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ABSTRACT

The article presents a numerical inversion method for estimation of Q-factor and phase
velocity in linear, viscoelastic, isotropic media using reconstruction of relaxation spectrum
from measured or computed complex velocity or complex modulus of the medium. Math-
ematically the problem is formulated as an inverse spectral problem for reconstruction of
spectral measure in the analytic Stieltjes representation of the complex modulus using ra-
tional approximation. A rational (Padé) approximation to the spectral measure is derived
from a constrained least squares minimization problem with regularization. The recovered
stress-strain relaxation spectrum is applied to numerical calculation of frequency dependent
Q-factor and frequency dependent phase velocity for known analytical models of a stan-
dard linear viscoelastic solid (Zener) model as well as a nearly constant-Q model which has
a continuous spectrum. Numerical results for these analytic models show good agreement
between theoretical and predicted values and demonstrate the validity of the algorithm. The
proposed method can be used for evaluating relaxation mechanisms in seismic wavefield
simulation of viscoelastic media. The constructed lower order Padé approximation can be
used for determination of the internal memory variables in TDFD numerical simulation of
viscoelastic wave propagation.

INTRODUCTION

We present a method to recover relaxation spectrum of the medium given measure-
ments of complex velocity or complex viscoelastic modulus, and to further estimate the
quality Q-factor and phase velocity. We formulate the problem as an approximation to
the spectral measure in the Stieltjes representation of the complex modulus using rational
(Padé) approximation. The method of construction of Padé approximation is based on con-
strained least squares minimization algorithm, regularized by the constraints derived from
the analytic Stieltjes representation of the complex modulus. Solution of the constrained
minimization problem gives us coefficients of a rational approximation to the spectral mea-
sure of the medium. This rational approximation is transformed into Padé approximation
by partial fraction decomposition. The method can use as data the values of measured, or
simulated (or desired) complex modulus or complex velocity in certain interval of frequen-
cies. The recovered lower order rational ([p, q]-Padé) approximation can be used for deter-
mination of the internal memory variables in TDFD numerical simulation of viscoelastic
wave propagation. The developed technique together with finite difference modeling may
eventually lead to an alternative formulation for numerical simulation of viscoelastic wave
propagation. The present approach may suggest a new simultaneous inversion technique
for estimation of the frequency dependent complex velocities, Q-factors and phase veloc-
ities in anelastic attenuating media from vertical seismic profile (VSP) data in geophysics
prospecting.
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ANALYTIC REPRESENTATION OF VISCOELASTIC MODULUS

We consider a plane compressional wave propagating in a homogeneous isotropic vis-
coelastic medium with constant material properties. The equation of motion and the rela-
tion between stress σ and strain ε for one-dimensional (1D) linear viscoelastic media are
represented by

%
∂2u

∂t2
=

∂σ

∂x
, σ = M∗ dε =

∫ t

−∞
M(t− τ)dε(τ), ε =

∂u

∂x
(1)

where % is the mass density, u(x, t) is the displacement, M(t) is the relaxation function or
medium modulus. In the frequency domain the relation between stress σ and strain ε can
be formulated as

σ(ω) = M(ω)ε(ω) (2)

where M(ω) is the complex viscoelastic modulus and ω is the angular frequency. The
complex velocity and the phase velocity are given by (Carcione, 2007)

V (ω) =

√
M(ω)

%
,

1

c(ω)
= Re

[(
%

M(ω)

)1/2
]

(3)

respectively. The quality factor Q as a function of ω is defined as

Q(ω) =
ReM(ω)

ImM(ω)
= cot θ(ω) (4)

where θ(ω) is the phase of M . M(ω) is uniquely determined by a given Q(ω) in a causal
medium since ReM and ImM must obey Kramers-Kronig dispersion relations (Carcione,
2007). The Q-factor characterizes the phase delay between the oscillating stress and strain.
In seismic applications, Q is normally assumed to be frequency-independent or only slowly
varying with frequency (Kjartansson, 1979). Q-factor is commonly used for evaluating the
absorbtion and attenuation of the seismic wave.

Recall the integral expression for the viscoelastic modulus M (Day and Minster, 1984)

M(ω) = MU − δM

∫ ∞

0

dη(x)

iω + x
, where dη(x) = Φ(−lnx)dx, i =

√−1. (5)

The non-negative distribution Φ(lnτ) is called the normalized relaxation spectrum of the
medium with τ = x−1 being the relaxation time. Here MU is the unrelaxed modulus and
δM is the relaxation of the modulus, respectively. In terms of M(ω), it is seen from (5)
that MU , the relaxed modulus MR, and δM are given by

MU = lim
ω→∞

M(ω), MR = lim
ω→0

M(ω), δM = MU −MR. (6)

It is convenient to introduce a new complex variable s = iω and define a new function
G(s) = (MU − M(s/i))/δM which is the integral part of the complex modulus M(ω)
defined in (5). The function G can be written as

G(s) =
MU −M(s/i)

δM
=

∫ ∞

0

dη(x)

s + x
, s ∈ C \ (−∞, 0] with

∫ ∞

0

dη(x)

x
= 1 (7)
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where dη(x) is the non-negative Stieltjes measure on (0,∞) which characterizes the re-
laxation spectrum of the medium. The function G(s) is analytic outside the negative real
semiaxis in the complex s-plane, all its singular points are in the interval (−∞, 0). The real-
valued function η(x) is uniquely determined if it is chosen such that η(x) = η(x+), η(0) =
0, and it can be obtained from the function G by the Stieltjes inversion formula (Widder,
1946)

η(x) =
η(x+) + η(x−)

2
= − 1

π
lim

y→0+

∫ x

0

ImG(−ν + iy)dν. (8)

Because the complex velocity V (ω) in (3) or complex viscoelastic modulus M(ω) in (5)
is frequency dependent, the measurements of V (ω) or M(ω) at certain frequencies should
be able to provide the desired data set. The function η(x) can be approximated by a step
function with a finite number of steps (Zhang and Cherkaev, 2008, 2009; Zhang et al.,
2009), so that

dη(x) ' dη̂(x) =

q∑
n=1

Anδ(x + ρn)dx, x ∈ (0,∞) (9)

where An > 0 and −∞ < ρq < ... < ρ1 < 0. The function η(x) can be approximated by

η(x) =

∫ x+

0

dη(t) ' η̂(x) =

∫ x+

0

dη̂(t) =

q∑
n=1

AnH(x + ρn), x ∈ (0,∞) (10)

where H(x) is the Heaviside step function. The function η(x) defined for x ∈ (0,∞) is a
non-decreasing, non-negative function corresponding to the Stieltjes function G(s). Thus,
the approximation Ĝ(s) of the function G(s) is given by

G(s) ' Ĝ(s) =

q∑
n=1

An

s− ρn

, s.t. −∞ < ρn < 0, 0 <
An

|ρn| < 1,
∑ An

|ρn| = 1. (11)

Here ρn is the n-th simple pole on the negative real semiaxis with positive residue An, q is
the total number of poles. It follows from (7), (9) and (11) that the approximation of the
complex modulus M(ω) is given by

M(ω) ' MU − δM

q∑
n=1

An

iω − ρn

. (12)

Equation (12) gives an expression of discrete approximation of the complex modulus M(ω)
in a partial fraction form. The real parameters An and ρn in this representation contain all
information about the relaxation spectrum of the medium. It follows from (4) and (12), that
the Q-factor, the complex velocity V (ω), and the phase velocity c(ω) can be estimated in
terms of An and ρn as

Q(ω) ' Re[MU − δM

q∑
n=1

An/(iω − ρn)]/Im[MU − δM

q∑
n=1

An/(iω − ρn)], (13)

V (ω) ' V c(ω) =
1√
%

{
MU − δM

q∑
n=1

An

iω − ρn

} 1
2

, c(ω) ' 1

ReV c(ω)
, (14)
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respectively.

The partial fraction approximation (12) for the complex modulus M(ω) implies the
relationship between the stress σ and strain ε in the time domain as shown in (Day and
Minster, 1984) as

σ(t) = MU

[
ε(t)−

q∑
n=1

ζn(t)

]
(15)

where ζn (n = 1, 2, ..., q) are the internal memory variables which satisfy the first-order
differential equations (Day and Minster, 1984; Emmerich and Korn, 1987)

dζn(t)

dt
− ρnζn(t) = An

δM

MU

ε(t), (n = 1, 2, ..., q). (16)

Equation (15) represents the stress σ as a sum of the elastic part MUε(t) and an anelastic
part given by the internal memory variable functions ζn(t) (n = 1, 2, ..., q). Substituting
equation (15) into equations (1) results in the system of governing differential equations

%
∂2u

∂t2
= MU

[
∂2u

∂x2
−

q∑
n=1

ϑn(x, t)

]
(17)

where ϑn(x, t) = ∂ζn

∂x
(x, t) satisfies

dϑn

dt
− ρnϑn = An

δM

MU

∂2u

∂x2
, (n = 1, 2, ..., q). (18)

Comparing to 1D heterogeneous viscoelastic equations (1) the convolution integrals are
eliminated in the system of equations (17) by introducing a sequence of variables ϑn, with
each satisfying a first-order differential equation in time. Equations (18) have to be solved
for the unknown functions ϑn(x, t) in addition to the elastic wave equations (17) of mo-
tion in the time-domain numerical simulation of wave propagations using finite-difference
methods (Krebes and Quiroaa-Goode, 1994; Blanch et al., 1995). The accuracy of numer-
ical computation of wave propagation in an attenuating medium depends on how well the
poles ρn and residues An of the function G(s) are determined when using equations (18).
From a practical computation point of view, it is important (crucial) to keep the number of
internal memory variable functions ζn in (16) or ϑn in (18) as low as possible. This yields
to construct a lower order rational approximation of complex modulus M(ω) for modeling
of Q-factor in the frequency domain.

Let us assume that the complex velocity V (ω) or complex modulus M(ω) can be mea-
sured or computed in a range of frequencies or can be modeled for a specific viscoelastic
material. We describe an inversion method below which allows us to identify the real pa-
rameters An and ρn, and to construct a rational ([p, q]-Padé) approximation of M(ω) in
(12), especially for a lower order [p, q]-Padé approximation of M(ω) from measured or
computed complex velocity. Therefore, the Q-factor can be evaluated using formula (13).
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RATIONAL APPROXIMATION FOR INVERSION

We note that the function G(s) has a discrete approximation Ĝ(s) of the partial fraction
form (11). Therefore, the right hand side of the first equation in (11) can be approximated
by a rational ([p, q]-Padé) function given by (Baker Jr. and Graves-Morris, 1996):

Ĝ(s) =
∑

n

An

s− ρn

=
a0 + a1s + a2s

2 + · · ·+ aps
p

b0 + b1s + b2s2 + · · ·+ bqsq
(p < q) (19)

where al (l = 0, 1, . . . , p) and bk (k = 0, 1, . . . q) are real coefficients to be determined,
respectively. Let us suppose that the function G(s) has at least one pole, and all the poles
of the denominator in (19) are simple. Since the poles ρn of the function G(s) lie in the
interval (−∞, 0), we normalize the polynomial coefficient b0 = 1 in the denominator of
(19) which allows us to identify the nonzero poles of G. To derive the linear system of
equations for the coefficients al’s and bk’s in (19), we further assume that the measured
data pairs (sj, gj) (j = 1, 2, .., N) of the function G are given: gj = G(sj), sj = iωj ,
and i =

√−1. Here ωj is the frequency sample data point and N is the total number of
the complex measured values of G(s). We require that the constructed approximation Ĝ(s)
agreed with the measured values of G(s) at the points sj . Then equation (19) can be written
as

a0 + a1sj + a2s
2
j + · · ·+ aps

p
j

1 + b1sj + b2s2
j + · · ·+ bqs

q
j

= gj (20)

where al (l = 0, . . . , p), bk (k = 1, . . . , q) are required unknown coefficients. Equation
(20) is equivalent to the following system

a0 + a1sj + · · ·+ aps
p
j − b1gjsj − b2gjs

2
j − · · · − bqgjs

q
j = gj, (j = 1, 2, . . . , N). (21)

Therefore, the system (21) for the unknown coefficients al’s and bk’s can be further ex-
pressed as the following system:

Sc :=




1 s1 ·· sp
1 −g1s1 −g1s

2
1 ·· −g1s

q
1

1 s2 ·· sp
2 −g2s2 −g2s

2
2 ·· −g2s

q
2

·· ·· ·· ·· ·· ·· ·· ··
1 sN ·· sp

N −gNsN −gNs2
N ·· −gNsq

N







a0

a1

··
ap

b1

··
bq




=




g1

g2

··
gN


 = g

(22)
It is clear that in order for the Padé coefficients al’s and bk’s to be uniquely determined,
the total number of the measurements is required to be greater or equal to the number of
coefficients, i.e., N ≥ p + q + 1. The reconstruction problem of determining the column
real coefficient vector c = [a0, a1, · · ·, ap, b1, b2, · · ·, bq]

> in (22) is an inverse problem. It is
ill-posed and requires regularization to develop a stable numerical algorithm.

To construct a real solution vector c of [p, q]-Padé coefficients for the inverse prob-
lem (22), we use complex matrices S = SR + iSI and g = gR + igI where subindices r
and i indicate the real and imaginary parts of the matrices with entries in terms of data.
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We introduce a penalization term in the Tikhonov regularization functional T λ(c,gR,gI)
(Tikhonov and Arsenin, 1977), so that the problem (22) can be formulated as the following
constrained least squares minimization problem with the regularization parameter λ > 0
chosen properly (Zhang and Cherkaev, 2008, 2009; Zhang et al., 2009):

min
c
T λ(c,gR,gI) = min

c
{ || SRc− gR ||2 + || SIc− gI ||2 + λ2||c||2}

subject to −∞ < ρn < 0, 0 <
An

|ρn| < 1, n = 1, 2, . . . , q. (23)

Here || · || is the usual Euclidean norm, parameters An and ρn in the constraints (23) are
residues and poles of the partial fractions decomposition of the reconstructed [p, q]-Padé
approximation of G(s). To find the minimizer of the problem (23), we solve its Euler
equation; the solution is given by

c = {S>RSR + S>I SI + λIp+q+1}−1{S>RgR + S>I gI} (24)

where Ip+q+1 denotes the (p+q+1)×(p+q+1) identity matrix. After reconstruction of the
real coefficient vector c of the rational function approximation Ĝ(s), its decomposition into
partial fractions (19), gives [p, q]-Padé approximation of G(s). The reconstructed function
Ĝ(s) can be used to identify the relaxation spectrum for a viscoelastic medium and to
estimate the quality Q-factor for such a medium using formula (13).

SPECTRAL REPRESENTATION OF STANDARD LINEAR SOLID MODEL

We consider the time-dependent relaxation function of stress-strain relation in a stan-
dard linear solid (SLS) (Generalized Zener) model (Carcione et al., 1988)

M(t) = MR

[
1−

L∑
n=1

(
1− τεn

τσn

)
e−t/τσn

]
H(t), τεn ≥ τσn (25)

where τεn , τσn denote material strain relaxation time and stress relaxation time for the n-th
mechanism, respectively. This model was also introduced in (Blanch et al., 1995; Tal-Ezer
et al., 1990; Liu et al., 1976) in order to obtain a nearly constant quality Q-factor over the
seismic frequency range of interest. Here the relaxed modulus MR = MU − δM , L is the
number of relaxation mechanisms, and H(t) is the heaviside step function. The unrelaxed
modulus is obtained for t = 0 in (25) as in the following:

MU = MR

[
1−

L∑
n=1

(
1− τεn

τσn

)]
. (26)

Applying the Laplace transform in s-multiplied form (Day and Minster, 1984):

F (s) = s

∫ ∞

0

F(t)e−stdt (27)

to the stress-strain relation (25), and setting s = iω, the complex modulus can be derived
as

M(ω) = MR

[
1−

L∑
n=1

(
1− τεn

τσn

)
iω

iω + τ−1
σn

]
. (28)
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Noticing (26) and the definition of function G(s) in (7), corresponding to the complex
modulus M(ω) (28), G(s) is found in the following L-term partial fractions form

G(s) =

(
MU

MR

− 1

)−1 L∑
n=1

(τεn/τσn − 1)τ−1
σn

s + τ−1
σn

. (29)

In the complex s-plane, equation (29) implies a representation for the poles and residues of
the function G(s):

ρn = −τ−1
σn

, An = (MU/MR − 1)−1[(τεn/τσn − 1)τ−1
σn

], (1 ≤ n ≤ L). (30)

The location of poles and residues of the function G depends on the strain-stress relaxation
parameters τεn and τσn . From equation (26), one can check that the residues An and poles
ρn in (30) satisfy the sum rule property as in the last equation of (11).

Let us assume that the complex velocity V (ω) or the complex modulus M(ω) can be
simulated in a range of frequencies for the standard linear solid model (28) and the real
parameters An and ρn can be recovered using the reconstruction algorithm of a [p, q]-Padé
approximation of the function G(s) as described in the previous sections. From equations
(30), we can calculate the strain-stress relaxation parameters τεn and τσn in terms of the
recovered poles ρn and residues An of G(s) explicitly as in the following:

τ c
εn

= (MU/MR − 1)Anρ
−2
n − ρ−1

n , τ c
σn

= −ρ−1
n , (1 ≤ n ≤ q). (31)

where the superscript c indicates the computed value of τεn and τσn . From formulas (30)
and (31), we can see that the parameters τεn and τσn can be simply calculated once the
poles ρn and residues An of the approximation dη̂(x) of the spectral measure dη(x) are
determined. For the standard linear solid model (28), by the definition (4) and equation
(28), the Q-factor as a function of frequency ω can be estimated for different lower orders
q ≤ L using the derived equivalent formulas

Qc(ω) =

1 +

q∑
n=1

(τ c
εn
− τ c

σn
)ω2τ c

σn

1 + ω2(τ c
σn

)2

q∑
n=1

(τ c
εn
− τ c

σn
)ω

1 + ω2(τ c
σn

)2

or Qc(ω) =

MR − δM

q∑
n=1

Anρ−1
n ω2

ω2 + ρ2
n

δM

q∑
n=1

Anω

ω2 + ρ2
n

(32)

where Qc(ω) represents the calculated quality factor Q. The complex modulus and complex
velocity can be calculated as

M c(ω) = MR

[
1−

q∑
n=1

(
1− τ c

εn

τ c
σn

)
iω

iω + (τ c
σn

)−1

]
(33)

and

V (ω) ' V c(ω) =

√
M c(ω)

%
, (34)

respectively. Therefore, the phase velocity can be calculated using (14).
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NUMERICAL EXAMPLES

Results for the standard linear solid model

In the following numerical simulations we employ the values of material strain relax-
ation time τεn and stress relaxation time τσn shown in Table 1 (refer to (Tal-Ezer et al., 1990)
where these values were used for numerically solving the 1-D viscoelastic equation of mo-
tion with relaxation mechanisms) to calculate the synthetic complex viscoelastic modulus
M(ω) with L = 5 relaxation mechanisms to yield a constant quality factor Q = 100 at 50
data points in the seismic exploration band of frequencies from 2Hz to 50Hz.
Table 1. True values of relaxation times for five mechanisms to yield a constant Q = 100 (ω = 2 ∼
50Hz) for the synthetic viscoelastic modulus given in (Tal-Ezer et al., 1990).

n 1 2 3 4 5
τεn(s) 0.3196389 0.0850242 0.0226019 0.0060121 0.0016009
τσn(s) 0.3169863 0.0842641 0.0224143 0.0059584 0.0015823

The poles and normalized residues of the spectral function G(s) were reconstructed
using the developed inversion algorithm for different orders of q = p + 1: (1) q = 7,
(2) q = 4 and (3) q = 3 when there is no noise in the data. The location of the recov-
ered poles of the function G is located on the negative real semiaxis, the analytically and
numerically calculated normalized spectral measure ξ(x) and ˆξ(x) are shown in Fig. 1.
The recovered five poles and residues of the function dη corresponding to the synthetic
modulus M(ω) when q = 7 are reconstructed very accurately with the computed sum∑

An/|ρn| ≈ 1.0000000. For the other two cases poles and residues are reconstructed
with the calculated sum

∑
An/|ρn| ≈ 0.9736328 for q = 4 and

∑
An/|ρn| ≈ 0.8855121

for q = 3, respectively. The recovered poles and residues of G are further used to convert
the values of material strain relaxation time τεn and stress relaxation time τσn using formu-
las (31) with the number of relaxation mechanisms being less than 5. These reconstructed
values of τεn and τσn are shown in Table 2 when there is no noise in the data using the
lower order q < 5 in [p, q]-Padé approximant method. In Table 2, τ c

εn
and τ c

σn
stand for the

predicted relaxation times for L = q = 3 and L = q = 4 mechanisms to yield a constant
Q = 100 (ω ∈ 2π[2, 50]Hz) using the constrained Padé approximant method.

Table 2. Recovery of relaxation times for three and four mechanisms to yield a constant Q = 100
(ω = 2 ∼ 50Hz) using the constrained Padé approximant method (τ c

εn
, τ c

σn
stand for the predicted

values of relaxation times).

n 1 2 3 4 q
τ c
εn

(s) 0.1508046 0.0247268 0.0060695 0.0016029 4
τ c
σn

(s) 0.1486096 0.0244912 0.0060145 0.0015842
τ c
εn

(s) 0.0597205 0.0075747 0.0016859 3
τ c
σn

(s) 0.0586769 0.0074939 0.0016649

To estimate the frequency dependent quality Q-factor and the frequency dependent
phase velocity for the SLS model, we chose the density % = 2000kg/m3 and the relaxed

8 CREWES Research Report — Volume 21 (2009)



Estimation of Q and phase velocity

modulus MR = 8Gpa in the numerical simulations. Fig. 2 shows the results of the recov-
ered Q-factors (left) and phase velocity c(ω) (right). It is seen from the left part of Fig. 2
that the estimated values of the Q-factors are nearly constant Q = 100 over the frequency
band between 12Hz and 37Hz for the lower order [p, q]-Padé approximant method. How-
ever, the calculated Q-factors were not very good approximation to the constant Q = 100
in both low frequency range about 2 ∼ 12Hz and high frequency range between 37Hz and
50Hz for this particular used analytic SLS model. The estimated Q-factors shown in the
left Fig. 2 are calculated using equivalent formulas (32). The true and computed phase
velocity versus frequency shown on the right of Fig. 2 were calculated using formula (14).
The results of computations for Q-factors and phase velocity agree with the true values
in published simulations of (Tal-Ezer et al., 1990), especially for values at high frequen-
cies. The calculated values of relaxation mechanisms can be used for seismic wavefield
simulation in viscoelastic media.
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FIG. 1. Reconstruction of residues and poles of the function G(s) (left) and the spectral measure
η(x) (right).
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FIG. 2. True and computed quality Q-factor (left) and phase velocity c(ω) (right).

Results for a nearly constant-Q model with a continuous spectrum

To further examine the effectiveness of the developed inversion method we consider
a nearly constant-Q model with a continuous relaxation spectrum. The synthetic spectral
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measure for this model has a constant relaxation spectrum in the finite interval [x0, x1] ⊂
(0,∞) (x0 6= x1) given by

dη(x)

dx
=





[
ln

(
x1

x0

)]−1

, if x0 ≤ x ≤ x1

0, if x > x0 or x < x1.

(35)

The representation of the normalized spectral measure is derived as

ξ(x) =

∫ x+

0

dη(t)

t
=





0, if 0 ≤ x < x0[
ln

(
x1

x0

)]−1

ln

(
x

x0

)
, if x0 ≤ x ≤ x1

1, if x > x1.

(36)

It is easy to check the normalized spectral measure dξ(x) = dη(x)/x in (36) satisfies
the sum rule property in (7). The corresponding function G defined in (7) can be derived
analytically as

G(s) =

∫ ∞

0

dη(x)

s + x
=

[
ln

(
x1

x0

)]−1

ln

(
s + x1

s + x0

)
, s = iω. (37)

The corresponding complex modulus and complex velocity are obtained as

M(ω) = MU − δM

[
ln

(
x1

x0

)]−1

ln

(
iω + x1

iω + x0

)
, (38)

and

V (ω) =

[
1

%

(
MU − δM

[
ln

(
x1

x0

)]−1

ln

(
iω + x1

iω + x0

))] 1
2

(39)

respectively, where % is the density. The unrelaxed modulus MU = %c2
U , cU is the unrelaxed

velocity, and the relaxation modulus δM = MU − MR, MR = %c2
R, cR is the relaxed

velocity.

In the numerical experiments we chose % = 2400kg/m3, cU = 3500m/s, cR = 3000m/s,
which gives δM = 7.8Gpa. The complex velocity measurements were simulated at 50 data
points in a range frequency as ω ∈ 2π[10−2, 102]s−1, and the interval [x0, x1] = [0.35, 104]
was chosen for the support of the normalized spectral measure dξ(x). The recovered nor-
malized residues and poles of the function G(s) for the continuous relaxation spectrum
model are shown in the left part of Fig. 3 using the Padé approximants of different orders
(1) p− 1 = q = 4 and (2) p− 1 = q = 5 when there is no noise in the data. We compared
analytically and numerically calculated normalized spectral measure functions. The right
part of Fig. 3 shows the true normalized spectral measure ξ(x) and the approximation ξ̂(x)
of the normalized spectral measure. The location of the recovered four poles with the com-
puted sum

∑
An/|ρn| ≈ 0.9413156 for q = 4 and five poles with

∑
An/|ρn| ≈ 0.9569588

for q = 5 lays in between −10000 and −0.35 on the negative real semiaxis.

The recovered complex modulus and complex velocity of the continuous spectrum
model were further used to estimate the Q-factor and the phase velocity c(ω) over the fre-
quency band between 10−2Hz and 102Hz using formulas (13) and (14). Fig. 4 represents
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the reconstruction of the quality factor Q (left) and the phase velocity (right) of the model
versus frequency using the Padé approximants of two different orders. It is seen from the
left part of Fig. 4 that the quality factor of the continuous spectrum model is almost nearly
constant Q ' 21 and the recovered quality factors for q = 4 and q = 5 fits the frequency
dependent Q-values of the model very well in a range of frequency about 0.2Hz ∼ 100Hz.
The phase velocity increases with frequency illustrated in the right part of Fig. 4. The true
and reconstructed phase velocities also fits fairly well in the frequency band from 10−2Hz
to 102Hz.
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FIG. 3. Reconstruction of poles and residues of the normalized spectral measure ξ(x) (left) and the
normalized spectral measure ξ(x) (right).
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FIG. 4. Calculation of quality Q-factors (left) and phase velocities c(ω) (right) for model with a
continuous spectral measure using different orders of Padé approximation.

We also calculated values of relative errors for the estimation of phase velocity, quality
Q-factor, complex velocity, and complex modulus at sample data points over the given
frequency band demonstrated in Table 3. In Table 3, the frequency band for calculation of
relative errors of phase velocity, complex velocity, and complex modulus is from 0.01Hz
to 100Hz, and 0.2Hz ∼ 100Hz for the Q-factors. The relative error formula follows

E0 = max
1≤j≤N

[ |g(ωj)− ĝ(ωj)|
|g(ωj)|

]
(40)
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where ωj (j = 1, 2, ..., N) are the frequency sample data points and N is the total number
of sample data. Here g(ω) represents the given frequency dependent function and ĝ(ω) the
approximate function of g(ω), respectively.

Table 3. Calculated relative errors of true and computed physical parameters using formula (40).

Error Phase velocity Quality factor Complex velocity Complex modulus q
E0 1.2344e-02 4.7875e-01 1.2349e-02 2.4545e-02 4
E0 9.1699e-03 2.3328e-02 9.1676e-03 1.8251e-02 5

Sensitivity analysis of the method

To numerically illustrate the sensitivity analysis of the estimated quality Q-factors and
phase velocities, a uniformly distributed random noise was calculated as percentage of
exact value at each measured data point of the synthetic SLS model. We have performed
numerical experiments to examine the sensitivity of the algorithm for different noise levels
added to the input data. The order q = p − 1 = 5 in the inversion algorithm was chosen
to reconstruct the spectral function G(s) and the strain-stress relaxation time parameters
using data with added noise.

In the numerical experiments any recovered pole ρn of G(s) that is off the negative
real semiaxis is discarded based on the inversion algorithm so that the total number of
reconstructed relaxation mechanisms is less than q = 5 in each case of data with added
noise. The reconstructed stress-strain relaxation time parameters were used to evaluate
the Q-factors and phase velocities. Fig. 5 illustrates the estimation of Q-factors (left) and
phase velocities (right) for data with 1.0%, 1.5% and 2.5% noise. The results of numerical
computations show that even with added noise, the computed Q-factors are nearly constant
Q = 100 in the frequency band about ω = 10 ∼ 40Hz, and the recovered phase velocities
agree with the true values in the frequency range about ω = 2 ∼ 50Hz, which demonstrates
the stability of the reconstruction.
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FIG. 5. True and computed quality factor Q (left) and phase velocity c(ω) (right) for data with
1.0%, 1.5% and 2.5% noise.
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CONCLUSIONS

We developed a new numerical inversion method for estimation of Q-factor and phase
velocity in homogeneous dissipating media using Padé approximation. The approach is
based on rational ([p, q]-Padé) approximation of the spectral measure in the Stieltjes repre-
sentation of the complex viscoelastic modulus, which contains all information about relax-
ation spectrum of the medium. The problem is formulated as a constrained least squares
minimization problem with regularization constraints provided by the Stieltjes representa-
tion of the complex modulus. The method was tested using analytical models of viscoelas-
tic media with a continuous spectrum as well as a standard linear solid (Zener) model. The
numerical results demonstrate the effectiveness of the developed approach. The method can
be used for identification of relaxation parameters of viscoelastic materials from measure-
ments of complex velocity or complex modulus. The recovered relaxation mechanisms
can be used for seismic wavefields simulation in viscoelastic media. Our approach may
provide significant savings in the computer memory and computation time needed for nu-
merical simulation of seismic wave propagations in viscoelastic media.
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