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ABSTRACT

The paper considers rational Padé approximation of the Z-transform function of a time-
dependent minimum phase signal. We present a derivation of reflection and transmission
coefficients in layered media which are related to infinite impulse response (IIR) filters as
a rational function of a special form. The rational ([p, q]-Padé) approximation of the Z-
transform function is formulated as a constrained least squares minimization problem with
regularization constraints provided by the minimum phase signal. Numerical simulations
for reconstruction of the Z-transform function and its use as an inverse filter for a multiple
model demonstrate the effectiveness of the presented approach.

INTRODUCTION

The numerical experiments described in this paper were conceived as a test of how
the technique of least squares Padé approximation could be used in a typical seismic data
processing application. The Padé approximation is a general purpose technique for ap-
proximating an analytic function in the complex plane using a numerically derived rational
function – the quotient of two polynomials in complex variable z. It has been used exten-
sively in numerical modelling and analysis of composite materials (Milton, 2002; Zhang
and Cherkaev, 2008, 2009) and is widely applicable to many data processing tasks (Nita,
2008) because of the general form of functions that may be approximated. As such, it
seems to be a promising technique for use in seismic data processing.

The Padé method features a numerical approach that works directly on the data – there
is no need to transform to the Fourier (or other) domain. Also, the approximation problem
is transformed to a linear least squares solution by lifting the denominator of a rational
function into the data terms. And finally, the method offers direct control of the coefficients
in the rational approximation, allowing for constraints to be placed on certain terms as
motivated by the physics of the model being studied. On the other hand, rational function
can have poles, which may lead to instabilities in the representing Padé function. Data
has noise, so solutions must be regularized in order to reduce other instabilities. Finally,
a reasonable Padé approximation in certain physical models may have very high order,
requiring some care in achieving a feasible numerical technique.

For these reasons, it is useful to attempt using this Padé method on a seismic data pro-
cessing task. For this work, we select the problem of modelling (and removing) reflection
multiples in a 1D seismic reflection and/or transmission data survey.

The paper is organized as follows. We review the derivation of reflection multiples for
a double interface, and observe the multiple signal can be modelled by an infinite impulse
response (IIR) filter of a simple form, with coefficients determined by the reflection and
transmission parameters. We set up the Padé approximation problem using the seismic
data directly, with some choice on the rational function form to reduce the dimension of
the solution space. We then report on the results of some numerical experiments in building

CREWES Research Report — Volume 22 (2010) 1



Dali Zhang et. al

the Padé approximating filter, and its use as an inverse filter to remove the multiples.

MULTIPLE REFLECTIONS AND TRANSMISSIONS

The aim of this section is to derive multiple reflection and transmission coefficients for
one dimensional seismic plane waves propagating with interfaces.

Single interface

We derive reflection and transmission coefficients from the 1D wave equation for a sin-
gle interface (see Figure 1). With an incoming wave ei(ωt+k1x) on the right of the interface
at x = 0, a transmitted and reflected wave is generated as

Tei(ωt+k2x), Rei(ωt−k1x) (1)

on the left with the wave number k1 and right side of the interface with the wave number k2

, respectively. The continuity of the total waveforms at the point x = 0 gives the equation

Teiωt = eiωt + Reiωt (2)

which reduces to
T −R = 1. (3)

The continuity of the normal derivatives also gives

ik2Teiωt = ik1e
iωt − ik1Reiωt (4)

which reduces to
rT + R = 1, (5)

where r = k2/k1 is the relative index of refraction.

Solving the two equations (3) and (5) for two unknowns R and T in terms of r, the
reflection and transmission coefficients are given by

R =
1− r

1 + r
, T =

2

1 + r
. (6)

It is important to note that these coefficients R and T depend on which way the wave is
travelling. Referring to Figure 1, a wave traveling from right to left will generate reflection
and transmission coefficients

R← =
1− r

1 + r
, T← =

2

1 + r
, (7)

where r = cright/cleft is the relative index of refraction as the wave travels from right to
left. If we reverse directions, the relative index of refraction is flipped, and thus we have

R→ = −R←, T→ = rT←. (8)

2 CREWES Research Report — Volume 22 (2010)



A multiple model and Padé approximation

!"#$%&"'

()*+)#,&$"-./"0%&00&$"

!",).*/#)

FIG. 1. A reflection and transmission event across a single interface

Two interfaces

In the case of two interfaces, there will be multiple internal reflections. Referring to
Figure 2, we see that the effective reflectivity will come from a infinite sum of reflected
components. Similarly, the effective transmission will also come from an infinite sum.
Start by computing the effective reflectivity. The first bounce gives a reflection R1 = R1

←,
the reflection off the first interface, for a wave initially travelling from right to left. The
second reflection comes from a transmission through the first interface, a delay as it travels
through the gap between interfaces, a bounce off the second interface, delay again as it
travels through the gap, then a transmission through the first interface. So we have

R2 = T 1
→DR2

←DT 1
←. (9)

Similarly, we can find the third reflection component as

R3 = T 1
→DR2

←D[R1
→DR2

←D]T 1
←, (10)

and the fourth component as

R4 = T 1
→DR2

←D[R1
→DR2

←D]2T 1
←. (11)

Continuing this way gives an infinite series with total reflectivity

Rtotal = R1
← +

∞∑
n=0

T 1
→DR2

←D[R1
→DR2

←D]nT 1
←

= R1
← +

T 1
→

R1→

∞∑
n=1

[R1
→DR2

←D]nT 1
←

= R1
← −

T 1
→

R1→
T 1
← +

T 1
→

R1→

∞∑
n=0

[R1
→DR2

←D]nT 1
←

= R1
← −

T 1
→

R1→
T 1
← +

T 1
→

R1→

(
1−R1

→DR2
←D

)−1
T 1
←.
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Noting that the coefficients T ’s and R’s are just constants, the reflectivity Rtotal can be
written as in the form

Rtotal = a + b
(
1− cD2

)−1
, (12)

for some constants a, b, c.
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FIG. 2. Reflection and transmission events across two interfaces

A similar analysis shows that the transmission terms can be derived as

T1 = T 2
←DT 1

←
T2 = T 2

←D[R1
→DR2

←D]T 1
←

T3 = T 2
←D[R1

→DR2
←D]2T 1

←

and so on, so the effective transmission Ttotal is given as

Ttotal =
∞∑

n=1

T 2
←D[R1

→DR2
←D]nT 1

←

= T 2
←D

(
1−R1

→DR2
←D

)−1
T 1
←. (13)

Again noting the constants in (13), we see that the transmission term Ttotal can also be
written as in the form of

Ttotal = b′D
(
1− cD2

)−1 (14)

for some constants b′, c.

4 CREWES Research Report — Volume 22 (2010)



A multiple model and Padé approximation

MODELLING WITH IIR FILTERS

The two responses Rtotal and Ttotal in the previous section can be modelled with Infinite
Impulse Response (IIR) filters (Karl, 1989) of very similar form. For the reflectivity Rtotal

given in (12), the related IIR filter is given by the rational function

G(z) = a +
b

1− cz2d
=

α + βz2d

1 + ηz2d
(15)

where α = a + b, β = −ac, and η = −c are related to the multiple reflectivities, and d is
an integer that models the delay of the signal through the gap. For the transmission Ttotal

in (14) the related IIR filter is given by the rational function

H(z) =
b′zd

1− cz2d
(16)

where d is an integer that models the delay of the signal through the gap. Note that c =
R1
→R2

← < 1, so the filters G(z) and H(z) are stable. We also note that the integer d can be
computed from the width of the gap, the velocity of sound in the gap, and the sample rate
of the sampled signal. It is given as

d =
length

velocity
∗ sample rate. (17)

PADÉ APPROXIMATION

In this section, we present a new numerical inversion method for constructing Padé
approximation of the Z-transform function G(z). The approach is based on the rational
approximation of the relaxation spectrum for viscoelastic media introduced in (Zhang et al.,
2010). The rational ([p, q]-Padé) approximation of G(z) (Baker Jr. and Graves-Morris,
1996) is

G(z) ' G[p,q](z) =
a(z)

b(z)
=

a0 + a1z + a2z
2 + · · ·+ apz

p

b0 + b1z + b2z2 + · · ·+ bqzq
(p ≤ q) (18)

where al (l = 0, 1, . . . , p) and bj (j = 0, 1, . . . q) are real coefficients of two polynomials
a(z) and b(z) of orders p and q, respectively. We see that the function G(z) in (15) has at
least one pole and all poles are nonzero, and use a standard normalization of the polynomial
coefficient b0 = 1 in the denominator b(z).

We note that the approximation G[p,q](z) of the IIR filter G(z) implies that the input
wavelet {wl}∞l=0 and the output signal {sk}∞k=0 must satisfy the recursion formula

sk =

p∑

l=0

alwk−l −
q∑

j=1

bjsk−j, k = 0, 1, 2, .... (19)

From a computational point of view, we need to choose a finite number N À p + q + 1
in order to reconstruct the full Padé coefficients al’s and bj’s given the values of the input
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wavelet {wl}∞l=0 and the output signal {sk}∞k=0. Therefore, the system (19) for the unknown
coefficients al’s (l = 0, 1, ..., p) and bj’s (j = 1, 2, ..., q) becomes

a0wk + a1wk−1 + ... + apwk−p − b1sk−1 − b2sk−2 − ...− bqsk−q = sk

p ≤ q < N, k = 0, 1, 2, ..., N. (20)

It should also be noted that both numerator and denominator of the rational IIR filter func-
tion G(z) in (15) contain only two terms, i.e., a constant term, and a term with the highest
order of 2d degree. The coefficients of the terms z1, z2, ..., z(2d−1) in the numerator and
denominator of G(z) are zero. Thus, we can reduce the number of the unknown [p, q]-Padé
coefficients al’s and bj’s in (18) for numerical computation. Some coefficients al’s and bj’s
in the middle terms of the polynomials a(z) and b(z) of G[p,q](z) can be assumed to be
zero. More precisely, for a fixed integer number m (e.g., m = 5 or m = 6), we suppose
that some polynomial coefficients of a(z) and b(z) are zero, i.e.,

am = am+1 = ... = ap−(m−2) = ap−(m−1) = 0,

bm+1 = bm+2 = ... = bq−(m−2) = bq−(m−1) = 0. (21)

Then the unknown coefficients al’s and bj’s in the system (20) become a0, a1, ..., a(m−1),
ap−m, ..., ap, and b1, b2, ..., bm, bq−m, ..., bq. The linear system of equations (20) under the
assumption (21) can be rewritten as follows

Ac := [A1 A2]

[
c1

c2

]
:= s (22)

where

A1 =




w0 · · · 0 0 0 · · · 0
w1 · · · 0 0 0 · · · 0
...

...
...

...
...

...
...

· · · · · · w0 0 0 · · · 0
· · · · · · w1 0 0 · · · 0
· · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · w0 0 · · · 0
· · · · · · · · · w1 w0 · · · 0

...
...

...
...

...
...

...
· · · · · · · · · · · · · · · · · · w0

... · · · ...
...

... · · · ...
wN · · · wN−(m−1) wN−p+m wN−p+(m−1) · · · wN−p




(23)
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A2 =




0 0 · · · 0 0 · · · 0
−s0 0 · · · 0 0 · · · 0
−s1 −s0 · · · 0 0 · · · 0

...
...

...
...

...
...

...
· · · · · · · · · −s0 0 · · · 0
· · · · · · · · · −s1 0 · · · 0

...
...

...
...

...
...

...
· · · · · · · · · · · · −s0 · · · 0
· · · · · · · · · · · · −s1 · · · 0
· · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · −s0

...
... · · · ...

... · · · ...
−sN−1 −sN−2 · · · −sN−m −sN−q+m · · · −sN−q




(24)

c = [c1 c2]
>, s = (s0, s1, s2, ..., sN)>

c1 = (a0, a1, ..., a(m−1), ap−m, ..., ap)
>, c2 = (b1, b2, ..., bm, bq−m, ..., bq)

>, (25)

The symbol [·]> indicates a transposed matrix. It is clear that in order for the reduced Padé
coefficients al’s (l = 0, 1, ..., m−1, p−m, ..., p) and bk’s (k = 1, 2, ..., m, q−m, ..., q) to be
uniquely determined, the total number of the impulse-response signal {sk}N

k=0 is required
to be greater to the number of coefficients, i.e., N À p+q+1 > 4m+2. The reconstruction
problem of determining the column real coefficient vector c = [c1 c2]

> in (22)-(25) is an
inverse problem. It is ill-posed and requires regularization to develop a stable numerical
algorithm.

To construct a real solution vector c of the reduced Padé coefficients for the inverse
problem (22), we introduce a penalization term in the Tikhonov regularization functional
T λ(c, s) (Tikhonov and Arsenin, 1977), so that the problem (22) can be formulated as the
following constrained least squares minimization problem with the regularization parame-
ter λ > 0 chosen properly (Tikhonov and Arsenin, 1977):

min
c
T λ(c, s) = min

c
{ || Ac− s ||2 + λ2||c||2}

subject to |uk − r0| < δ0, |vj − r1| < δ1, k = 1, 2, . . . , p, j = 1, 2, . . . , q. (26)

Here || · || is the usual Euclidean norm, parameters uk and vj in the constraints (26) are
zeros and poles of the reconstructed [p, q]-Padé approximation G[p,q](z) of G(z), r0 =

(−α/β)1/2d, and r1 = (−1/η)1/2d. To find the minimizer of the problem (26), we solve its
Euler equation; the solution is given by

c = {A>A + λI4m+2}−1{A>s} (27)

where I4m+2 denotes the (4m + 2)× (4m + 2) identity matrix.

After reconstruction of the real coefficient vector c, we can extend it to a full coeffi-
cients of the rational function approximation G[p,q](z) by inserting zero coefficients, this
gives [p, q]-Padé approximation of G(z). The reconstructed function G[p,q](z) can be used
to estimate the reflectivity parameters and to identify the impulse wavelet using inverse
filtering.
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NUMERICAL SIMULATIONS

We show preliminary results of numerical reconstruction of Z-transform function G(z)
given in (15). To simulate the synthetic data - impulse response signal {sj}∞j=0 using for-
mula (19), a Ricker wavelet with the dominant frequency 25Hz was generated using the
CREWES Matlab function [wavelet,tw]=ricker(dt,fdom,tlength) for the input signal, and
the parameters a, b and c in (15) were chosen as

a =
4

45
, b =

11

18
, c =

9

10
, d = 50 (28)

leading to the polynomial coefficients a0, a100, b100 represented by

α = 0.7, β = −0.08, η = −0.9, (29)

respectively. The desired temporal sample rate of the Ricker wavelet is dt =0.003 seconds,
the wavelet length is tlength=3.0 seconds, so that the total number of data is N = 1001.

In Figure 3 we show the results of reconstruction of the reduced Padé coefficients com-
pared with the true polynomial coefficients of G(z) for the order of p = q = 104 chosen in
the inversion algorithm. Here m = 6, so there were 4m + 2 = 26 Padé coefficients to be
determined in the vector c. The values of a0, a100, b100 are reconstructed very accurately
when there is no noise in the data. The valid recovered poles of the approximation G[p,q](z)
of G(z) using the constraints in (26) are illustrated in Figure 4. In this numerical example,
we chose δ1 = δ2 = 0.06 in the constraints of (26), all poles and zeros of the function G(z)
lie on the unite circle with radius r1 = 1.0011 and r2 = 1.022 in the complex z-plane, re-
spectively. The true and computed output signals {sj}∞j=0 (the IIR filtered Ricker wavelet)
using the recovered [p, q]-Padé coefficients fit fairly well for data with 8% noise presented
in Figure 5. It is seen from Figure 5 that the IIR filtered Ricker wavelet exhibits multiple
reflections in the 1D synthetic seismogram. We also used the recovered function G[p,q](z)
as an inverse filter to reconstruct the original input Ricker wavelet illustrated in Figure 6.
The reconstruction of the input Ricker wavelet is almost identical, with no difference be-
tween the theoretical and reconstructed functions seen in the figure when there is no noise
in the data. Even for input data with adding 8% noise, the original input Ricker wavelet in
the time interval [0, 1.5] seconds was recovered very well using the reconstructed function
G[p,q](z) as an inverse filter. However, there are some oscillation events that occurred with
amplitudes changing rapidly after t = 0.15 seconds, which need to be further studied.

CONCLUSIONS

We developed a new numerical inversion method for reconstruction of the Z-transform
function of a time-dependent minimum phase signal using Padé approximation. The ap-
proach is based on rational ([p, q]-Padé) approximation of the Z-transform function in the
complex plane. The problem is formulated as a constrained least squares minimization
problem with regularization constraints provided by the minimum phase signal (all poles
and zeros of Z-transform function lie outside the unit circle). The method was tested using
a Ricker wavelet to generate a minimum phase signal (IIR filtered wavelet) as synthetic
input data. The performed numerical experiments for reconstruction of the Z-transform
function and its use as an inverse filter show the effectiveness of the presented approach.
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The Padé approximation technique may provide a method to pull out the effective filter that
produces the multiple reflections in seismic data processing.
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FIG. 3. Reconstruction of Padé coefficients for data with no noise.
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FIG. 4. Calculation of poles for function G(z).
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FIG. 5. Reconstruction of the IIR filtered Ricker wavelet (25 Hz dominant frequency).
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FIG. 6. Reconstruction of the Ricker wavelet with a 25 Hz dominant frequency.
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