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A hybrid method applied to a scalar (almost) 3D SH
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ABSTRACT 

Seismic modeling of shear � �HS  wave propagation in a three dimensional 
structure using the potential scalar wave equation is considered. A combination of finite 
difference and finite integral transform methods are employed for this purpose. It is 
assumed that the variation in the medium parameters is smoothly varying in one of the 
spatial dimensions, and as such can be removed from the finite difference problem 
through the use of a finite integral transform. Although what will be considered is not a 
true 3D  model it does allow for some inhomogeneity in all spatial dimensions and as a 
consequence provides an intermediate point between a 2.5D and a truly 3D  situation that 
provides a computational basis that can be expanded upon to address a general fully 
inhomogeneous 3D  problem. 

INTRODUCTION 
A sampling of references in the geophysical literature on the topic of using a 

combination of finite integral transforms and finite difference method are Alekseev and 
Mikhailenko (1980), Kosloff and Baysal (1982), and Mikhailenko (1985), where 
additional references may be found.. However, much of the relevant literature, to this 
solution method is relatively inaccessible in that they appear in journals and texts written 
in Russian and is presented at a fairly mathematically intense level (Citations of these are 
not included here.) Papers in English by Russian scientists engaged in this research area 
are most often found in mathematical journals and contain little in the way of numerical 
implementation. For these reason it was deemed appropriate to investigate a simple 
problem in this area and deal with the more important numerical considerations that arise. 

A combination of finite difference and finite integral transform techniques is 
employed to obtain a numerical solution to the HS  scalar potential equation in a media 
type approaching that which could be classified as three dimensional. Its initial 
development was to compensate for hardware limitations, requiring less physical 
computer resources, with the trade off of a more complex algorithm but similar run times 
for modeling complex geological structures by conventional finite difference methods. 
Consideration of this simple problem within the context of hybrid solution techniques, 
has the ability to conveniently both introduce the method’s concept and present 
computational measures that maximize the algorithm’s efficiency, topics not usually dealt 
with in the literature. The transformed problem is highly parallel and amenable to 
vectorization techniques. 

The use of variations of source and receiver patterns can enhance the 3D  
modeling capabilities of what is essentially a 2.5D �  solution with 3D  kinematics and 
dynamics (geometrical spreading). As several lines of receivers are recorded, a type of 
rebinning, using traces from individual lines may be used to produce receiver lines 
oriented at specific angles across the 3D  array of surface receivers, within a single run.  



Daley 

 CREWES Research Report — Volume 23 (2011) 2  
 

BASIC THEORY 
Assume a 3D  elastic medium in a Cartesian coordinate system that is generally 

inhomogeneous in two spatial dimensions and what will be termed mildly 
inhomogeneous in the third spatial dimension, say the y – direction. The general 

waveHS �  potential equation for some scalar amplitude, � �, , ,x y z t� �� , is given by 

 � � � � � � � �2 2
0, tt f t� � � 	
 �� � �
 � �� �� x x x x  (1) 

where � �� x  is the shear wave velocity defined in terms of the Lame parameter and 

volume density as � � � � � �2� � ��x x x , � �	 �x  indicates a point source of HS  waves 

and � �f t  is a band limited wavelet, which will be discussed in more detail later. The 

unphysical, but mathematically convenient assumption that � � 1� �x  mass unit per 
volume unit in the entire model is made. Assume further that that the velocity may be 
specified in the form 
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which is the simplest form of the velocity specification 
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Only one term in the cosine series will be used in to introduce the method numerically 
with minimal complexity. Let 

 � � � � � �2 , , , , cosx y z A x z B x z y c� �� � � . (4) 

so that when compared with (2) the quantities � � � �, and ,A x z B x z  are explicitly defined 
as 
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The 3D  coordinate system is chosen so that the vertical coordinate, z, is positive 
downwards. The initial value problem is fully specified by introducing the conditions 

 
0 0

0tt t
� �

� �
� 
 � . (6) 

Wave propagation, due to a point source excitation of wavesHS � , will be 
assumed to be confined to the spatial volume � �0 ;0 ;0x a z b y c� � � � � � . Only four 
of these six boundaries will initially be taken to be perfectly reflecting, 
� �0 and ; 0 and x a z b� �  as the finite integral transform may require that other 
conditions be specified at  � �0 and y c� . These preliminary boundary conditions require 
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that some measures such as absorbing boundaries (Clayton and Enquist, 1977 and 
Reynolds, 1978) or attenuating boundaries (for example, Cerjan et al., 1985) be 
incorporated in the solution method so that spurious reflections from them will not 
contaminate, to any significant extent, the wave field propagating within the spatial 
volume and recorded at the receivers. The y spatial dimension is to be temporarily 
removed employing a finite cosine transform, which requires the specification of distinct 
boundary conditions at 0y �  and y c�  in the transform procedure  

Spurious reflections from the boundaries at 0y �  and y c�  can be eliminated by 
setting the source at a sufficient distance from distance from both of these boundaries so 
that reflections from them do not arrive at the receivers within the specified time window 
of the synthetic trace at any given receiver. 

Finite cosine transform: 

If the function � �y�  satisfies the Dirichlet conditions in the interval � �0,c  and 
if in this interval the relation 

 � � � �
0

cos
c n yn y dy

c
�� � � � � �

� �!  (7) 

is valid at all points in the interval � �0,c , where the function � �y�  is continuous, the 
following equality 

� � � � � � � �
1 0
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c c c c c
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 � � � �� �  �  � � � �
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� �  (8) 

holds. 

It is understood that the 0n �  term has been included in the summation in the last 
term in equation (8) for convenience of notation. Some upper bound on the summation 
must be determined that adequately approximates the infinite series. This number has a 
linear dependence on the distance c and is dependent on the spectral content of the source 
wavelet, which as previously stated has been assumed to be bad limited for this exercise. 

Applying the finite cosine transform to equation (1) leads to the intermediate 
finite difference analogue  
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with the abbreviated notation � � � �, , ,n x n z p t �  �  being used in the above equation.  

The spatial sampling rate in the � �,x z  directions was taken to be h  and the time step, 
was set as t� . Some stability condition, which is required for the finite difference part of 
the problem, may be shown to be of the form 

 
1 22 2 2 2

max max
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� �
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 (10)  

where max�  is the maximum value of shear wave velocity encountered in the entire 3D  
space and maxn  the number of terms in the inverse cosine series which adequately 
approximates the infinite series. Both the stability condition and number of terms in the 
inverse series summation are treated in detail in (Daley et al., 2008) and consequently 
will not be addressed here. 

The quantities ,p qA  and ,p qB  are the harmonic averages used for any of the � �,x z  
spatially dependent parameters in equation (9) with ,p qA  given by 
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used in derivatives involving the x  dimension as 
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and ,p qB  specified by 
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used in derivatives in z  in a manner similar to equation (12). This leads to the 
extension of equation (9) to the more complete finite difference analogue  
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It is implicit in the above equation that both the terms ,m nA  and ,m nB  represent the 

harmonic averages of these quantities and not merely their values at the � �,x z  grid point 

� �,i j  (see equations (11) and (13)). The time step is t�  and the spatial step, h x z� � � � . 

The boundary at the surface of the model, 0z � , is assumed to be perfectly 
reflecting, a not unrealistic assumption, based on the condition that � �

0
, , ,

z
x y z t�

�
 be 

continuous, and the half space 0z ,  is taken to be a vacuum, making the model boundary 
perfectly reflecting there. If so required it may also be made absorbing. 

The saving in space, having to use only 2D  arrays to specify the elastic parameter 
and density, requires an expenditure of computational time when compared to a 2D  
finite difference algorithm as equation (15) must be solved for those values of n , 
� �max0 n n� � , where maxn  is the number of terms in the inverse cosine series that 
reasonably approximates the infinite series.  However, it is comparable in run time to a 
truly 3D  finite difference algorithm as the 2D  finite difference computations must be 
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undertaken max 1n �  times. The exterior loop is over n  followed by the time loop and then 
the loops over the spatial dimensions x  and z . 

DISCUSSION AND CONCLUSIONS 

 The problem of an HS  wave propagating in a medium, which has been termed 
almost three dimensional, is presented. This preliminary problem where the HS  
(velocity)2 directiony � in the  in a 3D  Cartesian is approximated by  

� � � � � �2
2 2 ,

, , , 1 cos , for some integer 
2

x z yx y z x z
c

� �� �
� � �� � �� �

� �
�

�
 

presents the basic formulation for the use of hybrid methods (finite integral transforms 
combined with finite differences)  in a truly 3D  geometrical structure. Formally, this is 
accomplished by using equation (3 rather than (2) to specify the velocity variation in the 

directiony � . As with other chapters in this report by the author, software was written 
and tested for this problem in the early 1980s. However, as in the other cases, all source 
code and ancillary documentation, has been lost. It should be mentioned that software 
related to this report has been rewritten in a generic form, as the programming language 
that will be most useful is yet to determined. The use of the hybrid method provides a 
significant saving in memory with computational time comparable to a similar geological 
structure described by a  3D  gridded model. The hybrid method is also highly parallel. 

A schematic of a simple type of the problems that may be solved using this method is 
shown in Figure 1, while a selection of receiver line options is given in Figure 2. It has 
been assumed that the source lies at or near the surface as are the receivers. It may be 
seen that the receiver spacing is not constant for all of the lines.  
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Fig.1. Schematic of a model that may be treated using the method described here. The 
computational model employed is similar with a source located at 0Sz � , 0 Sx a, , , 

0 Sy c, , . 
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Fig. 2. Schematic of shooting geometry. A single source as indicated and an n n-  surface array 
of receivers with x y h� � � � . Other possible receiver lines are shown. Note that the receiver 

lines at an angle to the � �,x y  spatial points have different spatial increments between receivers. 

 

 

 


