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Nearest approaches to multiple lines in n-dimensional space  

Lejia Han and John C. Bancroft 

 

ABSTRACT 

An efficient matrix approach is described to obtain the nearest approach to non-
intersecting lines in 3-dimensional or any n-dimensional spaces. By the nearest approach, 
we mean the nearest point(s) or vector(s) to all lines and also each on-line point or vector 
with respective to that nearest-to-all point(s) or vector(s) as well.  The point of nearest 
approach on each line is also evaluated giving the nearest vector to all lines. The entire 
solution set can be provided by the matrix approach simultaneously, ensuring efficiency 
and accuracy at the same time. 

INTRODUCTION 

Finding the nearest location to pairs of non-intersecting spatial lines representing wave 
propagation directions in our seismic application (Han et al, 2009) had been required.  
Regardless of specific issues in analytic geometry, a pure data analysis method is 
developed and tested.  Further investigation reveals that this method can be extended to 
multiple lines in 3-dimensional (3D) space and even in n-dimensional space.  

In the following, we will introduce and discuss a matrix technique to find the nearest 
approach to two lines in 3D space, the nearest approach to multiple lines in 3D space, and 
the nearest approach to multiple lines in n-dimensional space, including our seismic-
related experience and some extensive discuss to our understanding by far. 

METHODOLOGY 

In each of three approaches below, understanding the matrix-expanding pattern and 
establishing the variant matrix representation of the linear system respective to the 
number of given lines and the dimension of space is a key step.  

 

The nearest approach to two lines in 3D space 

This is the primary approach applied in our seismic applications (Han, 2010).  It leads 
to additional two approaches as introduced in the next two sections.  

Consider two lines in 3D space:   𝑙ଵ and 𝑙ଶ  defined by the known points Pଵ =(𝑥ଵ, 𝑦ଵ, 𝑧ଵ)  and Pଶ = (𝑥ଶ, 𝑦ଶ, 𝑧ଶ) , and the direction cosines Uଵ = ൫𝑢௫ଵ, 𝑢௬ଵ,𝑢௭ଵ)  and Uଶ = ൫𝑢௫ଶ, 𝑢௬ଶ, 𝑢௭ଶ൯  for  𝑙ଵ and 𝑙ଶ  respectively.  Methods for finding the 
nearest approach to  𝑙ଵ and 𝑙ଶ are plenty in analytic geometry.  
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The solution by analytic geometry 

There are many analytic geometry methods that can be used to find the nearest 
approach to two spatial lines. For example, the axis rotation method (Pirzadeh and 
Toussaint, 1998) developed in the Computational Geometry Lab at McGill for the 
minimum distance between two non-intersecting geometric objects such as polygons in 
2D or polyhedral in 3D composed of linear edges and faces.  Such sophisticated 
algorithms of multi-tasks can certainly be adopted to accommodate the two-line case.  

In Figure 1, the closest points on the two lines are shown in green and cyan.  A red 
line connects the two points and is the shortest path between the two lines. The black star 
is the midpoint to the desired nearest point.  The axis of Figure 1a is rotated in 1b such 
that the viewing direction is along one of the lines.  In this case, it is the bottom line in 
Figure 1, and is coincident with the green star in 1b.  It is straight forward to construct the 
line normal to the upper line to the “point”, and the midpoint is the desired closest point.  

An algebraic method is shown below that used calculus to find the minimum distance 
between the two lines  𝑙ଵ and 𝑙ଶ. as defined previously.  This method was obtained from 
Dr. Bancroft (Bancroft, 2010) the pseudo code is: 

P1  = [x01 y01 z01] 
P2  = [x02 y02 z02] 
U1  = [ux1 uy1 uz1] 
U2  = [ux2 uy2 uz2] 
P21 = P2 - P1 
M   = cross correlation (U2,U1) 
m2  = dot product (M,M) 
R   = cross correlation (P21,M/m2) 
t1  = dot product(R,U2) 
t2  = dot product(R,U1) 
Q1  = P1 + t1*U1  
Q2  = P2 + t2*U2 
%the nearest point location in 3D space 
MID_gem = (Q1 + Q2)/2 
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FIG.1 Two lines in blue show the nearest on-line points (blue and green), and the closest points 
on the line (cyan) and the shortest line (red) are shown in a) as a perspective view and b) a 
vertical plane viewed along the lower line. 

 

The solution by our matrix approach 

Consider  𝑙ଵ and 𝑙ଶ as defined previously.  Then the two lines can be represented by the 
following equations:  ௫ି௫బభ௨ೣభ = ௬ି௬బభ௨భ = ௭ି௭బభ௨భ = 𝑎ଵ    (A-1) 
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 ௫ොି௫బమ௨ೣమ = ௬ොି௬బమ௨మ = ௭̂ି௭బమ௨మ = 𝑎ଶ    (A-2) 

 
where a1 and a2 are parameter variables representing the Euclidean length along the two 
lines respectively.  Based on that, we can construct an expanded form of the two-line 
linear system in the following way:  

⎩⎪⎪⎨
⎪⎪⎧𝑥 + 0. 𝑦 + 0. 𝑧 − 𝑢௫ଵ. 𝑎ଵ − 0. 𝑎ଶ = 𝑥ଵ0. 𝑥 + 𝑦 + 0. 𝑧 − 𝑢௬ଵ. 𝑎ଵ − 0. 𝑎ଶ = 𝑦ଵ0. 𝑥 + 0. 𝑦 + 𝑧 − 𝑢௭ଵ. 𝑎ଵ − 0. 𝑎ଶ = 𝑧ଵ𝑥ො + 0. 𝑦ො + 0. �̂� − 0. 𝑎ଵ − 𝑢௫ଶ. 𝑎ଶ = 𝑥ଶ0. 𝑥ො + 𝑦ො + 0. �̂� − 0. 𝑎ଵ − 𝑢௬ଶ. 𝑎ଶ = 𝑦ଶ0. 𝑥ො + 0. 𝑦ො + �̂� − 0. 𝑎ଵ − 𝑢௭ଶ. 𝑎ଶ = 𝑧ଶ

    (A-3) 

A previous method used calculus to find the minimum distance between two lines and 
we propose to use the same technique by assume in the above equations that (x, y, z) and  (𝑥ො, 𝑦ො, �̂�) are the same point and that a least squares solution will find that point.  With this 
assumption we create the m vector as  

𝒎 = ⎣⎢⎢
⎡ 𝑥𝑦𝑧𝑎ଵ𝑎ଶ⎦⎥⎥

⎤,     (A-4) 

and anticipate that a1 and a2 will define the nearest point on the two lines.  We do not 
prove this result but have verified the method by comparing the results with the algebraic 
solution. 

We continue the method by defining the G matrix as  

𝑮 = ⎣⎢⎢
⎢⎢⎡100100

010010
001001

−𝑢௫ଵ−𝑢௬ଵ−𝑢௭ଵ000
000−𝑢௫ଶ−𝑢௬ଶ−𝑢௭ଶ⎦⎥⎥

⎥⎥⎤,            (A-5) 

and  d as 

𝒅 = ⎣⎢⎢⎢
⎢⎡𝑥ଵ𝑦ଵ𝑧ଵ𝑥ଶ𝑦ଶ𝑧ଶ⎦⎥⎥⎥

⎥⎤.     (A-6) 
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Interesting problems arise when two lines are parallel.  We intuitively know that the 
nearest point becomes a line. The rank of the matrix G is then reduced from 5 to 4.  In 
this case we can use a singular value decomposition (SVD) method. 

1. Nearest point by least-squares if G has full column rank 

In this situation, we are able to write the least-squares solution to (A-4) as 

mL2= (GTG)-1GTd      (A-8) 

The nearest spatial location to  𝑙ଵ and 𝑙ଶ  is determined by the first three elements of 
(A-8) as 

MIDL2_all= mL2[1:3],    (A-9) 

and the respective nearest on-line points by the remaining two elements as 

MIDL2_l1=P1+U1* mL2 (4),   (A-10) 

MIDL2_12=P2+U2* mL2 (5).   (A-11) 

2. Nearest point by SVD if G is rank-deficient 

The least-squares technique is not applicable to (A-4) in this situation, as (GTG) 
is not invertible, i.e. (GTG)-1 does not exist. Instead, by using the SVD technique, G 
is first decomposed into the following components: 

G=U6x6S6x5V5x5
T    (A-12) 

where U and V represent the data space and the model space respectively, and S 
represents the diagonal matrix containing the singular values. Assume the rank of G 
is p, and then the compact form of (A-12) will become 

G=UpSpVp
T.     (A-13) 

It should be noticed that the only rank-deficient case of G in (A-4) happens at the 
time when two lines are parallel, which leads to rank (G) = 4.  We will present and 
encapsulate details in the extended approach.  We are now able to build up the SVD 
solution to (A-4) as 

    msvd=VpSp
-1Up

Td      (A-14) 

Then, the nearest spatial point to  𝑙ଵ and 𝑙ଶ can be determined by the first three 
elements of (A-14) as 

MIDsvd_all=msvd[1:3]    (A-15) 

and the respective nearest points along each line are determined by the remaining 
two elements as 

MIDsvd_l1=P1+U1* MIDsvd(4),    (A-16) 

MIDsvd_12=P2+U2* MIDsvd(5).   (A-17) 
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To our understanding, the evidence might be reasoned theoretically in the following 
way, though it might not be a rigorous proof. 

1. Unlike seismic data, the known information about the two lines is defined exactly, 
with no deviation due to, for example, random noise.  Therefore, the least-squares 
solution that minimizes the Euclidean length of ||d-Gm|| should be the exact nearest 
point to the two lines.  Therefore, there is no need for a statistical assessment due to 
noise, as is usually done with seismic data. 

2. The SVD technique provides solutions to more general cases than the least-squares 
technique. It encompasses the case of G having full column rank, and in that case the 
SVD solution is exactly the least-squares solution (Aster et al, 2005). 

3. Any pair of non-intersecting lines will lead G being full column rank, hence the 
solution of Gm=d is unique for any pair of non-parallel lines in 3D space. 

Thus, for any pair of non-intersecting and non-parallel lines in 3D space, the nearest 
point to both lines is unique, and solutions from analytic geometry, least-squares, and 
SVD are equivalent.  If the two lines are parallel, we know that the nearest point to both 
is not unique and is any point along some “middle” line nearest to both.  Figure 3 shows 
such a point (the green circle) from the SVD solution. We will encapsulate the complete 
set of solution points into the general solution addressed in the extended approach later.  

Notice that unlike the non-parallel pair, there is no least-squares solution (the blue 
circle in Figure 2 for the nearest approach to the parallel lines in   4.  There is only a 
single SVD-solution (the green circle in Figure 4) available to meet the request of nearest 
approach at this parallel situation.  

Application to microseismic data 

We illustrate the technique with a microseismic problem that has a total of 44 
receivers in 3 wells.  Each receiver records in 3 axes, from which the direction to the 
source is estimated. Lines are now defined at the receivers in a direction towards the 
estimated source location. From the 44 lines we can define 946 pairs of lines to get the 
estimated nearest points.  The lines and their corresponding nearest points are shown in 
Figure 4. In this data, we used a singular value decomposition (SVD) technique. 
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FIG.2 The nearest-point solutions by analytic geometry (red dot), least-squares (blue circle), and 
SVD (green circle) are identical for a pair of non-parallel lines (blue), as well as the two 
associated nearest points (red stars) along each line. 

 

 
 
FIG.3 The nearest point to two parallel lines (blue) only results from SVD, not from least-squares 
and our analytic geometry method.  Rank (G) =4 in this situation. 
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FIG.4 Pairs of lines for all receivers (green, blue, and pink) in (a) produce the nearest points 
(cyan) in (b). 

The nearest approach solution provided by the SVD technique is the one that 
minimizes the Euclidean lengths of both ||d-Gmsvd|| and ||msvd||.  A theoretical 
explanation of this issue can be found in the book “Parameter Estimation and Inversion 
Problems” (Aster et al, 2005). It is also stressed in this book that it is better in practice to 
use the SVD solution than to use the least-squares solution because of numerical 
accuracy issues.  

The nearest approach to multiple lines in 3D space 

Consider m lines given in 3D space, with each defined by a known point and direction 
cosines.  We denote the m lines as l1, l2, l3, …, lm, the respective on-line points as 
p1=[x01, y01, z01], p2=[x02, y02, z02], p3=[x03, y03, z03], …., pm=[x0m, y0m, z0m], and the 
respective direction cosines as U1=[ux1, uy1, uz1], U2=[ux2, uy2, uz2], U3=[ux3, uy3, uz3], …, 
Um=[uxm, uym, uzm].  Then the m lines can be represented by the following equations 
respectively as ௫ି௫బభ௨ೣభ = ௬ି௬బభ௨భ = ௭ି௭బభ௨భ = 𝑎ଵ,      

 ௫ି௫బమ௨ೣమ = ௬ି௬బమ௨మ = ௭ି௭బమ௨మ = 𝑎ଶ,      

 ௫ି௫బయ௨ೣయ = ௬ି௬బయ௨య = ௭ି௭బయ௨య = 𝑎ଷ,      ⋮     (B-1) 
 ௫ି௫బ௨ೣ = ௬ି௬బ௨ = ௭ି௭బ௨ = 𝑎     

 
where a1, a2, a3,…, am are parameter variables representing the Euclidean lengths along l1, 
l2, l3, …, lm respectively.  Thus, the m-line linear system can be expanded in the 
following way:  

(a) (b) 
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⎩⎪⎪
⎪⎪⎪
⎨⎪
⎪⎪⎪
⎪⎧ 𝑥 + 0. 𝑦 + 0. 𝑧 − 𝑢௫ଵ. 𝑎ଵ − 0. 𝑎ଶ − 0. 𝑎3 … − 0. 𝑎 = 𝑥ଵ0. 𝑥 + 𝑦 + 0. 𝑧 − 𝑢௬ଵ. 𝑎ଵ − 0. 𝑎ଶ − 0. 𝑎3 … − 0. 𝑎 = 𝑦ଵ0. 𝑥 + 0. 𝑦 + 𝑧 − 𝑢௭ଵ. 𝑎ଵ − 0. 𝑎ଶ − 0. 𝑎3 … − 0. 𝑎 = 𝑧ଵ𝑥 + 0. 𝑦 + 0. 𝑧 − 0. 𝑎ଵ − 𝑢௫ଶ. 𝑎ଶ − 0. 𝑎3 … − 𝑜. 𝑎 = 𝑥ଶ0. 𝑥 + 𝑦 + 0. 𝑧 − 0. 𝑎ଵ − 𝑢௫ଶ. 𝑎ଶ − 0. 𝑎3 … − 𝑜. 𝑎 = 𝑦ଶ0. 𝑥 + 0. 𝑦 + 𝑧 − 0. 𝑎ଵ − 𝑢௫ଶ. 𝑎ଶ − 0. 𝑎3 … − 𝑜. 𝑎 = 𝑧ଶ𝑥 + 0. 𝑦 + 0. 𝑧 − 0. 𝑎ଵ − 0. 𝑎ଶ − 𝑢௫ଷ. 𝑎3 … − 0. 𝑎 = 𝑥ଷ0. 𝑥 + 𝑦 + 0. 𝑧 − 0. 𝑎ଵ − 0. 𝑎ଶ − 𝑢௫ଷ. 𝑎3 … − 0. 𝑎 = 𝑦ଷ0. 𝑥 + 0. 𝑦 + 𝑧 − 0. 𝑎ଵ − 0. 𝑎ଶ − 𝑢௫ଷ. 𝑎3 … − 0. 𝑎 = 𝑧ଷ⋮𝑥 + 0. 𝑦 + 0. 𝑧 − 0. 𝑎ଵ − 0. 𝑎ଶ − 0. 𝑎3 … − 𝑢௫. 𝑎 = 𝑥0. 𝑥 + 𝑦 + 0. 𝑧 − 0. 𝑎ଵ − 0. 𝑎ଶ − 0. 𝑎3 … − 𝑢௬. 𝑎 = 𝑦0. 𝑥 + 0. 𝑦 + 𝑧 − 0. 𝑎ଵ − 0. 𝑎ଶ − 0. 𝑎3 … − 𝑢௭. 𝑎 = 𝑧

 (B-2) 

Accordingly, the matrix representation for the above expanded m-line linear system 
will be 𝑮𝒎 = 𝒅     (B-3) 

where G denotes a (m*3) by (m+3) matrix in the following form: 

𝑮 =
⎣⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎡ 100100100

010010010

001001001

−𝑢௫ଵ−𝑢௬ଵ−𝑢௭ଵ000000

000−𝑢௫ଶ−𝑢௬ଶ−𝑢௭ଶ000

000000−𝑢௫ଷ−𝑢௬ଷ−𝑢௭ଷ
⋯

000000000⋮ ⋱ ⋮1 0 0 −𝑢௫ଵ. 0 −𝑢௫ଶ. 0 −𝑢௫ଷ. 00 1 0 −𝑢௬ଵ. 0 −𝑢௬ଶ. 0 −𝑢௫ଷ. 00 0 1 −𝑢௭ଵ. 0 −𝑢௭ଶ. 0 −𝑢௫ଷ. 0 ⋯ −𝑢௫−𝑢௫−𝑢௫⎦⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎤
,  (B-4) 

 

and m and  d denote two column vectors of the following forms 

𝒎 =
⎣⎢⎢
⎢⎢⎢
⎢⎡ 𝑥𝑦𝑧𝑎ଵ𝑎ଶ𝑎ଷ⋮𝑎⎦⎥⎥

⎥⎥⎥
⎥⎤
,     (B-5) 
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𝒅 =
⎣⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎡

𝑥ଵ𝑦ଵ𝑧ଵ𝑥ଶ𝑦ଶ𝑧ଶ𝑥ଷ𝑦ଷ𝑧ଷ⋮𝑥𝑦𝑧⎦⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎤
.     (B-6) 

Solving for m, we obtain the best fit (x, y, z) for the nearest point along with the points 

on each line given by the ai’s.  The point then defines the best estimated locations shown 

in Figure 4b.  

 

General solution 

For the general solution, we ignore the least-squares technique as it is not able to 
provide solutions once G is rank-deficient.  By using SVD, we derive the general 
solutions of the nearest approach for all cases of multiple lines in 3D space, including 
cases with a unique solution and cases with an infinite number of solutions as well, in the 
following way: 

1. Decomposing G in (B-3) by the SVD technique yields 𝑮 = 𝑼𝒑𝒙𝒑 ∗ 𝑺𝒑𝒙𝒒 ∗ 𝑽𝒒𝒙𝒒𝑻     (B-7) 

where p=m*3 and q=m+3 are used to indicate the p by q matrix of G, U is a p by p 
orthogonal matrix with columns that are unit vectors spanning the data space (Rm), V is a 
q by q orthogonal matrix with columns that are basis vectors spanning the model space 
(Rn), S is an m by n diagonal matrix with nonnegative diagonal elements (singular 
values). 

2. Expanding the above SVD representation of G in terms of the columns of U and V 
gives 𝑮 = ൣ𝑼.,𝟏, 𝑼.,𝟐, … 𝑼.,𝒌, … 𝑼.,𝒑൧ 𝑺𝒑 𝟎𝟎 𝟎൨ ൣ𝑽.,𝟏, 𝑽.,𝟐, … 𝑽.,𝒌, … 𝑽.,𝒒൧𝑻

  (B-8) 

3. Simplify G into the compact forms 𝑮 = [𝑼𝒌 𝑼𝟎] 𝑺𝒑 𝟎𝟎 𝟎൨ [𝑽𝒌 𝑽𝟎]𝑻 𝑮 = 𝑼𝒌 ∗ 𝑺𝒌 ∗ 𝑽𝒌𝑻      (B-9) 

 
4. Obtain the SVD solution to (B-3) 𝒎𝒔𝒗𝒅 = 𝑽𝒌 ∗ 𝑺𝒌 𝟏 ∗ 𝑼𝒌𝑻 ∗ 𝒅    (B-10) 
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5. Obtain the SVD solution point nearest to all m lines given in 3D space MID𝒕𝒐𝑨𝒍𝒍 = 𝒎𝒔𝒗𝒅[1: 3]   (B-11) 

6. Obtain all respective on-line nearest points MID𝒕𝒐𝒍𝟏 = P1 + U1 ∗ 𝑚௦௩ௗ[4], MID𝒕𝒐𝒍𝟐 = P2 + U2 ∗ 𝑚௦௩ௗ[5], MID𝒕𝒐𝒍𝟑 = P3 + U3 ∗ 𝑚௦௩ௗ[6], ⋮      (B-12) MID𝒕𝒐𝒍𝒎 = Pm + Um ∗ 𝑚௦௩ௗ[3 + 𝑚].  
 

7. If k=q, then the solution of nearest approach to all m lines is unique and is the 
collection of the finite number of spatial points just derived above:  

{MID𝒕𝒐𝑨𝒍𝒍, MID𝒕𝒐𝒍𝟏, MID𝒕𝒐𝒍𝟐, MID𝒕𝒐𝒍𝟑, …, MID𝒕𝒐𝒍𝒎}. (B-13) 

8. If k<q, then the solution set of nearest approach to all m lines is not unique and is the 
collection of the finite number of spatial points as determined below: 𝒎௧ = 𝒎𝒔𝒗𝒅 + 𝑽 ∗ 𝑯    (B-14) 

where V0 is a p by (q-k) matrix spanning the null space of GT, and H is a column vector 
of p-k elements scaling V0.   With G from the expanded matrix model of the m-line linear 
system in 3D space, k is (q-1) definitely if k<q, and accordingly V0 becomes a one 
column vector.  Then the above equation can be reduced to the following compact form: 𝒎௧ = 𝒎𝒔𝒗𝒅 + ℎ ∗  𝒗    (B-15) 

where h is a single scaling parameter and 𝒗is a p-element column vector. 

We are now able to define the infinite number of spatial points qualifying as the nearest 
point to all m lines as  MID௧ = 𝒎௧[1: 3],    (B-16) 

and the respective on-line nearest points as  MID௧ଵ = P1 + U1 ∗ 𝒎௧[4], MID௧ଶ = P2 + U2 ∗ 𝒎௧[5], MID௧ଷ = P3 + U3 ∗ 𝒎௧[6], ⋮       (B-17) MID௧ = P𝑚 + U𝑚 ∗ 𝒎௧[3 + 𝑚]. 
Thus we are able to collect the complete solution sets at this situation as 

{MID௧, MID௧ଵ, MID௧ଶ, MID௧ଶ, MID௧ଷ, …, MID௧}.  (B-18) 
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We will illustrate the four cases by choosing four lines.  Figure 5 shows the four different 
cases.  

 
FIG.5 Case illustration with four non-intersecting lines (a) no parallel at all, (b) two mutual-parallel 
pairs (cyan and green, pink and blue), (c) 3 lines parallel (blue, cyan, and green), and (d) all 
parallel.  Part (a), (b), and (c) show three cases with a single unique solution, while part (d) shows 
the case with an infinite number of equivalently nearest points along the solution line (black). 

It can be observed in Figure 6 that if four lines are all parallel, then the solution sets of 
the nearest approach to all four lines is infinite, as indicated by the black line in part (d), 
instead of the single unique point as shown in part (a), (b), and (c).   

To be specific, if there is any non-parallel pair within any number of m lines given in 
3D space, then the solution of the nearest approach to the multiple lines, including the 
nearest point to all lines as MID௧ the respective nearest points along each line as MIDଵ, MIDଶ, MIDଶ, MIDଷ, …, MID, is not unique, as defined in the above equations 
accordingly.   

Notice that at such an all-parallel case, the matrix approach cannot be applied with the 
least-squares technique; although it is solvable by SVD, we are limited to a single set of 
solution.  In contrast to the single SVD-solution point, Figure 6 illustrates one of the 
infinite non-SVD solution points along the black line, i.e., all points equivalently nearest 
to the four parallel lines (color-coded in cyan, green, pink, and blue).  However the SVD 
solution is shown by the black point and is closest to the origin.  Choosing the origin 
closest to the active solution area may enable the use of more points when using the SVD 
method. 
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FIG.6 Illustration of the single unique SVD solution point (green dot) and one of the other infinite 
solution points (blue dot), as well as their respective on-line nearest points, i.e., four red dots 
connected with green dashed lines and four red dots connected with blue dashed lines. 
 

The nearest approach to multiple lines in n-dimensional space 

Consider m lines given in an n-dimensional space. Assume we know a orthogonal 
basis w=[w1, w2, w3, …, wn]  about this space and a vector on each line, denoted as 
p1=[x11, x12, x13, …, x1n], p2=[x21, x22, x23, …, x2n], p3=[x31, x32, x33, …, x3n], …., pm=[xm1, 
xm2, xm3, …, xmn] on l1, l2, l3, …., lm respectively. Also assume that we know the direction 
cosines of each line to the set of orthogonal basis, denoted as  u1=[u11, u12, u13, …, u1n], 
u2=[u21, u22, u23, …, u2n], u3=[u31, u32, u33, …, u3n], …um=[um1, um2, um3, …, umn] for l1, l2, 
l3, …., lm respectively.  

Notice that it seems common to have the orthogonal projections of the m lines on w.  
We then expect that the sets of direction cosines could be derived by taking the dot 
products of the projected line portions with w.   However, we ignore the mathematical 
details and assume we are able to obtain the direction cosines for each line in n-
dimensional space, as well. Based on this, we can follow the previous linear system 
expanding pattern and obtain our solutions for the nearest approach to multiples lines in 
n-dimensional space.  

The m lines defined above can be represented respectively by the following linear 
equations: 
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𝑥ଵ − 𝑥ଵଵ𝑢ଵଵ = 𝑥ଶ − 𝑥ଵଶ𝑢ଵଶ = 𝑥ଷ − 𝑥ଵଷ𝑢ଵଷ = ⋯ = 𝑥 − 𝑥ଵ𝑢ଵ = 𝑎ଵ, 
 𝑥ଵ − 𝑥ଶଵ𝑢ଶଵ = 𝑥ଶ − 𝑦ଶଶ𝑢ଶଶ = 𝑥ଷ − 𝑧ଶଷ𝑢ଶଷ = ⋯ = 𝑥 − 𝑥ଶ𝑢ଶ = 𝑎ଶ, 

 𝑥ଵ − 𝑥ଷଵ𝑢ଷଵ = 𝑥ଶ − 𝑥ଷଶ𝑢ଷଶ = 𝑥ଷ − 𝑥ଷଷ𝑢ଷଷ = ⋯ = 𝑥 − 𝑥ଷ𝑢ଷ = 𝑎ଷ, 
 
 ⋮      (C-1) 

 
 𝑥ଵ − 𝑥ଵ𝑢ଵ = 𝑥ଶ − 𝑥ଶ𝑢ଶ = 𝑥ଷ − 𝑥ଷ𝑢ଷ = ⋯ = 𝑥 − 𝑥𝑢 = 𝑎 

 

⎩⎪⎪
⎪⎪⎪
⎪⎪⎪
⎪⎨
⎪⎪⎪
⎪⎪⎪
⎪⎪⎪
⎧ 𝑥ଵ + 0. 𝑥ଶ + 0. 𝑥ଷ + ⋯ + 0. 𝑥 − 𝑢ଵଵ. 𝑎ଵ − 0. 𝑎ଶ − 0. 𝑎3 … − 0. 𝑎 = 𝑥ଵଵ0. 𝑥ଵ + 𝑥ଶ + 0. 𝑥ଷ + ⋯ + 0. 𝑥 − 𝑢ଵଶ. 𝑎ଵ − 0. 𝑎ଶ − 0. 𝑎3 … − 0. 𝑎 = 𝑥ଵଶ0. 𝑥ଵ + 0. 𝑥ଶ + 𝑥ଷ + ⋯ + 0. 𝑥 − 𝑢ଵଷ. 𝑎ଵ − 0. 𝑎ଶ − 0. 𝑎3 … − 0. 𝑎 = 𝑥ଵଷ⋮0. 𝑥ଵ + 0. 𝑥ଶ + 0. 𝑥ଷ + ⋯ + 1. 𝑥 − 𝑢ଵ. 𝑎ଵ − 0. 𝑎ଶ − 0. 𝑎3 … − 𝑎 = 𝑥ଵ𝑥ଵ + 0. 𝑥ଶ + 0. 𝑥ଷ + ⋯ + 0. 𝑥 − 0. 𝑎ଵ − 𝑢ଶଵ. 𝑎ଶ − 0. 𝑎3 … − 0. 𝑎 = 𝑥ଶଵ0. 𝑥ଵ + 𝑥ଶ + 0. 𝑥ଷ + ⋯ + 0. 𝑥 − 0. 𝑎ଵ − 𝑢ଶଵ. 𝑎ଶ − 0. 𝑎3 … − 0. 𝑎 = 𝑥ଶଶ0. 𝑥ଵ + 0. 𝑥ଶ + 𝑥ଷ + ⋯ + 0. 𝑥 − 0. 𝑎ଵ − 𝑢ଶଷ. 𝑎ଶ − 0. 𝑎3 … − 0. 𝑎 = 𝑥ଶଷ⋮0. 𝑥ଵ + 0. 𝑥ଶ + 0. 𝑥ଷ + ⋯ + 1. 𝑥 − 0. 𝑎ଵ − 𝑢ଶ. 𝑎ଶ − 0. 𝑎3 … − 𝑎 = 𝑥ଶ𝑥ଵ + 0. 𝑥ଶ + 0. 𝑥ଷ + ⋯ + 0. 𝑥 − 0. 𝑎ଵ − 0. 𝑎ଶ − 𝑢ଷଵ. 𝑎3 … − 0. 𝑎 = 𝑥ଷଵ0. 𝑥ଵ + 𝑥ଶ + 0. 𝑥ଷ + ⋯ + 0. 𝑥 − 0. 𝑎ଵ − 0. 𝑎ଶ − 𝑢ଷଶ. 𝑎3 … − 0. 𝑎 = 𝑥ଷଶ0. 𝑥ଵ + 0. 𝑥ଶ + 𝑥ଷ + ⋯ + 0. 𝑥 − 0. 𝑎ଵ − 0. 𝑎ଶ − 𝑢ଷଷ. 𝑎3 … − 0. 𝑎 = 𝑥ଷଷ⋮0. 𝑥ଵ + 0. 𝑥ଶ + 0. 𝑥ଷ + ⋯ + 1. 𝑥 − 0. 𝑎ଵ − 𝑢ଷ. 𝑎ଶ − 0. 𝑎3 … − 𝑎 = 𝑥ଷ⋮𝑥ଵ + 0. 𝑥ଶ + 0. 𝑥ଷ + ⋯ + 0. 𝑥 − 0. 𝑎ଵ − 0. 𝑎ଶ − 0. 𝑎3 … − 𝑢ଵ. 𝑎 = 𝑥ଵ0. 𝑥ଵ + 𝑥ଶ + 0. 𝑥ଷ + ⋯ + 0. 𝑥 − 0. 𝑎ଵ − 0. 𝑎ଶ − 0. 𝑎3 … − 𝑢ଶ. 𝑎 = 𝑥ଶ0. 𝑥ଵ + 0. 𝑥ଶ + 𝑥ଷ + ⋯ + 0. 𝑥 − 0. 𝑎ଵ − 0. 𝑎ଶ − 0. 𝑎3 … − 𝑢ଷ. 𝑎 = 𝑥ଷ⋮0. 𝑥ଵ + 0. 𝑥ଶ + 0. 𝑥ଷ + ⋯ + 𝑥 − 0. 𝑎ଵ − 0. 𝑎ଶ − 0. 𝑎3 … − 𝑢. 𝑎 = 𝑥

  (C-2) 

 

Then, a point of nearest approach to all m lines could be obtained generally in the 
following matrix representation of their linear system as 𝑮𝒎 = 𝒅       (C-3) 

 

where G is a (m*n) by (m+n) matrix with the following form 
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𝑮 =
⎣⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎡ 100⋮0

010⋮0
001⋮0

0 … 00 … 00 … 0⋮ ⋮ ⋮… 0 1
−𝑢ଵଵ−𝑢ଵଶ−𝑢ଵଷ⋮−𝑢ଵ

000⋮0 … 000⋮0⋮ ⋱ ⋮1 0 00 1 00 0 1 000 ……… 000 000 000 000 000⋮0 0 0 … 0 1 0 0 … ⋯ −𝑢ଵ−𝑢ଶ−𝑢ଷ⋮−𝑢⎦⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎤
,   (C-4) 

and m and  d denote two column vectors with the following forms respectively 

𝒎 =
⎣⎢⎢
⎢⎢⎢
⎢⎢⎡

𝑥ଵ𝑥ଶ𝑥ଷ…𝑥𝑎ଵ𝑎ଶ𝑎ଷ…𝑎⎦⎥⎥
⎥⎥⎥
⎥⎥⎤
      (C-5) 

𝒅 =
⎣⎢⎢
⎢⎢⎢
⎢⎡𝑥ଵଵ…𝑥ଵ𝑥ଶଵ…𝑥ଶ…𝑥ଵ…𝑥⎦⎥⎥

⎥⎥⎥
⎥⎤
.      (C-6)  

Following the approach to the general solution in 3D space, we derive the general 
solution of nearest approach to multiple lines in n-dimensional space as follows: 

1. Decompose G in (C-3) by the SVD technique 𝑮 = 𝑼𝒑𝒙𝒑 ∗ 𝑺𝒑𝒙𝒒 ∗ 𝑽𝒒𝒙𝒒𝑻      (C-7) 

where p=m*n and q=m+n are used to indicate the p by q matrix of G, U is a p by p 
orthogonal matrix with columns that are unit vectors spanning the data space (Rm), V is a 
q by q orthogonal matrix with columns that are basis vectors spanning the model space 
(Rn), S is an m by n diagonal matrix with nonnegative diagonal elements (singular 
values). 

2. Expanding the SVD representation of G in terms of the columns of U and V gives 𝑮 = ൣ𝑼.,𝟏, 𝑼.,𝟐, … 𝑼.,𝒌, … 𝑼.,𝒑൧ 𝑺𝒑 𝟎𝟎 𝟎൨ ൣ𝑽.,𝟏, 𝑽.,𝟐, … 𝑽.,𝒌, … 𝑽.,𝒒൧𝑻
  (C-8) 

3. Simplify G into the compact forms 
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𝑮 = [𝑼𝒌 𝑼𝟎] 𝑺𝒑 𝟎𝟎 𝟎൨ [𝑽𝒌 𝑽𝟎]𝑻 𝑮 = 𝑼𝒌 ∗ 𝑺𝒌 ∗ 𝑽𝒌𝑻      (C-9) 

4. Obtain the SVD solution to (C-3)  𝒎௦௩ௗ = 𝑽𝒌 ∗ 𝑺𝒌 𝟏 ∗ 𝑼𝒌𝑻 ∗ 𝒅    (C-10) 

5. Obtain the SVD solution point nearest to all lines MID𝒕𝒐𝑨𝒍𝒍 = 𝑚௦௩ௗ[1: 𝑛]     (C-11) 

6. Obtain all respective on-line nearest points MID𝒕𝒐𝒍𝟏 = P1 + U1 ∗ 𝑚௦௩ௗ[𝑛 + 1], MID𝒕𝒐𝒍𝟐 = P2 + U2 ∗ 𝑚௦௩ௗ[𝑛 + 2], MID𝒕𝒐𝒍𝟑 = P3 + U3 ∗ 𝑚௦௩ௗ[𝑛 + 3], ⋮      (C-12) MID𝒕𝒐𝒍𝒎 = Pm + Um ∗ 𝑚௦௩ௗ[𝑛 + 𝑚]. 
7. If k=q, then the solution of the nearest approach to all m lines is unique and is the 

collection of the finite number of spatial points just derived above:  

{MID𝒕𝒐𝑨𝒍𝒍, MID𝒕𝒐𝒍𝟏, MID𝒕𝒐𝒍𝟐, MID𝒕𝒐𝒍𝟑, …, MID𝒕𝒐𝒍𝒎}.  (C-13) 

8. If k<q, then the solution set of the nearest approach to all m lines is not unique and is 
the collection of the finite number of spatial points as determined below: 𝒎௧ = 𝒎𝒔𝒗𝒅 + 𝑽 ∗ 𝑯     (C-14) 

where V0 is a p by (q-k) matrix spanning the null space of GT, and H is a column vector 
of p-k elements scaling V0.   With G from the expanded matrix model of the m-line 
linear system in n-dimensional space, k is (q-1) definitely if k<q, and accordingly V0 
becomes a one column vector.  Thus the above equation can be reduced to the following 
compact form: 𝒎௧ = 𝒎𝒔𝒗𝒅 + ℎ ∗  𝒗    (C-15) 

where h is a single scaling parameter and v_0 is a p-element column vector. 
Then we are able to define the infinite number of spatial points qualifying as the nearest 
point to all m lines as  MID௧ = 𝒎௧[1: 𝑛],    (C-16) 

and the respective on-line nearest points as  MID௧ଵ = P1 + U1 ∗ 𝒎௧[𝑛 + 1], MID௧ଶ = P2 + U2 ∗ 𝒎௧[𝑛 + 2], MID௧ଷ = P3 + U3 ∗ 𝒎௧[𝑛 + 3], ⋮       (C-17) MID௧ = P𝑚 + U𝑚 ∗ 𝒎௧[𝑛 + 𝑚]. 
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Thus we are able to collect the complete solution sets of this situation as 

{MID௧, MID௧ଵ, MID௧ଶ, MID௧ଷ, MID௧ସ, …, MID௧}.  (C-18) 

To be specific, if there is any non-parallel pair within any number of m lines given in 
n-dimensional space, the solution of nearest approach to the m lines, including the nearest 
point to all lines as MID௧  and the respective nearest points along each line as MID௧ଵ MID௧ଶ, MID௧ଷ, MID௧ସ, …, MID௧, is not unique, as defined in the above 
equations.   

CONCLUSION 

The matrix approaches above might be an efficient alternative to some analytic 
geometry methods for the nearest vector(s) to multiple lines at various geometry relations 
(intersecting, non-intersecting, or parallel) in 3D space or their extensions in n-
dimensional space.  The respective set(s) of nearest on-line vectors can be obtained 
simultaneously and efficiently as well. 
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