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ABSTRACT

We present a conjugate-gradient based inversion to correctfor surface statics and ir-
regular trace spacing. The algorithm returns a rough solution to the extrapolated wavefield
with complexityO(n2.5). Convergence is fast in the wavelike region, and very slow inthe
evanescent region. Decimated traces are reconstructed even though no smoothing operator
is applied, but recovered wavefields do not approach known source wavefields at low fre-
quencies. We suggest that speed and accuracy of inversion byconjugate gradients can be
improved through careful smoothing, or separate treatmentof the wavelike and evanescent
regions. Computing operators by series expansion for fast application during conjugate
gradient iterations is suggested to optimize runtime.

INTRODUCTION

A wave equation inversion for acquired seismic data described in Ferguson (2006) re-
cursively computes the extrapolated wavefield at depth using non-stationary phase shift
operators (Ferguson and Margrave, 2002). The operator matrix is computed using an as-
sumed velocity model and the wavefield at depth is derived using weighted damped least
squares. This method is used to correct common shot gathers for topography and receiver
statics, downward propagate the receiver wavefield througha heterogeneous near surface
to a flat datum, and to correct for irregular spatial samplingin one inversion.

Full computation of the extrapolation matrix has complexity O (n2), wheren is the
number of spatial co-ordinates (Ferguson, 2006). Computing the least squares Hessian
matrix requires multiplication of the extrapolation matrix by a weight matrix, followed by
the adjoint extrapolation matrix, with complexityO (n3). Inversion of this matrix by Gaus-
sian elimination also has complexityO (n3). Ferguson (2009) develops a series expansion
to compute the operator and Hessian simultaneously inO (n) operations. Smith et al.
(2009) inverts the Hessian using conjugate gradients, withcomplexityO (kn2), wherek is
the number of iterations required for an acceptable approximation.

In this paper we analyse the inversion of the Hessian by conjugate gradients. We as-
sume that the phase shift operator perfectly models wave propagation, and observe the
effects of trace decimation, number of iterations, and the accuracy of our velocity model
on the inversion.

THEORY

A wave equation inversion for seismic data given by Ferguson(2006) simultaneously
corrects for velocity variation in the near surface and irregular trace spacing using non-
stationary phase shift operators. First we discuss here thedevelopment of these operators,
and the application to statics and trace regularization. Wewill then discuss the conjugate
gradient method as a means to speed the algorithm.
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Non-stationary Phase Shift Operators

The phase-shift migration method of Gazdag (1978) models the propagation of a monochro-
matic wavefield through the subsurface as a function of a homogeneous velocity model. It
gives a fast and exact solution to the scalar wave equation inhomogeneous media (Gazdag
and Sguazzero, 1984). To accommodate velocity variation indepth, the algorithm is run
recursively on a sequence of constant velocity depth steps.That is, for each frequencyω,
and each depthz, the extrapolated wavefieldϕz+∆z is computed fromϕz by

ϕz+∆z(x) = PSPI∆z(ϕz)(x)

=
1

2π

∫

α∆z(kx, vz)

∫

ϕz(x
′)exp(ikx · (x′ − x))dx′dkx, (1)

whereα∆z is a function of spatial wavenumberkx and layer velocityvz given by

α∆z(kx, vz) =















exp

(

i∆z
√

(ω/vz)
2 − kx · kx

)

if | ω
vz
| ≥ |kx|

exp

(

−|∆z|
√

kx · kx − (ω/vz)
2

)

if | ω
vz
| < |kx|.

(2)

Equation 1 is a Fourier transform of the source wavefield, followed by a multiplica-
tion, then an inverse Fourier transform. Equation 2 appliesthe phase shift operator in the
wavelike region, where| ω

vz
| ≤ |kx|, and attenuates energy in the evanescent region, where

| ω
vz
| > |kx|. In practice we will represent these wavefields as vectors inCn, so let us

consider these operators as matrices. In this case PSPI becomes

PSPI∆z(ϕz) = [IFT ][α∆z][FT ]ϕz. (3)

The matrix form ofα∆z is diagonal in Fourier co-ordinates, so using the fast Fourier
transform, the cost of applying equation 3 isO(n log n), wheren is the length of the vector
ϕz. Ferguson and Margrave (2002) accommodates lateral velocity variation using a set of
constant velocity windows. The window function is defined for a given reference velocity
vj by

Ωj(x) =

{

1 if v(x) = vj

0 if v(x) 6= vj

(4)

and PSPI becomes

PSPI∆z(ϕz) =
∑

j

[Ω]j [IFT ][α∆z]j [FT ]ϕz. (5)

Ferguson and Margrave (2002) further describes two similarphase shifting operators,
NSPS and SNPS, given by equations 6 and 7. It is trivial to showthat SNPS is symmetric in
the wavelike region, and Hermitian in the evanescent region, which makes it preferable as
a wave extrapolation operator due to reciprocity conditions (Ferguson, 2006). For brevity,
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we will denote byP∆z any of these one-way operators that shifts a wavefield downward by
∆z.

NSPS∆z(ϕz) = [IFT ]
∑

j

[α]j[FT ][Ω]jϕz (6)

SNPS∆z(ϕz) = PSPI∆z/2(NSPS∆z/2(ϕz)) (7)

Statics and Trace Regularization

Ferguson (2006) presents an application of these phase-shift operators to correct for
surface statics and irregular trace spacing. Acquired seismic data is modelled recursively as
follows: given a recorded wavefieldϕz at depthz, we assume thatϕz = WeP−∆zϕz+∆z+ǫ,
whereP−∆z is an upward phase shift, as in equation 5, 6 or 7,We is a weighting operator
that models irregular trace spacing and topography, as in Reshef (1991), andǫ is an additive
noise term. This is a mixed-determined linear system (Menke, 1989), so the least-squares
approximation ofϕz+∆z can be recovered by minimizing the misfit function

M(ϕ) = ‖P−∆zϕ − ϕz‖2

We

+ ε‖ϕ − ϕm‖2

Wm

. (8)

HereWm is a smoothing operator,ϕm is the a priori information on the model parameters
(Tarantola, 2005), andε is a user parameter that controls the amount of smoothing (Menke,
1989). The norms here are induced by the scalar products withrespect toWe andWm

respectively, as defined in Tarantola (2005)∗. SinceM is minimized when the normal
equations are satisfied, we can recoverϕz+∆z by solving

[S−∆z]ϕz+∆z =
[

P ∗

−∆zWeP−∆z + εWm

]

ϕz+∆z = P ∗

−∆zWeϕz + εWmϕm, (9)

whereP ∗

−∆z is the adjoint ofP−∆z. If we consider our operators as matrices here,
then the cost of recoveringϕz+∆z is dominated by the cost of computing then inverting
the matrixS−∆z. Ferguson (2006) derives a series approximation ofS−∆z to speed up
computation of the matrix, and we consider using conjugate gradients to speed inversion.

Conjugate Gradients

The conjugate gradient method is an iterative algorithm used to approximate a solution
x to a linear systemAx = b. In our case it can be used to recover the source wavefield
ϕz+∆z from equation 9. Inverting ann×n matrix by Gaussian elimination has complexity
O(n3) (Strassen, 1969), whereas solving the system by conjugate gradients can return an
acceptable approximation in about

√
n iterations, provided the matrix is well-conditioned

(Burden and Faires, 2001). A matrix is well-conditioned if it is not sensitive to rounding
errors, which are likely to occur as our computations will beperformed by a computer
using floating-point arithmetic.

∗SinceWe will be positive semidefinite, a seminorm is induced
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Computationally, an iteration of the conjugate gradient method is dominated by the
cost of computing the residual vectorr = Ax − b, which measures the error between our
guessx and a solution to the system. IfA is a matrix, this operation isO (n2). So if the
algorithm converges quickly, we can expect a total complexity of O (n2.5).

METHOD

Synthetic data is modelled to satisfy the forward operator exactly, up to a random ad-
ditive noise termǫ, set to 40db below the signal level. An arbitrary source wavefield
of n = 256 traces withn temporal samples (Figure 1a) is Fourier transformed in time,
and synthetic data is generated from the resultant monochromatic wavefields according to
ϕ0 = WeP−100ϕ100 + ǫ, whereP−100 is NSPS (Margrave and Ferguson, 1999) computed
with respect to the ‘true’ reference velocity model. We use alarge depth step (∆z = 100m)
to exaggerate the visual impact of the phase shift (Figure 2b), as we will be restricting our
attention to a single depth step. The effects of smoothing are not considered here, soε in
equation 9 is set to0. We apply Matlab’s pcg algorithm to equation 9, whereP100 is com-
puted with respect to the reference velocity model. No preconditioning is applied, and we
use the zero vector as an initial guess. We run the pcg algorithm until the prescribed max-
imum number of iterations is reached, or the relative residual error falls below a tolerance
of 10−6.

We consider three cases. First a base case, with no trace decimation and an exact veloc-
ity model. Then we allow for trace decimation, then add uncertainty to our velocity model.
For each case we display the results of the conjugate gradient algorithm aftern and

√
n

iterations. For each of these six examples, the original wavefield (a) is displayed along with
the forward modelled data (b), the recovered wavefield (c) and the absolute error (d). We
also compute the norms associated with the misfit function for the original, and recovered
wavefields, with the norms of the modelled data included for contrast. We refer to the value
of the first norm in equation 8 as the model misfit of the wavefield (e), which indicates how
well the recovered wavefield agrees with the given data, and the value of the second norm
as the smoothness of the wavefield (f), which indicates how close the recovered wavefield
is to any a priori information we might have about the source wavefield. In our example,
smoothness is calculated with respect to the true source wavefield, with smoothing operator
Wm = I.

EXAMPLES

As a baseline, we setWe = I, then × n identity matrix, to model perfectly uniform
trace spacing, and assume the true velocity model is known tobe the simple velocity model
given by Figure 1b. We allow the pcg algorithm to run for a fulln iterations (Figure 2) and
for

√
n iterations (Figure 3).

When the algorithm is run forn iterations, all monochromatic wavefields converge to
within the tolerance, except in the 5 - 15Hz range. Rate of convergence is fast in the high
frequencies - less than 6 iterations - but decreases rapidlystarting at 90Hz. We note that
given our input parameters: 10m trace spacing, and reference velocities between 800 and
1800m/s, 90Hz corresponds to the uppermost edge of the evanescent boundary. We can
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therefore attribute this slow convergence to the evanescent region, where the phase shift
operator is a real exponential with large negative exponent.

Running the algorithm for
√

n iterations, convergence is observed only in the high
frequencies, above 85Hz. The effect of the phase shift is still effectively inverted, the model
misfit of the recovered wavefield agrees strongly with that ofthe source (Figure 3e), and the
image is focused (Figure 3c), but the solution does not agreewith the expected solution, as
the value of the smoothness norm is much larger than 0 in the low frequencies (Figure 3f).
Note also that increasing the number of iterations does not improve the smoothness, as the
smoothness norm of the recovered model in Figure 3f is smaller for each frequency than the
corresponding value in Figure 2f, where more iterations were applied. This is unexpected,
as whenWe = I, this problem should not be underdetermined, so no smoothing should
be necessary. However, the wavefield extrapolatorα∆z, has very small eigenvalues in the
evanescent region, which may causeP−∆z to be almost singular.

Next, we set a random selection of approximately 30% of the diagonal elements ofWe

to zero, and re-compute the synthetic dataϕ0. We then invert as above, again using the
velocity model in Figure 1b as both the true and reference velocity models, forn and

√
n

iterations. The results are displayed in Figures 4 and 5.

Similar to the previous case, if the algorithm is run for the full n iterations, we achieve
convergence almost everywhere, with the number of iterations required increasing as fre-
quency decreases to 0. Again, increasing the number of iterations does not seem to improve
the quality of the solution: the model misfit norms of the recovered wavefields (Figures 4e
and 5e) agree with those of the source wavefield, but the smoothness norms (Figures 4f and
5f) are much greater than 0 in the low frequencies. Also note that, even without a damping
term, the conjugate gradient algorithm manages to fill in some of the information from the
missing traces. This smoothing is less effective for large continuous gaps in trace coverage.
However, it is surprising that the algorithm does any smoothing at all, since the search di-
rections prescribed by the algorithm are computed from the residual vectors, which should
always be zero in the co-ordinates corresponding to the deadtraces.

Finally, we assume incomplete knowledge of the near surfacevelocity variation. To
model this, we compute the data with respect to the more complex velocity model (Figure
1c), while computing the inverse operator with respect to the simpler model (Figure 1b).
We then invert as above, and the results are displayed in Figures 6 and 7.

We observe that the rate of convergence is similar to the previous cases, however mod-
elling errors are apparent in the model misfit plots (Figures6e and 7e), as the curve cor-
responding to the source misfit is nonzero, indicating that the source wavefield is not an
approximate solution to equation 9. That is, the computed operator does not map the known
source wavefield to the data we are given, since the data was computed with respect to the
‘true’ velocity model (Figure 1c), and the operator with respect to the reference model
(Figure 1b). These errors do not affect the rate of convergence, but they do affect the ac-
curacy of the final recovered image. Once again, increasing the number of iterations above√

n has little effect on the end result.
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CONCLUSION

Using NSPS as our model of wavefield propagation, we find that the conjugate gradient
algorithm applied to the least squares minimization problem gives a rough solution to the
extrapolated wavefield in

√
n iterations, and no significant improvement is gained from

subsequent iterations. We note that convergence is fast in the wavelike region, and slow
in the evanescent region, and postulate that the slow convergence is caused by very small
operator eigenvalues from the evanescent part of the wave extrapolatorα∆z, causing the
Hessian to be almost singular. Solution damping could be achieved through the use of a
nontrivial smoothing operatorWm, as in Smith et al. (2009) and Ferguson (2006), or we
might attempt to treat the wavelike and evanescent regions separately.

We find that the
√

n speed up in inversion of the Hessian leaves this step as the largest
bottleneck in the method - much slower thanO(n) for computation of the Hessian - and
suggest that we might be able to speed up computation of the residual vectors if we can
apply the Hessian as an operator in the main loop of the conjugate gradient algorithm,
provided the cost of applying the operator is lower than thatof computing a matrix vector
product (O(n2)).
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FIG. 1. a) Source wavefield. b) Simple velocity model (5 reference velocities). c) Complex velocity
model (20 reference velocities)
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FIG. 2. Case 1: Regular trace spacing, known velocity model, n iterations. a) Source wavefield. b)
Forward modeled image. c) Recovered image. d) Absolute error. e) Model misfit. f) Smoothness.
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FIG. 3. Case 2: Regular trace spacing, known velocity model,
√

n iterations. a) Source wavefield.
b) Forward modeled image. c) Recovered image. d) Absolute error. e) Model misfit. f) Smoothness.
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FIG. 4. Case 3: 30% trace decimation, known velocity model, n iterations a) Source wavefield. b)
Forward modeled image. c) Recovered image. d) Absolute error. e) Model misfit. f) Smoothness.
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FIG. 5. Case 4: 30% trace decimation, known velocity model,
√

n iterations a) Source wavefield. b)
Forward modeled image. c) Recovered image. d) Absolute error. e) Model misfit. f) Smoothness.
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FIG. 6. Case 5: 30% trace decimation, uncertain velocity model, n iterations a) Source wavefield.
b) Forward modeled image. c) Recovered image. d) Absolute error. e) Model misfit. f) Smoothness.

12 CREWES Research Report — Volume 21 (2009)



Interpolation & Statics by CG

a) b)

Offset (m)

T
im

e 
(s

)

 

 

0 1000 2000

0

0.1

0.2

0.3

0.4

0.5 −200

−100

0

100

200

Offset (m)

T
im

e 
(s

)

 

 

0 1000 2000

0

0.1

0.2

0.3

0.4

0.5
−200

−100

0

100

200

c) d)

Offset (m)

T
im

e 
(s

)

 

 

0 1000 2000

0

0.1

0.2

0.3

0.4

0.5 −200

−100

0

100

200

Offset (m)

T
im

e 
(s

)

 

 

0 1000 2000

0

0.1

0.2

0.3

0.4

0.5

50

100

150

200

e) f)

−200 −100 0 100 200
0

1

2

3

4

5

6

x 10
4

Frequency (Hz)

M
is

fit

 

 

Model
Data
Recovered model

−200 −100 0 100 200
0

5

10

15

x 10
4

Frequency (Hz)

S
m

oo
th

ne
ss

 

 

Model
Data
Recovered model

FIG. 7. Case 6: 30% trace decimation, uncertain velocity model,
√

n iterations a) Source wavefield.
b) Forward modeled image. c) Recovered image. d) Absolute error. e) Model misfit. f) Smoothness.
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