

Ultimately what we need are some basic mathematical results that would establish a
functional calculus with these operators – that is, show us how to combine operators as
products, quotients and exponentials of these window-localized operators, in order to make
exact calculations of the physical operators acting in these complex regions. For instance,
want to be able to factor the wave equation into one-way waves, and exponentiate to obtain
an accurate wavefield propagator. For this we need a sensible functional calculus. We also
need control of numerical error, operator norm, and bounds on any approximations that
arise.
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FIG. 1. Propagating a wavefield through a complex medium. Decompose into simpler regions,
propagate, reassemble.

Although our methods are based on the ideas of Denis Gabor, the standard Gabor mul-
tiplier theory does not apply here, as these depend on uniform windows and group theoretic
results concerning modulation and translation operators on a lattice. We don’t have uniform
windows; we don’t have a uniform lattice. So this theory does not apply.

Gabor theory has developed into a branch of frame theory, which is a very rich area of
research in numerical methods, especially applied to linear operator theory, such as we use
in seismic data processing. It turns out that “generalized frames" is the mathematical theory
that can capture the details of our windowing methods. This paper describes how to fit our
seismic algorithms into this framework, and in particular we demonstrate that summing up
local operators, using a partition of unity, is exactly the process we use and that generalized
frames can analyze.

BACKGROUND MODEL FOR DISCUSSION

For this paper, as a seismic application, it is useful to keep one basic model in mind.
Frame theory involves Hilbert space and linear operators. For us, a Hilbert space is simply
the linear vector space of data. For instance, it could be the set of possible seismic traces we
record, or the set of waves that propagate through a seismic section. The linear operators
are the things we do to the data with algorithms – for instance, we might want to deconvolve
the seismic traces, or we might want to propagate a wavefield in time.

We also window our data – that is, restrict the seismic signal to a particular region
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in space, say, by multiplying the signal with some window function like a Gaussian. In a
collection of seismic traces, for instance, we can mute some traces, and pass others through.
Our (non-uniform) windows give rise to multiplication operators P1, P2, P3, . . . , Pn which
act on data f by multiplying it by the various windows. We will see later a partition of unity
condition on these winodws, which is just that the sum of squares of the window functions
should add up to one, or in operator notation, the squares of the operators Pi sum to the
identity: ∑

i

P 2
i = I. (1)

When we localize an operator A, we first act on data f with some window operator Pi, then
apply A, then Pi again, and sum for the final result. The localized version of A is then a
sum

Aloc =
∑

i

PiAPi. (2)

One goal in this paper is to show that the operator norms behave as we want:

||Aloc|| ≤ ||A||. (3)

This is the result that ensures stability of our numerical methods.

More generally, we may want to apply different operators Ai to the different local areas:
for instance, in a heterogeneous media, A1 might represent a wave propagator appropriate
for the velocity in region one, A2 the propagator for the velocity in region two, and so on.
In that case, we will show that the norms behave as we want:

||
∑

i

PiAiPi|| ≤ max
i
||Ai||. (4)

In particular, if each Ai is stable (has norm less than one), then so is the combined operator.

In the work below, the products P 2
i and PiAPi will be replaced by products with an

adjoint, P ∗i Pi and P ∗i APi, to make the theory apply to possibly complex-valued windows,
and other more general operators. This is standard in mathematical frame theory, so we
take advantage of this generality.

GENERALIZED FRAMES (G-FRAMES)

A frame is a collection of vectors in a vector space that behaves almost like a basis
– every vector in the space can be written as a linear combination of items in the frame,
and there are certain non-degeneracy conditions that are specified. We won’t point out the
details here since we don’t intend to use this standard type of frame here, but can point the
interested reader to Christensen (2003) for more information. The point of a frame is that
it carries some redundant information in the decomposition of the linear space in question,
which might be quite useful in the case of lossy communication, or numerical methods that
don’t know everything.

For our work, generalized frames are what are important. While frames decompose
a linear space into the span of one dimensional sets, a generalized space decomposes the
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linear space into the span of the ranges of several operators. The range can have high
dimension – to us, the point is that the range of the operator localizes the data to, say, a
homogeneous region of the geology. The precise mathematical definition is as follows:

Definition 1 A sequence {P1, P2, . . .} of bounded linear operators Pi on Hilbert space H
is called a generalized frame (or g-frame) if there are two positive constants A and B such
that

A||f ||2 ≤
∑

i

||Pif ||2 ≤ B||f ||2, for all f ∈ H. (5)

Equivalently, the operator sequence is a g-frame if we have the operator inequality

AI ≤
∑

i

P ∗i Pi ≤ BI, (6)

where I is the identity operator onH.

The sequence {P1, P2, . . .} is called a tight g-frame if A = B.

We call {P1, P2, . . .} a partition of unity g-frame (POU) if A = B = 1.

This definition was introduced in Sun (2006), and generalizes the notion of frames,
fusion frames, pseudo-frames, oblique frames, outer frames, and bounded quasi-projectors.
Again, we won’t discuss all these other types of frames, but refer the interested reader to
the bibliography. The inequality constraint in the definition will give a specific algorithm
for decomposing the linear space of data into particular components, and then reassembling
in a stable manner.

G-frame properties

We copy down here the results we need from the work in Sun (2006). These results are
generalizations of the usual frame theory.

Just as with frames, given a generalized frame, one can define the analysis operator, the
synthesis operator, and the frame operator.

The analysis operator V maps data vectors f inH to sequences of vectors inH×H×
H× · · · as

V f = (P1f, P2f, P3f, . . .). (7)

The synthesis operator is simply the adjoint map, mapping sequences inH×H×H×· · ·
toH as

V ∗(f1, f2, f3, . . .) =
∑

i

P ∗i fi. (8)

The frame operator is the product of the two,

S = V ∗V =
∑

P ∗i Pi. (9)
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By the g-frame definition, the frame operator is a bounded, invertible positive operator,
with

AI ≤ S ≤ BI. (10)

By setting Qi = PiS
−1/2, it is easy to check that the sequence {Q1, Q2, Q3, . . .} is

a tight g-frame with frame bound 1. In other words, these operators form a partition of
unity. In fact this is precisely the construction used in existing numerical methods to create
windows that form exact partitions of unity. In particular, this gives a resolution of the
identity in the form

I =
∑

i

Q∗i Qi, (11)

or in terms of vectors,
f =

∑
i

Q∗i Qif. (12)

Traditionally, researchers often work with the canonical dual frame, obtained by ob-
serving the following resolution of the identity:

f = SS−1f = S−1Sf =
∑

i

P ∗i PiS
−1f =

∑
i

S−1P ∗i Pif. (13)

Let P̃i = PiS
−1, we have two resolutions of the identity from the above, as

f =
∑

i

P ∗i P̃if =
∑

i

P̃i
∗
Pif. (14)

The main reason to work with the canonical dual is because it gives the minimum norm
representation of any vector f inH. Namely, we have this theorem

Theorem 1 Given a g-frame, a vector f in H, and a sequence of vectors gi that “synthe-
size” f in this g-frame (that is, suppose f =

∑
i P
∗
i gj), then∑

i

||gi||2 =
∑

i

||P̃if ||2 +
∑

i

||gi − P̃if ||2. (15)

In other words, the minimum norm synthesis occurs when we choose gi = P̃if.

It is worth pointing out that in many applications, the canonical dual is NOT the one
to work this, as it tends to create windows that are jagged and not very smooth, which is a
disadvantage for numerical algorithms. In particular, in seismic imaging it is usually better
to fulfill the POU condition, rather than trying to use the canonical dual. On the other hand,
for other applications such as communication theory, this minimum norm synthesis can be
advantageous.
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LOCALIZED OPERATOR NORMS

Here we prove a new result:

Theorem 2 Suppose {P1, P2, P3, . . .} is a g-frame for Hilbert space H, with upper frame
constant B, and {A1, A2, A3, . . .} is a sequence of bounded operators on H. Then the
localized operator

Aloc =
∑

i

P ∗i AiPi (16)

satisfies the operator norm inequatity

||Aloc|| ≤ B · sup
i
||Ai||. (17)

The proof is straightforward, using the analysis and synthesis operators. Let A∞ =
diag(Ai) be the operator onH×H×H× · · · obtained by acting diagonally, as

A∞(f1, f2, f3, . . .) = (A1f1, A2f2, A3f3, . . .). (18)

Clearly, the norm is ||A∞|| = supi ||Ai||. The localized operator is obtained by putting A∞
between the analysis and synthesis operators, so

Aloc = V ∗A∞V (19)

and thus we compute norms as

||Aloc|| ≤ ||V ∗|| · ||A∞|| · ||V || = ||V ∗V || · ||A∞|| = ||S|| · ||A∞|| ≤ B · sup
i
||Ai|| (20)

and we are done.

In the case where the g-frame forms a partition of unity, then B = 1 so we have

||Aloc|| ≤ sup
i
||Ai||. (21)

In the case where the analysis and synthesis windows are different, we get a similar
result.

Theorem 3 Suppose {P1, P2, P3, . . .} and {Q1, Q2, Q3, . . .} are g-frames for Hilbert space
H, with upper frame constant B1, B2 respectively, and {A1, A2, A3, . . .} is a sequence of
bounded operators onH. Then the localized operator

Aloc =
∑

i

Q∗i AiPi (22)

satisfies the operator norm inequality

||Aloc|| ≤
√

B1B2 · sup
i
||Ai||. (23)
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The proof is analogous.

Mathematically, these maps are completely positive maps, so Stinespring’s theorem
applies. In this special case we can see directly how to represent the complete positive map
using isometries in the POU case, which of course is just the analysis/synthesis operators.

The application to seismic data processing is that the local operators may be, say, wave-
field propagators. Since each propagator is stable, each Ai has norm equal to one. The
above theorem says that the combined operator (the global wavefield operator) will also
have norm less than or equal to one, so it too is stable.

STABILITY FOR NONSYMMETRIC WINDOWS

Our numerical methods often use partitions of unity where the analysis and synthesis
windows are different. This amounts to having two sets of multipliers Pi, Qi that satisfy
the condition that ∑

i

Q∗i Pi = I. (24)

The question is, does the the corresponding localized operator

Aloc =
∑

i

Q∗i AiPi (25)

satisfy some reasonable operator norm bounds.

In fact, it may not. It is easy to construct an example where each Ai has norm one,
but the summed version Aloc has norm about the size of the square root of the number of
windows. A summary of the construction goes like this: select the Pi to be windows of
width about one, uniformly spaced, that form a partition of unity on their own∑

i

Pi = I. (26)

For instance, we could use uniformly spaced Gaussians, suitably normalized. Take the Qi

to be the identity function, corresponding to windows that are each constant one. By the
POU condition on the Pi, we get∑

i

Q∗i Pi =
∑

i

Pi = I, (27)

so the window pairs Pi, Qi satisfy the partition of unity condition.

Now, choose the Ai to be a one-way wavefield propagator that moves a wavefield along
exactly i steps, in the negative direction. That is, it will move a signal centred in window i
along until it is centred in window 0. The sum operator

Aloc =
N∑

i=1

Q∗i AiPi (28)
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will take a sum of isolated signals, centred in windows 1, 2, . . . , N and propagate them
all to one big signal centred at window 0. It’s not hard to compute that the norm of this
operator is

√
N .

So the partition of unity condition, by itself, does not guarantee stability.

A more pertinent question, though, is when do iterates of Aloc stabilize? That is, if we
build a numerical wavefield propagator, what we really want to know is whether iterating it
many times will lead to numerical instabilities. That might be a more interesting question,
with possibly a positive result. The point is, the first iterate looks like

(
∑

i

Q∗i AiPi)(
∑

j

Q∗jAjPj), (29)

so maybe the mixing of factors PiQ
∗
j in the middle somehow controls the growth.

Unfortunately, no.

The basic answer is that there is no reason that this operator

Aloc =
∑

i

Q∗i AiPi (30)

should be stable under iterations, even if the Pi, Qi form a partition of unity.

We give a one-dimensional counterexample in the following. This might seem unrealis-
tic in the context of multipliers and windows that are higher dimensional, especially in the
case of wavefield propagators. However, it really is at the core of any higher dimensional
counterexample.

The basic observation is that if you start with two vectors of lengths strictly greater than
one, whose inner product is exactly one, then the outer product (a rank one operator) will
have norm bigger than one.

So, take H = C, the one-dimensional complex Hilbert space. Set P1 = 1, P2 =
−1, Q1 = 2, Q2 = 1. This give the partition of unity, since

Q∗1P1 + Q∗2P2 = 2 · 1− 1 · 1 = 1. (31)

Our analysis operator and synthesis operators are just

Vp =

[
1
−1

]
and V ∗q =

[
2 1

]
. (32)

We have of course V ∗q Vp = 1, the frame operator, and when we reverse order, we get

VpV
∗
q =

[
1
−1

] [
2 1

]
=

[
2 1
−2 −1

]
, (33)

which is a nonselfadjoint idempotent with operator norm
√

10.
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The point is that if we try to localize an operator (a1, a2), we get

Aloc = Q∗1a1P1 + Q∗2a2P2 = 2a1 − a2. (34)

So, taking (a1, a2) = (1,−1) for the counterexample, we obtain

Aloc = 3 = 3 max(|a1|, |a2|). (35)

So we have picked up a factor of 3, even though we started with a diagonal operator of
norm 1. Iterating this operator causes exponential growth of order 3n, which is very bad.

SOME OPEN QUESTION

The counter-example above used only self-adjoint, commuting, one-dimensional oper-
ators, which is a very good counterexample.

However, the elements of the partition of unity were not positive – we have some nega-
tive signs in there. In practice, our partitions of unity usually only use positive multipliers.
Does this matter? Perhaps it does, so our immediate plan is to try to figure out in the spe-
cial case of non-negative windows, do we get stability for iterations of wavefield operators,
even when we don’t have symmetric windows.

Another thing to notice is that the counterexample constructed using wavefield propa-
gators relied very much on the operators “moving around” the signals, from one window to
another. Perhaps things are better when we have operator that don’t move around so much.
For instance, differential operators, and in general pseudo-differential operators don’t move
the support of a signal – so we should ask the question, for this class of operators, is the
POU condition enough. Again, as pseudodifferential operators are important to seismic
signal processing (eg. in deconvolution), it is useful to resolve this issue as well.

In particular, we are developing a functional calculus for Gabor multipliers analogous
to the theory of pseudodifferential operators, for use in the solution of physical problems
modelled by partial differential equations, as discussed in Lamoureux et al. (2008). We
expect the theory of generalized frames is exactly the mathematical tool needed to move
forward with this development.

SUMMARY

Generalize frames form the mathematical theory for describing the windowing process
used in numerical algorithms that decompose a complex geological medium into regions
of local homogeneity, where local algorithms can be applied and recombined. We use this
theory to show the partition of unity condition on numerical windows allow control of oper-
ator norms and control on stability for numerical algorithms such as wavefield propagators.
Future work will be to use the the generalized frame theory to make estimates on errors for
these algorithms, based on a functional calculus for Gabor multipliers that tell us how to
model the solution to physical PDEs using these localized operators.
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