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The robustness of reverse-time migration for imaging noisy sparse 
foothills data  
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ABSTRACT 

Seismic data from the Canadian Foothills are often noisy and sparsely sampled with missing 
traces. We show that reverse-time depth migration (RTM) provides a robust means of imaging 
sparse noisy data.  Traditional RTM computes finite-difference (FD) solutions to the wave 
equation while back propagating the reflected wavefield to the reflector location at depth. The 
FD stencil will provide an effective means of interpolating missing traces during the migration 
process since this implicit interpolation essentially allows the seismic wavefield to heal itself 
during propagation.  The FD operator also provides an effective means of suppressing random 
noise.  Following earlier work by Zhu and Lines (1996), we illustrate the effectiveness of RTM 
on model data and real data from the Canadian Foothills. 

INTRODUCTION 

In the Canadian Foothills, seismic data are often recorded in rugged terrain, resulting in 
missing sources and receivers in the survey. Due to these logistical difficulties in recording, there 
are gaps in the seismic recording. Fortunately, seismic migration is reasonably robust with 
respect to missing information. In particular, the reverse-time depth migration method handles 
missing traces extremely well, as was demonstrated by Zhu and Lines (1996). In this study, we 
will examine the robustness of reverse-time migration on both poststack and prestack depth 
migration of Foothills data. We will explain this robustness by examining the nature of finite-
differencing operations. We examine the limitations of where the migrations may be inadequate 
and make suggestions for future tests.  

MODEL TESTS FOR SEISMIC RECORDS WITH MISSING INFORMATION 

In order to test the effects of missing traces on seismic images, we use finite-difference 
synthetic seismograms for a realistic foothills model proposed by Kirtland-Grech et al. (1998). 
Figure 1 shows an exploding reflector synthetic seismogram for this model using a finite-
difference grid of 25m , containing 1330 seismic traces which emulate a stacked section. The 
reverse-time depth migration of this seismogram, as described in detail by Lines et al. (1999), is 
shown in Figure 2. The depth migration defines the subsurface layer boundaries, thrust fault 
locations and layer truncations quite clearly.  We then performed tests in which we decimated 
traces from the seismic section and then examined the quality of the resulting reverse-time depth 
migrations. Figure 3 shows a record in which 4 groups of 40 traces for traces were decimated 
from Figure 1 including missing traces from 233-272; 360-399; 760-799; and 900-939. We then 
performed depth migrations on the section in Figure 3 to produce the migrated section in Figure 
4. 
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Fig. 1. The exploding reflector for the Grech-Spratt model represents an idealized stacked section. The 
section has 1350 traces with 2000 samples. Trace spacing is 25m and time sample interval is 2ms. 

 

 
 
Fig. 2. Reverse-time depth migrated section of the stacked data in Figure 1.  Spatial samples are 
separated by 25m intervals. 
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Fig. 3. Synthetic seismogram of model 1 with decimation for traces 233-272, 360-399, 760-799, and 930-
999. 

 

 
Fig. 4a. The reverse-time depth migrations of the data in Figure 3.  We note blurring of reflections for 
footwall cutoffs beneath traces 233-272 and 360-399 and blurred anticlinal reflections between traces 
900-939.  Otherwise, the image is comparable to Figure 2. 
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Fig. 4b. The difference between the optimum RTM of Figure 2 and the RTM of the section with missing 
data, as shown in Figure 4. 

  
We note that while the linearly sloping reflections are hardly affected at all, there are some 

crucial parts of the subsurface in which it is difficult to define features in the migration of the 
decimated section (Figure 4a) as compared to the depth migration of the complete section (as 
shown in Figure 2). For example, we note that the footwall cutoffs are not clearly defined for the 
first group of missing traces (233-272) at depths of of 300-350 samples. The same is true for the 
second group of missing traces (360-399) at depth samples 480-520. There is also significant 
deterioration between anticlinal reflections for missing traces (900-939) at sample depths of 
about 100.  Figure 4b shows a difference between the optimum migration of Figure 2 and the 
migration of the section with missing data, as shown in Figure 4a.  Since the reflectors are 
dipping, we note that the imaging errors are not directly below the location of missing traces but 
are at the reflection points.  Nevertheless, the interpretation of the RTM image of data with 
missing traces (Figure 4a) would probably be nearly identical to that of the ideal RTM (Figure 
2). 

From this poststack migration analysis, we can produce reliable depth migrations from 
records with missing traces as long as the missing traces are not in zones with cutoffs or 
truncated reflectors. Otherwise, reverse-time depth migration can handle data with significant 
gaps (40 traces in this case would correspond to missing data of 1000m ), as long as the 
structures are simple. Of course, we generally do not know a priori where the complicated 
structures will exist on sections.  Also, we note that the gaps are less than the Fresnel zones and 
this is a factor that we discuss later in this paper. 

Having examined poststack depth migration, we now turn our attention to prestack depth 
migration and ask the following question.  How many shots do we need to provide a reliable 
image of the subsurface? In this regard, it is worthwhile to examine an unpublished study by 
Lines and Zhu (1996) for the Marmousi model. In this study, the Marmousi data set was 
migrated using all the shot gathers, ½ of the shot gathers, ¼ of the shot gathers, 1 6 of the shot of 
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the shot gathers and 1 12  of the shot gathers. Figure 5 shows the results for the first three of these 
tests. It is interesting that image does not significantly deteriorate for decimated records – 
especially for deeper reflectors until we reach about ¼ of the shots being used. For prestack shot 
migration, the reverse-time migration method proves to be robust. To explain this behaviour for 
robust poststack and prestack reverse-time migration, we turn our attention to the application of 
finite-difference wave equation methods in reverse-time depth migration. 

FINITE-DIFFERENCING IN REVERSE-TIME MIGRATION 

In order to understand the robustness of reverse-time depth migrations on data with missing 
traces, it is useful to understand the nature of the finite-difference algorithm. The simplest form 
of the wave equation for a homogeneous medium is given by:  
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For a grid spacing of h  and a nodal point at, the second order approximation to the second 
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If we substitute for this form of the second derivative approximation for derivatives in space 
and time, we note that in the computation at any point in time and space is related to its 
neighbours by a stencil of the form (1,-2,1). Otherwise stated, for each time step in wavefield 
computation, the wave is related to its neighbour. In essence, a wavefield is given by an 
averaging (interpolation) of surrounding nearest neighbours. If we went to higher orders, such as 
fourth order, there would be a wider given by (1/12, -16/12, 30/12, -16/12, 1/12).  

Therefore in these finite-difference wave calculations in reverse-time migration, where we 
backward propagate traces in time, the traces with zero amplitude do not remain as zero values 
during propagation. In essence, the wavefield heals itself. Reverse-time migration has an implicit 
interpolation as shown by Zhu and Lines (1996). 

The robustness of RTM on real data was shown by Wu et al. (1997) in the migration of the 
data set from Benjamin Creek, Alberta, which had several missing traces. Rather than 
interpolating trace values, the data were simply migrated and the influence of a few missing 
traces was not apparent.  

At first glance, it may appear that reverse-time depth migration has obviated the problem of 
requiring interpolation for migration problems or the necessity of adequate sampling. If we 
examine the problems of spatial aliasing in regions of steep dip, we realize that this is simply not 
true. Aliased data will still pose a problem unless we can finely sample our data in space or apply 
smart interpolators to overcome the problem of aliased dipping events. For a discussion of the 
sampling problem in steeply dipping areas, we can examine the examples shown by Lines and 
Daley (2006). 
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Fig. 5. Prestack reverse-time depth migrations of the Marmousi model using every shot (bottom left), 
every 2nd shot (top right) and every 4th shot (bottom right). 

 

ROBUSTNESS OF IN REVERSE-TIME MIGRATION FOR IMAGING NOISY DATA  

Now that we have shown that reverse-time migration is robust in its handling of seismic data 
with missing traces, we might also ask the question: 

“How well can reverse-time migration handle data with additive random noise?” 

In order to answer this question, we replace the zero traces of Figure 3 with noisy traces, as 
shown in Figure 6.  In this figure, the missing traces are replaced by traces whose noise-to-signal 
ratio is 6.4.  These traces were created by adding random numbers with zero mean and average 
absolute amplitude (AAA) of 6.4 to signal traces with an AAA of 1.0, in the same gap locations 
as in Figure 3.   
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Fig. 6. Synthetic seismogram of model 1 with noise added to traces 233-272, 360-399, 760-799, and 930-
999.  Noise to signal ratio is 6.4 for these 160 traces. 

 
The depth migration of the example in Figure 6 is shown in Figure 7.  We note that while the 

depth migration, shown in Figure 8, appears slightly more noisy than the ideal migration in 
Figure 2, the RTM of noisy data may be even better than the RTM of missing traces.  In 
summary, it is unlikely that our interpretation would be unduly damaged by migrating these 
noisy traces.  This encouraging robustness is not surprising if we understand the effect of the FD 
stencil on random noise with zero mean.   

The FD stencil is (1/12, -16/12, 30/12, -16/12, 1/12) provides a running average of adjacent 
traces.  Consider the effect of this operator on random noise with zero mean.  A running average 
will provide a low pass filter on noise with zero mean.  This filtering effect will greatly suppress 
the amplitudes of the random noise.  Hence the migration of the noisy data will appear much like 
the migration of noiseless data. 
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Fig. 7. The reverse-time depth migrations of the data in Figure 7.   

: 
Fig. 8. The difference between the optimum RTM of Figure 2 and the RTM of the section with 
noisy traces, as shown in Figure 7. 
 

At this point, we turn our attention to the migration of real data, from the Alberta foothills as 
originally shown by Lines and Daley (2006).  As shown in Figure 9, the migration of the data 
with finer sampling ( 6.25m  trace interval) shows better resolution for steeply dipping reflectors 
than the migration of data with coarser sampling (12.5 m trace interval).  This is most apparent 
for the steeply dipping reflector in the box of Figure 9. For test of robustness, we migrate the 
finely sampled section with 30 traces deleted from 8125m  to 8312.5m and compare the 
reflection quality. As shown in Figure 10, the reflection images are not appreciably different and 
it is unlikely that the structural interpretation would be significantly affected by the missing 
traces.  
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Fig. 9. Reverse-time migrations of the Shaw-Basing data with two different grid spacings.  The upper 
section is migrated with grid spacing of 12.5m and the lower section is migration with 6.25m.  The slopes 
on the backthrust (in the box) are more clearly defined and less aliased in the lower section.   
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Fig. 10. Reverse-time migrations of the Shaw-Basing data for the highlighted zone.  The top figure shows 
the migrated data for closely spaced samples in Figure 9.  The bottom figure shows the migration of the 
same data with missing traces in the interval 8125m-8312.5m.  

 

FRESNEL ZONES AND RESOLUTION OF SPARSE DATA 

In order to more completely understand the robustness of  imaging sparse data and the degree 
of sparseness, we refer to “The Fresnel zone and its interpretive significance” by Lindsey (1989).  
In this paper, Lindsey demonstrates that the limits of spatial resolution are defined by the Fresnel 
diameter, DF  . For a seismic reflector at depth, Z, and seismic wavelength, λ , the Fresnel zone is 

given by  DF Zλ=  and after migration is given by 4DF λ= . 
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For many of our applications, the typical seismic wavelength was 100m  and a typical depth 
was 1600m .  Hence, a Fresnel zone prior to migration would be 400m , and our missing traces 
for Figure 9 spanned only 187.5m .  For such cases of reflectors at depth, the missing traces may 
be less than the limits of resolution.  Additionally, the interpolation of the wavefield will be 
operating for longer distances and the wavefield “healing” has occurred. 

CONCLUSIONS 

Foothills data often have missing or noisy traces due to recording problems in difficult terrain. 
Fortunately, a few missing or noisy traces will not generally have a deleterious effect on reverse-
time migrations except in areas of bed truncation (hanging wall and footwall cutoffs) or in areas 
of structural complexity. Both prestack and poststack reverse-time migrations are robust with 
respect to missing data. The reason for this robustness is seen by examining the nature of the 
finite-difference operations and the fact that there is an implicit interpolation in wave 
propagation calculations.  
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