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A comparison of finite difference analogs for hyperbolic 
equations in inhomogeneous media 

Patrick F. Daley 

ABSTRACT 

In an infinite halfspace with constant media, scalar wave equations may be written 
including one for acoustic wave propagation (pressure wave propagation in fluids) and 
another for waveHS −  potential propagation. Both of these scalar wave equations will be 

considered here in a radially symmetric medium with the possibility that parameters 
related to both problems may vary with depth. This is done such that the different effects 
of discontinuities with depth of the media parameters may be investigated in the context 
of the boundary conditions required to be introduced. Once these have been determined, 
finite different analogues for the two cases are constructed. The simplest of these cases is 
to consider incidence at the halfspace boundary with the upper halfspace assumed to be a 
vacuum as was considered by Aki and Richards who presented solutions in the form of 
Sommerfeld integrals. For the problem types being investigated here, stress continuity 
conditions for a horizontal boundary within the two media types will be addressed. 

What has often been noticed in the literature is that a scalar wave equation associated 
with elastodynamic wave propagation in an isotropic homogeneous medium has its 
parameters modified, without any mathematical justification, to be spatially variable and 
the resulting equation employed to model elastodynamic (compressional) waveP −  
propagation using methods such as finite difference modeling. Liberties appear to be 
taken regarding continuity conditions at discontinuities of media parameters (interfaces).  
This is not to say that reasonable looking numerical results cannot be obtained, but the 
nature of these equations is questioned.  

INTRODUCTION 

The compressional ( )P  scalar potential wave equation as well as the acoustic 

(pressure) wave equation and waveHS −  potential equation for an isotropic 
homogeneous halfspace all have the similar form,  
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following Aki and Richards (1980) where r  is a 3D  position vector, t  is time, v  is the 
propagation velocity, and the potential φ  can be a scalar waveP −  potential, the acoustic 

pressure ( ),P tr  related to wave propagation in fluids or ( ), tψ r  which is the scalar 

potential related to the HS  displacement, ( ), tv r .  The polarization vector associated 

with this displacement type is normal to the incident plane and is expressed in terms of 
( ), tψ r  in a Cartesian system as ( ) ( )0, ,0 ,v tψ= = ∇v r . There is a difference between 

the above two potential equations, which will be investigated here. The HS  potential 
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equation is obtained by introducing the quantity ( )0,0,ψ= ∇×v  into the elastodynamic 

equation with spatially dependent Lamé coefficients and density with the result given in 
equation (3).  

As the intent of this report is to address certain finite difference analogue matters 
related to discontinuities in the parameters ( )andα ρ  in equation (1), it may be useful to 

refer to a relevant article in the literature. In Shuster’s freely available VP S−  finite 

difference computer code for a 2D  plane layered isotropic medium, the continuity 
equations involving particle displacements and stresses at the interfaces between two 
elastic media are explicitly introduced. There are numerous articles where establishing 
the continuity conditions is done in an explicit manner. The basis for the implicit 
establishment of continuity conditions is established using effective media parameters or 
harmonic averages of the media parameters.  

The use of effective media parameters (harmonic averages) has been employed by 
numerous authors in finite difference modeling to account for continuity conditions at 
media parameter discontinuities (see for example, Boore, 1972; Schoenberg and Muir, 
1989, Levander, 1988,  Moczo, 1989, Zahradnik et al., 1993, Graves, 1996). It was 
shown by Zahradnik et al. (1993) that the effective media parameters (harmonic 
averages) provide a more accurate representation of the actual parameters in the region 
near media interfaces by appropriately satisfying the traction continuity condition across 
the interface. While the shear and bulk moduli employ harmonic averaging, arithmetic 
averaging of the density is most commonly used. It should be noted in the above that the 
interfaces lie along horizontal grid lines. The progression to interfaces specified along 
vertical grid lines follows. It appears to still be point of discussion as to how to properly 
deal with arbitrary media boundaries that do not lie along either vertical or horizontal grid 
lines. Anecdotally, results may apparently be improved to some extent by using 9 or 25 
grid points centered on the grid point near which the boundary is at some angle with the 
finite difference grid. This is not usually a preferred option, being computationally 
intensive in space and run time.   

THEORY 

Consider a 2.5 dimensional radially symmetric coordinate system, ( ),r z , in a halfspace 

0z > . An explosive point source is located at 0=r r , the acoustic pressure equation (1) 

has the form for the acoustic wave equation with variable density may be written as 
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where K  is the rigidity, which in the most general case could have a time dependence, 
but is not spatially dependent. The density, ( )ρ r , is assumed to be spatially dependent 

such that spatial variations of ( )ρ r  specify the heterogeneities of the material properties 

of the medium.  
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Alternately, the HS  potential wave equation with a spatially variable Lamé’s 

coefficient, ( )μ r ,  and density, ( )ρ r ,  is given by  
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The equations (2) and (3) fully specify an initial value problem if the values of 

0 0
and

t t
tφ φ

= =
∂ ∂  are indicated, usually as 

0 0
0

t t
tφ φ

= =
= ∂ ∂ = , where φ  may be either 

the acoustic pressure, ( ),P tr  or the shear wave potential, ( ), tψ r . 

The reason for writing equations (2) and (3) in the forms above rather than as 
something similar to equation (1) is so that if they are to be employed in modeling using 
finite difference methods, boundary conditions, at least at horizontal and vertical grid 
planes, are satisfied implicitly. The rationale for this is to satisfy the physical laws used in 
their derivation. Discussions of this topic for the HS  problem appear in a number of 
works such as Alterman and Karal (1968), Boore (1972), Kelly et al. (1976), Kummer 
and Behle (1982), Kummer et al. (1987), Moczo (1989) and Zahradnik et al. (1993), 
among others. Acoustic wave propagation is also addressed in many works. However, the 
paper by Sochacki et al. (1991) contains a more than acceptable treatment and cites a 
variety of related works. 

It will now be convenient to return to equation (1) and as the velocity has been 
assumed spatially invariant, a finite Hankel transform (Appendix A and Mikhailenko, 
1985,1988) will be applied to remove the radial component for the time being, leaving a 
problem in depth and time as follows 

 
( ) ( )

2 2
02 2 2

2 2 2n

z z
f t

z t

δφ φζ ρα φ ρα ρ
π
−∂ ∂− + − =

∂ ∂
 (4) 

This form of the scalar wave equation appears in the geophysical literature on a regular 
basis, often with the assumption that the elastic parameters (velocity) are spatially 
dependent. As equations (2) and (3) appear in a manner that adheres to the physical 
principles from which they were derived, the question is what set of physical conditions 
were initially used to arrive at equation (4) having the form 
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In addition, what form of finite difference analogue with respect to the z  (depth) 
coordinate would adequately satisfy these physical principles? This is apparently a set of 
two coupled questions in two unknown answers. The most direct route (letting 2ρα ζ= ) 
would be to use 
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or possibility 
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or even 
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where ( ) ( ) ( ) ( ) ( )1 2 1 2 1 12 2 4n n n n nz z z z zζ ζ ζ ζ ζ+ − + − + = + +     and the harmonic 

average quantities, ( )1 2n zζ ± , are defined below.  

Another possibility might be to emulate equations (2) and (3), using less than 
mathematically rigorous methods, to initially obtain 
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where ( )zζ  is the harmonic average of ( )zζ . An analogue for the quantity ( )zζ  may 

be introduced into equation (7) resulting in  
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where the harmonic average terms ( )1 2n zζ ±  are defined as 
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respectively. This manner of obtaining a finite difference analog for the differential term 
in z , as shown above, results in 
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It remains to be determined what this means. Assume that i t i zAe ω ωξφ −=  with 

( )1 22 2pξ α −= − , horizontal component of the slowness vectorp − , and that in a manner 

similar at least to the HS  that at some horizontal plane where the velocity is 
discontinuous that the condition (" "−  just above discontinuity and " "+  just below 
discontinuity) 
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so that  

 ( ) ( ) ( ) ( )2 2 cos cosz A z A z A z Aρα ξ ρα ξ ρα θ ρα θ− − − + + + − − − + + += → = . (13) 

as using the standard definition of p , then ( )1 22 2cos 1 pθ α= − . Upon reviewing the text 

of Aki and Richards (1980) this may be taken to be some modified form of 
waveP − normal stress, yielding an expression very similar to that resulting when 

considering the HS  problem (Zhahradnik et al., 1993) 

  ( ) ( ) ( ) ( )cos cosz z A z z Aρ α θ ρ α θ− − − − + + + += . (14) 

This formula, as is shown in the next section, would produce results that are not what 
would be expected for waveP −  propagation. 

In the case of a plane wave incident from the ( )−  medium, 1A R− = −  and A T+ = , 

where andR T  are the HS  (plane wave) reflection and transmission coefficients. The 
additional equation required to solve for andR T  is the continuity of the scalar potential 
given as 1 R T+ = . For comparison purposes (Brekhovskikh, 1980), the acoustic pressure 
wave is afforded a similar treatment as above so that 
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which differs from equation (14). In fact, with the added condition given above, the 
reflection coefficient obtained is equivalent to the elastic Ρ̀Ṕ coefficient in Aki and 
Richards (1980) in the limit 0jβ → , jβ  being the shear wave velocities. As in the 

previous case, continuity of pressure requires that 1 R T+ = , which is the other condition 
required to fully specify the coefficient problem at the interface between two acoustic 
(fluid) media. At this point, it might be useful to conduct finite difference numerical 
experiments using the radially transformed equations of the acoustic wave equation, the 
scalar pressure wave equation, and the waveHS −  potential equation. 

It should be mentioned that the finite difference analogue given in equation (8) may be 
obtained using the standard method of finite difference analysis (equation B.11) that may 
be found in many publications on this topic (for example, Mitchell, 1969 or Ames, 1969) 
and is reviewed briefly in Appendix B for completeness. 

NUMERICAL RESULTS 

One FD  program was written with several different internal routines to model the 
different analogues given above. The results obtained with this software for a simple 
plane layered model will be compared together with comparisons based on other, less 
accurate methods such as Asymptotic Ray Theory (ART). The model chosen was such 
that ART could be used in this study without overly compromising its terms of validity. 

However, it maybe useful to return first to plane wave reflection coefficients, 
specifically the acoustic pressure PP  reflection coefficient and the scalar potential HS  
reflection coefficient at plane interfaces between two media. The acoustic pressure PP  
coefficient obtained from Brekhovskikh (1980) produces the same results if the 
elastodynamic PP  reflection coefficient from Aki and Richards (1980) is cautiously used 
by (numerically) letting the shear wave velocities in both media tend to zero 
( )1 2 0β β= → . A more rigorous theoretical pursuit of this indicates that these are equal 

in the preceding shear wave velocity limit. The PP  and H HS S  reflection coefficients 
(amplitude and phase versus incident angle) are shown in Figures (1) and (2). More 
discussion is contained in the related figure captions. It is evident that they are quite 
different especially in the sub-critical region, which is of interest in hydrocarbon seismic 
prospecting. 

For the synthetic trace modeling a single program with two functions was written, 
where the first function employed equation (6.a) for the acoustic wave, and equation (11) 
for HS  wave propagation. The disparity in the results for each of these cases may be seen 

by comparing Figures (3) and (4). 

The simple model of a layer over a halfspace chosen to compare the finite difference 
methods is defined in Table 1. Both the source and receivers are placed at the surface 
with the plane interface located at a depth of 7.5WL . The acoustic and HS wave velocities 

are both ( )1WL T Wavelength Period  and 1.5WL T in the halfspace. A 

( )WL Wavelength  and a ( )T Period  are defined relative to a 1500 m s  surface layer 
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velocity and a source pulse predominant freq uency of 30Hz . The densities in the layer 
and halfspace are 32.0 gm cm  and 32.2 gm cm , respectively. The receiver offset range is 

from ( )0 to 650 ; 0 to 22.5m WL  at increments of ( )10 0.346m WL . The zero point crossing 

of the H HS S  reflection coefficient is located at an offset of approximately 

( )202.5 7m WL . The critical point in both cases is at an offset of about ( )390 13.5m WL . 

The band limited source wavelet is of the Gabor type. The synthetic traces for these two 
cases are shown in Figures 3 and 4. As the finite difference scheme is only in the vertical 
( )z  direction and time, 40 points per wavelength were used in the computations. 

CONCLUSIONS 

Some concepts of finite difference theory for wave propagation in acoustic and elastic 
( )HS  media were presented. This was done within a hybrid finite difference framework. 

The finite difference problem consisted of only the depth spatial variable ( )z  and time. 

Marginally different finite difference analogues for the second derivative of the potentials 
( )or HP S  with respect to ( )z  were used with noticeable results which were presented 

graphically. The extension of what was determined in this simplistic study, to more 
complicated situations involving hyperbolic systems of partial differential equations, 
should not be ignored.  
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APPENDIX A: FINITE INTEGRAL TRANSFORMS 

Although the following finite integral transform methods may be found in the 
literature (Sneddon, 1972, for example), it was felt that for completeness they should be 
included here, at least in an abbreviated theorem formulation. The finite Hankel 
transform of the first kind is a direct application of the following theorem. 

Theorem 1: If ( )f x  satisfies Dirichlet’s conditions in the interval ( )0,c  and if its Hankel 

transform in that range is defined to be 

 ( ) ( ) ( ) ( )
0

a

j jH f x F x f x J x dxμ μξ ξ  ≡ =    (A.1) 

where jξ  is a root of the transcendental equation  

 ( ) 0jJ cμ ξ =  (A.2) 

then, at any point in the interval ( )0, a  at which the function ( )f x  is continuous , 
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where the sum is taken over all the positive roots of equation (A.2). 
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APPENDIX B: FINITE DIFFERENCE ANALOGUE 

For determining the finite difference analogue in the case of an operation of the type 
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In a similar manner 
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so that  

 
( ) ( ) ( )w z z

z
z z z

φ
λ
 ∂ ∂∂=  ∂ ∂ ∂ 

 (B.8) 

whose finite difference analogue is of the form 
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which in terms of ( )zλ  and nφ  has the form 
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From this it follows that 
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where the kχ  are obtained as 
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using the trapezoidal numerical integration scheme. 
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FIG. 1.  The acoustic PP reflection coefficient at an interface between two acoustic media using 
elastic constants (velocity and density) given in the text.  
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FIG. 2.  The SHSH reflection coefficient at an interface between two elastic media using constants 
(velocity and density) given in the text. 

 

 

 

 

 

 

 



Finite difference analogues 

 CREWES Research Report — Volume 22 (2010) 13 

 

 
 
FIG. 3.  The reflected PP arrival from an interface between two acoustic media. The critically 
refracted arrival cannot be seen, although some “ringing” at the appropriate offsets is apparent. 
This appears to be due to the finite difference analogue used. 
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FIG. 4.  The reflected SHSH (potential) arrival from an interface between two elastic media.  The 
point at which the reflection coefficient passes through zero may be seen, as well as the onset of 
the critically refracted event at far offset traces.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


