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ABSTRACT 

Due to the high energy content of the ambient noise, microseismic monitoring system 
records considerable erroneous data. To pick up the first arrival times, special techniques 
must be applied due to the very low signal to noise ratio data. This paper presents three 
techniques: wavelet transform is applied to de-noising the noisy data; Kalman filter and 
modified STA/LTA method are implemented to pick up the first arrival times. The results 
show that the first arrival times are picked up accurately even in very noisy data by 
incorporating these techniques.  

KALMAN FILTER 

In 1960, R.E. Kalman published his famous paper describing a recursive solution to the 
discrete-data linear filtering problem (Kalman, 1960). The kalman filter (KF) addresses 
the general problem of trying to estimate the state x of a discrete-time controlled process 
that is governed by the linear stochastic different equation 

 𝑥௞ = 𝐴𝑥௞ିଵ + 𝐵𝑢௞ିଵ + 𝑤௞ିଵ, (1) 

with a measurement 

 𝑧௞ = 𝐻𝑥௞ + 𝑣௞. (2) 

Here xk is state vector, A is n×n state transition matrix, B is n×r optional control matrix, 
uk is control vector, zk is measurement vector, and H is m×n measurement matrix. The 
random variables wk and vk represent the process and measurement noise respectively, 
they are assumed to be independent of each other, white, and with normal probability 
distributions p(w)~N(0,R), p(v)~N(0,Q). R and Q might change with each time step or 
measurement, however here we assume they are constant. 

The process of the KF falls into two groups: time update equations and measurement 
update equations.  

Time update equations: 

Priori state estimate at step k: 

 𝑥ො௞ି = 𝐴𝑥ො௞ିଵ + 𝐵𝑢௞ିଵ (3) 

Priori estimation error covariance at step k: 

 𝑃௞ି = 𝐴𝑃௞ିଵ𝐴் + 𝑄 (4) 

Measurement update equations: 

Kalman gain at step k: 
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 𝐾௞ = 𝑃௞ି 𝐻்(𝐻𝑃௞ି 𝐻் + 𝑅)ିଵ (5) 

Posterior state estimate at step k: 

 𝑥ො௞ = 𝑥ො௞ି + 𝐾௞(𝑧௞ − 𝐻𝑥ො௞ି ) (6) 

Posterior estimation error covariance at step k: 

 𝑃௞ = (𝐼 − 𝐾௞𝐻)𝑃௞ି  (7) 

The time update equations are responsible for projecting forward the current state and 
error covariance to obtain the priori estimate for step k; the measurement update 
equations are responsible for the feedback, i.e., for incorporating the measurement into 
the priori estimate to obtain an improved posterior estimate for step k, this posterior 
estimate is also the priori estimate for the next step k+1. 

SEISMIC WAVELET MODEL 

A seismic model is typically modelled as an exponentially decaying cyclic waveform 
(Sheriff and Geidart, 1982) as follows 

 𝐴(𝑡) = 𝐴଴𝑒ି௛(௧ି௧బ) sin[ω(𝑡 − 𝑡଴)],   𝑡 ≥ 𝑡଴, (8) 

where A0 is initial amplitude, h is damping factor, and ω is dominant angular frequency. 
To simplify the mathematics and keep the KF in a linear form, this seismic wavelet is 
modelled as a periodic process with random walk amplitude (Baziw, 2002), 

 𝑥ଵ(𝑡) = 𝑥ଶ(𝑡)sin [𝜔(𝑡 − 𝑡଴], (9) 

where x1(t) is an approximation to the seismic wavelet defined by (8), and x2(t) is the 
random walk process approximating A0 in (8), which is defined as its derivative being 
driven by white noise as follows: 

 𝑥̇ଶ(𝑡) = 𝑤(𝑡), (10) 

where 𝐸[𝑤(𝑡)𝑤(𝜏)] = 𝑞(𝑡)𝛿(𝑡 − 𝜏). 

The linear continuous differential equation defining the seismic wavelets is outlined as 
follows 

 𝑥̇ଵ(𝑡) = 𝜔𝑥ଶ(𝑡)cos (𝑤𝑡). (11) 

The discrete form of (11) is 

 𝑥ଵ(𝑘) = 𝑥ଵ(𝑘 − 1) + ∆𝜔 cos[∆𝜔(𝑘 − 1)] 𝑥ଶ(𝑘 − 1), (12) 

where Δ is the sample rate. 

AMBIENT NOISE MODEL 

A Gauss-Markov process is a good candidate to model the microseismic environmental 
noise (Baziw, 2002), its autocorrelation function is defined by 
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 ∅௡௡(𝜏) = 𝜎ଶ𝑒ିఉ|ఛ|, (13) 

where σ2 is the variance and β is called the reciprocal of time constant.  

The discrete model for the Gauss-Markov process can be written as  

 𝑛௞ାଵ = 𝑎௪𝑛௞ + 𝑏௪𝑤௞,  (14) 

where 𝑎௪ = 𝑒ିఉ∆, and 𝑏௪ = 𝜎ඥ(1 − 𝑒ିଶఉ∆). 

KF GOVERNING EQUATIONS 

The discrete form of the KF governing equation is 

 ቎𝑥ଵ(𝑘)𝑥ଶ(𝑘)𝑥ଷ(𝑘)቏ = ൥1 ∆𝜔 𝑐𝑜𝑠[∆𝜔(𝑘 − 1)] 00 1 00 0 𝑒ିఉ∆൩ ቎𝑥ଵ(𝑘 − 1)𝑥ଶ(𝑘 − 1)𝑥ଷ(𝑘 − 1)቏ + 

 ቎ 0 0𝑞(𝑡)∆ 00 𝜎ඥ(1 − 𝑒ିଶఉ∆)቏ ൤𝑤ଵ(𝑘 − 1)𝑤ଶ(𝑘 − 1)൨ (15) 

 
where w1(k-1) and w2(k-1)are zero mean, unity variance, Gaussian white noise processes. 

For microseismic recording data, there is only one scalar measurement available, which is 
a combination of both the seismic wavelet (state x1) and the ambient noise (state x3),  

 𝑧(𝑘) = 𝑥ଵ(𝑘) + 𝑥ଷ(𝑘). (16) 

This results in the following measurement matrix: 

 𝐻௞ = [1 0 1]. (17) 

DATA SIMULATION 

The wavelet is generated by equation (8) with parameters listed in Table-1: 

Table-1: Wavelet parameters. 

 Frequency 
(Hz) 

Initial amplitude 
(mm/s2) 

Damping factor 
(1/s) 

Arrival time 
(ms) 

Sample rate 
(ms) 

p-wave 200 160 80 150 0.05 

s-wave 70 200 50 400 0.05 

Gauss-Markov ambient noise is simulated by equation (14). There are five Gauss-Markov 
processes are simulated in order to test our techniques on different levels of noisy data. 
Their parameters are listed in Table-2. 
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Table-2: Gauss-Markov process parameters. 

 noise1 noise2 noise3 noise4 noise5 

β 10000 10 1 0.1 0.05 

σ2 1000 1000 1000 2000 2000 

The synthetic data are shown in Fig. 1. The noise free signal and noises are shown on the 
left side; the signals for test are shown on the right side. We can see that these data are 
very noisy. It will be difficult to pick up the first arrival times of p- and s-wave if nothing 
is done beforehand. 

 

Fig. 1: Wavelet and noises. 

The frequency contents of wavelet and noises are plotted in Fig. 2. We can see that the 
wavelet has two dominant frequency, 70 Hz and 200 Hz; noise1 is almost white noise; 
the frequency contents of noise2 cover 0~6000 Hz with a dominant frequency at 700 Hz; 
noise3 has frequency contents of 0~500 Hz with a dominant frequency at 80 Hz; noise4 
and noise5 are mainly low frequency (0~60 Hz). Note that the frequency contents of 
noise3~5 are overlapped with that of the wavelet. 
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Fig. 2: Frequency contents of wavelet and noises. 

KALMAN FILTERING RESULTS 

The time update and measurement update equations were programmed to implement the 
Kalman filtering process. It is found that the best event detection state to track is the 
seismic wavelet amplitude (Baziw, 2002), i.e., the state x2, see Fig. 3. We can see that we 
have obtained a dramatic improvement in the SNR when comparing these results to the 
initial seismic time series in Fig. 1. 

 

Fig. 3: Kalman filtering results (state x2). 
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Although Fig. 3 shows the first arrival times are around 150 ms and 400 ms, we still can’t 
get accurate values if we look closely in Fig. 3. Picking up arrival times will be depended 
on the experience and decisions of operators, which is also time consuming if huge data 
is given. 

To obtain the accurate p- and s-wave arrival time, STA/LTA or MER methods was often 
used to get the arrival times (Han et al., 2009; Chen and Stewart, 2006). In this paper we 
use a modified STA/LTA method,  

 𝑒𝑟𝑎𝑡𝑖𝑜(𝑖) = |𝑔𝑟𝑚(𝑖)|௠ ൤௟భ௟మ ∑ ௚௥௠(௜)మ೔శ೗మ೔∑ ௚௥௠(௜)మ೔೔ష೗భ ൨௡
, (18) 

where grm(i) is the seismogram value at point i. A diagram of computing the modified 
STA/LTA is illustrated in Fig. 4. 

 

Fig. 4: Diagram of the modified STA/LTA. 

From our test, we found that when m=1, n=3, and L1 and L2 were set to 40 and 10 sample 
points respectively, we can get the least estimation error. These results are shown in Fig. 
5 and Table-3. 
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Fig. 5: Estimation of first arrival times using modified STA/LTA method. 

As illustrated, the error of picking arrival times is under 3 ms. It is interesting that with 
noise4 and noise5, we get better results comparing to noise1~3, noise3 has the biggest 
errors. The reason of this is not clear at this moment. 

Table-3: Estimation error of the first arrival times using modified STA/LTA. 

 noise1 noise2 noise3 noise4 noise5 

p-wave error (ms) 0.55 0.95 2.9 0.35 0.35 

s-wave error (ms) 1.05 0.65 1.65 0.3 0.4 

DENOISING BY WAVELET TRANSFORM 

The wavelet transform (WT) properties such as localization, which is essential for the 
analysis of transient signals, provide a filter to extract characteristics of interest such as 
energy and predominant timescales. This information is subsequently exploited for 
microseismic events detection. WT can also be used to de-noising seismic data (Fu,2005; 
Chen and Chao, 2004; Zhang and Ulrych, 2003).  

The de-noising procedure proceeds in three steps: first of all, choose a wavelet to 
compute the wavelet decomposition of the signal s at level N; then for each level from 1 
to N, select a threshold and apply soft thresholding to the detail coefficients; in the final, 
compute wavelet reconstruction based on the original approximation coefficients of level 
N and the modified detail coefficients of levels from1 to N. 
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In this paper we use wavelet db4 and decompose signals up to level 6. The results of WT 
are shown in Fig. 6. 

 

Fig. 6: The results of wavelet transform. 

We can see that after applying WT, SNR of signals are improved especially for noise1 
and noise2. Using the results of WT, we apply Kalman filtering process again and the 
results (state x2) are shown in Fig. 7. 

 

Fig. 7: Kalman filtering results (using WT data). 
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Again, we got very good results. Comparing Fig. 7 with Fig. 3, we can see that state x2 is 
smoother than that without WT.  

Using the new Kalman filtering results, we apply the modified STA/LTA method again 
to estimate the arrival times. The results are plotted in Fig. 8 and Table-4. 

 

Fig. 8: Estimation of first arrival times (using WT data). 

Comparing Table-4 with Table-3, the error is reduced except p-wave error of noise4. The 
reason need to be studied in the future. 

Table-4: Estimation error using modified STA/LTA method (using WT data). 

 noise1 noise2 noise3 noise4 noise5 

p-wave error (ms) -0.05 0.9 0.25 2.1 -0.3 

s-wave error (ms) 0.85 -0.6 0.85 -0.25 0.1 

CONCLUSION 

By testing our techniques on synthetic data, it shows that wavelet transform can attenuate 
considerable microseismic ambient noise given appropriate wavelet and decomposing 
level. The test also shows that the first arrival times can be picked up accurately by 
combining Kalman filter and modified STA/LTA method. There are some questions still 
need to be studied further in the future, for example, the parameters of STA/LTA method, 
the KF governing equations and its parameters, and the effect of choosing different 
wavelets.  
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