
Time-lapse differencing

Non-conventional seismic differencing algorithms in
time-lapse II

Vanja Vracar and Robert J. Ferguson

ABSTRACT

Conventional seismic differencing in time-lapse studies proves to capture large errors
in seismic amplitude and smaller errors in seismic phase through numerical experiments.
Keeping this observation in mind we implement four non-conventional seismic differenc-
ing algorithms: 1) Cross-correlation differencing (CCD),2) Pseudo cross-correlation dif-
ferencing (PCCD), 3) Conventional imaging condition differencing (CICD) and 4) Imag-
ing condition differencing (ICD). The CCD algorithm uses cross-correlation and Gaussian
function to create filtering operator that is further multiplied by conventional difference
and later migrated. The algorithm proves to be computationally costly as it is performed
in the time domain. Hence the same concept is implemented in the frequency domain,
named PCCD algorithm. The PCCD algorithm improves computational time and resolu-
tion significantly. As both, CCD and PCCD algorithms are dependent on user to move
from filtering operator creation to non-conventional differencing to migration, we develop
CICD algorithm as a pilot algorithm to ICD. CICD is based on the pre-stack depth migra-
tion and conventional differencing. It performs wavefield extrapolation and conventional
differencing at the imaging condition. As CICD algorithm proves to be robust, we develop
ICD algorithm that is based on pre-stack depth migration andnon-conventional differenc-
ing, namely PCCD filtering operator. ICD algorithm fully eliminates dependence on the
user, improves resolution and computational cost. These four algorithms are tested on two
data sets and prove to be a valuable alternative tool in seismic differencing and time-lapse
studies.

INTRODUCTION

Conventional seismic differencing relies on a number of assumptions that may not al-
ways represent reality. Systematic error, error associated with the use of conventional
(imperfect) imaging algorithms, and error due to source/receiver coupling variations are
assumed to be small relative to the seismic response of fluid transport. Source / receiver
positioning must be the same between surveys in time-lapse.The result is that conven-
tional differencing involves simple match filtering followed by subtraction where the in-
terpretable product is an image of the change in fluid location superimposed upon some
background noise level. In reality, errors are often very large.

We observe that though errors might be large, and with the exception of source / re-
ceiver location repeatability, coupling variation and system errors result in differences in
seismic amplitude and not necessarily seismic phase so thatany methodology beyond sim-
ple match-filtering and differencing might incorporate this observation.

In order to implement this concept cross-correlation is employed. Cross-correlation
groups similarities and dissimilarities around zero lag and elsewhere, respectively. The
cross-correlation models can be further used in filtering ofdata, where in this case similari-
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ties are eliminated. Now, seismic difference models will highlight primarily dissimilarities,
that is major reservoir property changes of two time-lapse steps, hence, significantly clean
ambiguity.

THEORY

The cross-correlation imaging condition of seismic depth migration essentially uses a
model of the source wavefield to identify reflection amplitudes on an input data set. This
identification occurs most simply through cross-correlation, and this is a process that relies
on good phase fidelity in both the model and the data; reflection amplitude in the data
whose corresponding phase matches that of source amplitudeis mapped to zero lag. Data
at zero lag are then mapped to the image space and, when this isdone for all depth grid
levels, the migrated seismic image is produced.

Central to the imaging condition, then, is that reflection data are identified, captured,
and used in the image, while all non matching data are discarded. In application to time-
lapse analysis, the imaging idea seems well suited as it is sensitive to phase, and phase is
recorded most reliably in the seismic method. Rather than forward model a reflection, and
then look for a similar reflection shape in the data, it seems reasonable to use a reference
data set (with all reflections, multiples, and so on) - the complete seismic wavefield instead
of a model. Used instead of a source model in the imaging condition, the reference wave-
field will act to find all similar energy in the monitor survey and then map that energy to
zero lag. Any differences, i.e. variation due to fluid flow, isdiscarded. A simple modifica-
tion to this approach causes all similar events to be discarded and the difference - the fluid
flow - is captured and imaged.

In this section conventional differencing is reviewed and four new differencing methods
based on ideas from seismic imaging are outlined. These are:

1. cross-correlation differencing (CCD),

2. pseudo cross-correlation differencing (PCCD),

3. conventional imaging condition differencing (CICD) and

4. imaging condition differencing (ICD).

The CCD is a method implemented in time domain. It calculatesthe cross-correlation of
two time-lapse steps, that is further multiplied by a Gaussian filter to notch out data at
zero lag in cross-correlation. The result is further transformed to time domain and multi-
plied by the conventional difference. As the algorithm is computationally costly the same
method is implemented in frequency domain. We name cross-correlation in frequency
domain pseudo cross-correlation and implement the PCCD. Ittakes the pseudo cross-
correlation of two time-lapse steps. Then, Gaussian filter is created and convolved with
pseudo cross-correlation result to notch out data at zero lag in frequency domain. The result
is further inverse Fourier transformed and multiplied by the conventional difference. As
both algorithms are dependent on the user to move from filtering operator creation to non-
conventional differencing to migration, we develop CICD algorithm as a pilot algorithm to
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ICD. CICD is based on the pre-stack depth migration and conventional differencing. It per-
forms wavefield extrapolation and conventional differencing at the imaging condition. As
CICD proves to be robust, we develop ICD that is also based on pre-stack depth migration
but performs non-conventional differencing (PCCD) at imaging condition. ICD algorithm
fully eliminates dependence on the user, improves resolution and computational cost.

Conventional Differencing

We define baseline and monitor surveys to image original dataand data after time
passed, respectively. Conventional differencing is obtained employing conventional matrix
subtraction (Vracar and Ferguson, 2010) as:

D = M − B, (1)

where B and M define baseline and monitor surveys, respectively. Baseline and monitor
surveys are recorded in time.

Step I:
Velocity
Models

→

Step II:
Seismic
Models

→

Step III:
Differencing

Models
→

Step IV:
Migration

Models

Table 1. Conventional differencing workflow. The workflow consists of four steps: velocity models
are used to generate synthetic seismic models. Synthetics are then differenced and migrated to
produce conventional difference models.

In table 1 steps to obtain conventional difference models are presented. First, velocity
models are taken to generate synthetic seismic models. In Vracar and Ferguson (2010)
paper we describe forward modelling flows and follow similarmodelling here. Then, syn-
thetics are differenced and migrated employing pre-stack depth migration to obtain con-
ventional difference models. Conventional difference seismic models are ambiguous and
hard to interpret for differences only, hence, we intend to clean imaging by filtering and
eliminating similarities of two time-lapse steps (Vracar and Ferguson, 2010).

Cross-correlation differencing in the time domain (CCD)

Cross-correlation differencing (CCD) is implemented entirely in the time domain and
as such, it is the most natural of the methods that we will present to those familiar with
conventional differencing.
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Step I:
Velocity
Models

→

Step II:
Seismic
Models

→

Step III:
Cross-

Correlation
Filtering
Models

→

Step IV:
Differencing

Models
→

Step V:
Migration

Models

Table 2. CCD workflow. This workflow is similar to workflow 1 with the additional step of cross-
correlation filtering. This step is to locate and eliminate similarities to highlight dissimilarities.

The workflow 2 is similar to workflow 1, but it employs an additional step of cross-
correlation filtering.
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Step I: CALCULATION OF CROSS-CORRELATION MATRIX

calculate the cross-correlation matrix of baseline and monitor surveys

↓

Step II: CALCULATION OF CROSS-CORRELATION

multiply cross-correlation matrix by monitor survey

↓

Step III: GAUSSIAN FILTER

create Gaussian filter

↓

Step IV: CROSS-CORRELATION FILTERING

multiply cross-correlation of baseline and monitor surveys by Gaussian filter

↓

Step V: INVERSION OF CROSS-CORRELATION MATRIX

build an inverse matrix of cross-correlation matrix

↓

Step VI: FILTERING BY INVERSE CROSS-CORRELATION MATRIX

multiply Gaussian filtered cross-correlation matrix
by inverse matrix of cross-correlation matrix

↓

Step VII: CONVENTIONAL DIFFERENCE FILTERING

multiply conventional difference of monitor and baseline by the result of step VI

Table 3. CCD in the time domain. In Step we to VII outline actions executed in order to filter
conventional difference employing cross-correlation, Gaussian filter and matrix inversion.

In Step I (Table 3), the cross-correlation matrix is built. Cross-correlation is closely
related to convolution (Margrave, 2008): where in convolution of two signals we reverses
one, shift, multiply, add, and repeat, in cross-correlation neither signal is reversed and the
process is otherwise the same (Margrave, 2008). Since convolution and cross-correlation
share similar characteristics we refer to convolution theory and modify it to accommodate
for cross-correlation operations.

Let’s step back and firstly look at the definition of convolution (Lines and Newrick,
2008):

p(t) ≡ a(t) • h(t), (2)

where• stands for the convolution operation andp(t), a(t) andh(t) denote convolution of
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two signals, signal one and signal two, respectively. In mathematical terms, convolution is
an operation on two functions,a(t) andh(t), producing the third function,p(t), that can
be described as manipulated version of one of the original functions. Convolution honors
commutativity, associativity and distributivity (Margrave, 2008). In geophysical terms,
convolution is an operation acting on two signals, such thatone is viewed as the filter to
the other. In practice, convolution models filtering of seismic energy by various rock layers
in the Earth (Schlumberger, 2011).

Now, the convolution stated by equation (2) can be further examined mathematically
through a definition of convolutional integral (Margrave, 1998):

p(t) =

∫

∞

−∞

a(t − τ)h(τ)dτ , (3)

wherep(t), a(t − τ) andh(τ) denote filtered output, filter impulse response and input
signal, respectively. Equation (3) can be rewritten in terms of matrix operations according
to

p = Ah (4)

(Margrave, 1998), whereA is a convolution matrix andp andh are column vectors. If
expanded equation (4) yields (Margrave, 1998):
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Equation (5) highlights matrixA to have constant entries at each descending diagonal from
left to right. In mathematical terms, this matrix is known asToeplitz matrix, named by Otto
Toeplitz, a German mathematician working on functional analysis (Bini, 1995). Common
applications of Toeplitz matrices include the numerical solution of some differential and
integral equations, the computation of splines, time series analysis, Markov chains, signal
and image processing (Bini, 1995). In geophysical terms, this matrix structure is known
as the convolution matrix (Inannen, 2010). It is created by populating each row by a filter
with zero time shifted to the diagonal. Since convolution isbriefly reviewed, we look at
cross-correlation.

Let’s consider the definition of the cross-correlation (Lines and Newrick, 2008):

x(t) ≡ m(t) ⊗ b(t), (6)

where⊗ stands for cross-correlation operation andx(t), m(t) and b(t) denote cross-
correlation of two signals, signal one and signal two, respectively. Recall the basic def-
inition of cross-correlation to be a measure of similarity of two waveforms.
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Its definition in equation (6) can be expressed as the cross-correlation integral given by:

x(t) =

∫

∞

−∞

a(t + τ)b(τ)dτ , (7)

wherex(t), a(t+τ), b(τ) denote filtered output, reverse filter impulse response and impulse
signal, respectively. Cross-correlation in equation (7) can now be related to convolution in
equation (3) by time reversing filter impulse and populatingmatrices as:

x = Ab, (8)

that is
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wherex andb denote column vectors andA denotes the cross-correlation matrix. Gener-
ation of matrixA is the goal of Step I in the CCD approach (Table 3).

In Step II the cross-correlation matrix is multiplied by themonitor survey to calcu-
late the cross-correlation of baseline and monitor surveys. The above statement can be
described in mathematical terms through matrix operationsas:

xcorr = A m, (10)

whereA andm are the cross-correlation matrix for one baseline trace, one trace from the
monitor survey.

Equation (10) groups all similarities around zero lag and all dissimilarities elsewhere.

In Step III, a Gaussian filter is created. We employ the time domain Gaussian function
defined as (Margrave, 2008):

g(t) = e−α2t2 , (11)

whereg(t), α andt denote Gaussian filter, Gaussian width and time, respectively.

In Step IV the cross-correlation matrix in time is scalar multiplied by the Gaussian filter
defined in equation (11) as

f = g ⊙ xcorr, (12)

where⊙ indicates scalar multiplication between the elements of vectors. Equation (12)
deletes zero lag, hence leaves only dissimilarities of the two surveys.
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Now, that the data is cross-correlated and filtered, the cross-correlation matrixA is
employed to provide inverse cross-correlation operator,A−1, as Step V. This step is to
reverse the cross-correlation operation.

In Step VI filtered cross-correlation is then multiplied by the inverse cross-correlation
matrix:

r = A−1 ⊙ f . (13)

In Step VII we multiply the conventional difference by filtered data:

d⋆ = r[m− b]. (14)

Now all differences are highlighted and almost all similarities are eliminated.

As a single analytic process, CCD is

d⋆ = A−1 [g ⊙ [A [m ⊙ [m − b]]]] . (15)

Note, though much of the computational effort in CCD is restricted to scalar multiplication,
convolution and then de-convolution byA andA−1 can be quite expensive.

Computational cost of CCD

Let’s analyze the computational cost of CCD. We assume the baseline and monitor
surveys to beM × N matrices.

operation cost
build cross-correlation matrix O(MN)
multiplication O(M2N2)
build Gaussian filter O(MN)
build cross-correlation operator O(M3N3)
multiplication O(MN)
migration O(MNlog(MN))

Table 4. Computational cost of the CCD workflow in the time domain. It takes O(M5N5 + 3MN +
MNlog(MN)) operations to complete the workflow. The process is successful, but costly.

Its computational cost is outlined in Table 4 (Knuth, 1997),where”O” defines number
of operations. Although, the algorithm is successful, it iscomputationally costly as it
takesO(M5N5 + 3MN + MNlog(MN)) operations to complete. The most expensive
operation seems to be the creation of the inverse cross-correlation operator. This is a step
is considered for optimization to reduce cost. We look into developing the same workflow
in the frequency domain.

Pseudo cross-correlation differencing in the frequency domain (PCCD)

Due to a large computational cost in the time domain the algorithm is adapted to work in
the frequency domain. We expect to save computational cost in frequency domain because

8 CREWES Research Report — Volume 23 (2011)



Time-lapse differencing

the matrix inversion will be substituted by the Fourier transformation. The algorithm is
named Pseudo cross-correlation differencing (PCCD).

Step I:
Velocity
Models

→

Step II:
Seismic
Models

→

Step III:
Pseudo
Cross-

Correlation
Filtering
Models

→

Step IV:
Differencing

Models
→

Step V:
Migration

Models

Table 5. PCCD workflow. This workflow is similar to workflow 3, however, the additional step that
takes place is pseudo cross-correlation filtering. This step is to locate and eliminate similarities to
highlight dissimilarities.

Table 5 is similar to Table 1, however, cross-correlation filtering is computed in the
frequency domain.
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Step I: DATA TRANSFORMATION

transform of baseline and monitor surveys from time to the frequency domain

↓

Step II: PSEUDO CROSS-CORRELATION

calculate the pseudo cross-correlation of baseline and monitor surveys

↓

Step III: GAUSSIAN FILTERING

create Gaussian filter in the frequency domain

↓

Step IV: CONVOLUTION

convolution of pseudo cross-correlation of
baseline and monitor surveys with Gaussian filter

↓

Step V: INVERSION OF PSEUDO CROSS-CORRELATION

inversion of pseudo cross-correlation

↓

Step VI: INVERSE FOURIER TRANSFORMATION

inverse Fourier transform the result of step V

↓

Step VII: CONVENTIONAL DIFFERENCE FILTERING

multiply conventional difference of monitor and baseline by the result of step VII

Table 6. PCCD in the frequency domain. Step I to VII outline actions executed in order to filter
conventional difference employing pseudo cross-correlation, Gaussian filtering and pseudo cross-
correlation inversion.

Table 6 summarizes the PCCD algorithm. In Step I, the baseline surveyb(t) and moni-
tor surveym(t) are Fourier transformed to the frequency domain according to

B(w) =
1

2π

∫

∞

−∞

b(t)eiwtdt, (16)

M(w) =
1

2π

∫

∞

−∞

m(t)eiwtdt, (17)

whereB(t), M(t) andw denote baseline and monitor surveys and frequency in the fre-
quency domain, respectively.B(t) andM(t) are further decomposed into their phase and
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amplitude components according to

B(w) = Ab(w)eiφb(w), (18)

M(w) = Am(w)eiφm(w), (19)

whereAb(w), Am(w), are the amplitude spectra of the baseline and monitor surveys re-
spectively, andφb(w) andφm(w) are the phase spectra.

In Step II,B(t) andM(t) are cross-correlated according to

Pcc = Am(w)ei(φm(w)−φb(w)). (20)

Note that the amplitude spectrum of baseline survey is omitted in equation (20)as our
approach to differencing, in this case deletion of all data that are similar between baseline
and monitor, requires only phase information from both spectra and amplitude information
only from the monitor spectrum.

In Step III the Gaussian filter in the frequency domain is created as:

G(w) =

√

π

α
e(−πw

α
), (21)

whereG(w) andα denote Gaussian filter in the frequency domain and Gaussian width,
respectively. In Step IV pseudo cross-correlation is convolved with Gaussian filter such as:

S(w) =

∫

∞

−∞

G(w⋆)Pcc(w − w⋆)dw⋆. (22)

wherew∗ denote a dummy frequency variable. In Step V pseudo cross-correlation inverse
operator (PCCIO) is computed from the following equation:

R(w) = eiφm(w)S(w). (23)

In order to compute PCCIO we only use the definition of the phase of the monitor
survey to restore the phase of filtered data. This is because the phase spectrum only depends
on seismic traveltime, and such provides confidence in results. The amplitude spectrum,
not used in this calculation, can be ambiguous. Any variations in shot coupling, geophone
coupling or shot strength seem to reflect most strongly in theamplitude rather than in the
phase spectrum. Seismic noise sources along with model estimation and imaging errors
appear to distort amplitudes much more than phases.
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FIG. 1. Two guitars manufactured by different companies are presented: Gibson Explorer at the
top and Fender Jazzmaster at the bottom.

Two guitars are presented in Figure 1: Gibson Explorer guitar at the top and Fender
Jazzmaster guitar at the bottom. They are manufactured by different companies and will
serve for the experiment. First, employing MATLAB functions amplitude and phase spec-
tra are extracted to yield:

B(w) = A1(w)eiφ1(w), (24)

M(w) = A2(w)eiφ2(w), (25)

whereA1, A2, φ1 and φ2 stand for amplitude spectrum of Gibson Explorer, amplitude
spectrum of Fender Jazzmaster, phase spectrum of Gibson Explorer and phase spectrum of
Fender Jazzmaster, respectively. Now, a third image is created employing the amplitude
spectrum of Fender and the phase spectrum of Gibson as:

B(w) = A2(w)eiφ1(w). (26)

200 400 600 800 1000 1200

100

200

300

400

500

FIG. 2. Restored image using amplitude spectrum of Fender Jazzmaster image and the phase
spectrum of Gibson Explorer image.

The resulting image in Figure 2 resembles much like the Gibson, and the effect of the
Fender amplitude shows as blurring of the image. This experiment proves that amplitude
spectrum is less reliable when compared to phase spectrum, hence proves the choice of
using just monitor survey’s phase spectrum in computing PCCIO sufficient in Step V.
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In Step VI the computed result in equation (23) is inverse Fourier transformed from
frequency to time domain:

r(t⋆) =

∫

∞

−∞

R(w)eiwt⋆dw. (27)

In Step VII the computed result multiplies the conventionaldifference as:

d⋆⋆ = r ⊙ [m − b] . (28)

Computational Cost of PCCD

Let’s analyze the computational cost of PCCD. We assume the baseline and monitor
surveys to beM × N matrices.

operation cost
fast Fourier transform (FFT) X 2 O(2MNlog(MN))
pseudo cross-correlation O(M2N2)
build Gaussian filter O(MN)
convolution O(MNlogMN)
build inverse pseudo cross-correlation operator O(MN)
inverse fast Fourier transform (IFFT) O(MNlogMN)
migration O(MNlog(MN))

Table 7. Computational cost of the PCCD workflow in the frequency domain. It takes O(M2N2 +
2MN + 5MNlogMN) operations to complete the workflow. The process is successful and much
cheaper if executed in the frequency domain.

PCCD’s computational cost is outlined in Table 4 (Knuth, 1997). The most expensive
calculation is convolution withO(M2N2) operations, and the least expensive calculation
is fast forward/inverse Fourier transformation withO (N log2 N) operations. PCCD algo-
rithm is successful and computationally much cheaper, thenCCD algorithm:

O(M2N2 + 2MN + 5MNlogMN) << O(M5N5 + 3MN + MNlog(MN)). (29)

Simplifying equation 29 to:

O(4MNlogMN) << O(M3N3 + MN) (30)

significant decrease in computational cost from CCD to PCCD is noted.

Conventional imaging condition difference (CICD)

The workflow 1 summarizes steps taking place sequentially under user’s supervision.
In order to improve its computational efficiency and eliminate dependance on the user
to move from step to step, pre-stack depth migration algorithm (PSDM) implemented by
CREWES is modified. The migration algorithm of choice is the Split step Fourier (SSF)
migration (Stoffa et al., 1990) as it is computationally efficient.
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As a pilot experiment to implement PCCD with migration algorithm, PSDM is manip-
ulated to take two time-lapse steps and calculate their conventional difference.

RECURSIVE CICD ALGORITHM

Step I:
Velocity
Models

→

Step II:
Seismic
Models

→

Step III:
Differencing and

Migration
(at every depth level)

Table 8. Recursive conventional difference imaging condition algorithm. The workflow starts with
velocity and seismic models, then at every depth level performs conventional differencing until it
reaches the maximum depth level.

Table 8 illustrates the general steps taking place within CICD algorithm. The workflow
begins with velocity and seismic models. It performs conventional differencing at every
depth level until it reaches the maximum depth level.

RECURSIVE ALGORITHM
Step I: DATA TRANSFORMATION

transformation of baseline and monitor surveys from space to f − kx domain

↓

Step II: DATA EXTRAPOLATION

wavefield extrapolation of baseline and monitor surveys at every depth step

↓

Step III: CONVENTIONAL DIFFERENCING

CD method at every depth step

Table 9. Imaging condition differencing at every depth step. Step I to VII outline actions executed
in order to filter conventional difference employing pseudo cross-correlation, Gaussian filter and
pseudo cross-correlation inversion.

Table 9 describes steps taken in modifying pre-stack depth migration algorithm to pro-
duce conventional difference of two time-lapse steps. In step I, baseline and monitor sur-
veys are transformed from space tof -kx domain. PSDM is implemented to execute one
depth level at the time starting at the surface and ending at maximum depth level. In step
II, the isotropic split step extrapolation of baseline and monitor surveys at every depth step
occurs. Now, the conventional difference is embedded before the depth level increases.
The process recursively repeats until it reaches maximum depth. The output is, therefore,
conventional difference of two time-lapse steps.
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Computational Cost of CICD

Let’s analyze the computational cost of CICD. We assume the baseline and monitor
surveys to bemxn matrices.

operation cost
PSDM O(MNlog(MN))
CD O(MN)

Table 10. Computational cost of the PCCD workflow in the frequency domain. It takes
O(MN + MNNlog(MN)) operations to complete the workflow. The process is successful and
much cheaper if executed in the frequency domain.

Table 10 is a summary of computational cost for CICD. It takesthe same number of op-
erations as execution of the conventional differencing andmigration, however, eliminates
user dependance.

Imaging condition differencing (ICD)

Having successfully tested manipulation of PSDM for CD producing the CICD algo-
rithm, we proceed to accommodate PSDM for PCCD.

RECURSIVE ICD ALGORITHM

Step I:
Velocity
Models

→

Step II:
Seismic
Models

→

Step III:
Filtering,

Differencing and
Migration

(at every depth level)

Table 11. Recursive imaging condition differencing algorithm. The workflow starts with velocity and
seismic models, then at every depth step performs PCCD algorithm until it reaches the maximum
depth level.

Table 11 outlines steps taking place in the Imaging condition differencing (ICD) algo-
rithm. It is similar to workflow in Table 8, however, it performs PCCD as oppose to CD
algorithm at every depth level.
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RECURSIVE ALGORITHM
Step I: DATA TRANSFORMATION

transformation of baseline and monitor surveys from space to f -kx domain

↓

Step II: DATA EXTRAPOLATION

wavefield extrapolation of baseline and monitor surveys at every depth step

↓

Step III: DATA FILTERING AND DIFFERENCING

PCCD method at every depth step

Table 12. Imaging condition differencing algorithm. Pre-stack depth migration algorithm is modified
to migrate, filter and difference two time-lapse steps at every depth level producing only difference
of two time-lapse steps.

Table 12 outlines the recursive ICD algorithm. In step I the data is transformed from
space tof -kx domain. Now, a series of operations take place at one depth level, starting
at the surface. In step II the isotropic split step extrapolation takes place at one depth
level of baseline and monitor surveys. In step III the PCCD algorithm takes place at the
same depth level. Then, the depth level increases and the process repeats until it reaches
maximum depth level.

Computational Cost of ICD

Let’s analyze the computational cost of ICD.

operation cost
PSDM O(MNlog(MN))
PCCD O(M2N2 + 2MN + 5MNlogMN)

Table 13. Computational cost of the PCCD workflow in the frequency domain. It takes O(M2N2 +
2MN + 6MNlogMN) operations to complete the workflow. The process is successful and much
cheaper if executed in the frequency domain.

Table 13 shows the computational cost of ICD algorithm. The algorithm is optimal and
user independent.

EXAMPLE I

Velocity models and Synthetics

The data set used is the EAGE/SEG salt velocity model (Aminzadeh et al., 1996).
The model consists of complex salt structures with large velocity contrasts across the
salt/sediment interface (Aminzadeh et al., 1996). This is awell known pre-stack depth
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migration (PSDM) free testing data set publicly available,hence convenient to use in this
work.
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FIG. 3. EAGE/SEG salt velocity models: a) original model, b) author manipulated original model
by inserting small box in the sub-salt region to accomodate time-laspe analysis and c) conventional
difference of a) and b) models.

In Figure 3 velocity models are captured. Figure 3(a) show original EAGE/SEG model.
Figure 3(b) shows manipulated model. To accommodate time-lapse study and analysis the
author inserts a small reflector in the sub-salt region of theEAGE/SEG salt velocity model
and assumes it to mimic changes due to production. The box is of constant velocity and
it location is indicated by the yellow cross arrow. I denote original model baseline survey
and manipulated model monitor survey. Assume that baselineand monitor survey are two
time-lapse steps. Figure 3(c) shows conventional difference of Figures 3(a) and 3(b).
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FIG. 4. EAGE/SEG salt zoomed in velocity models: a) baseline survey, b) monitor survey and c)
conventional difference of a) and b) models.

Figure 4 is a zoomed in version of Figure 3. It focuses on the inserted reflector, that is
baseline to monitor surveys small change in the data is captured.

Now, taking velocity models synthetics are created employingafd_shotrec, MATLAB
CREWES toolbox function created by Dr Gary Margrave.
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FIG. 5. EAGE/SEG salt shot gathers: a) shot gather of baseline survey, b) shot gather of monitor
surveyl and c) difference of models a) and b).

Figure 5 shows shot gather of baseline survey, shot gather monitor survey and differ-
ence of the two gathers.

a) Distance (m)

T
im

e 
(s

)

 

 

7000 7500 8000 8500 9000 9500 10000 10500 11000 11500 12000

2.4

2.5

2.6

2.7

2.8

2.9

3

3.1 −0.01

−0.008

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

0.008

0.01

b) Distance (m)

T
im

e 
(s

)

 

 

7000 7500 8000 8500 9000 9500 10000 10500 11000 11500 12000

2.4

2.5

2.6

2.7

2.8

2.9

3

3.1 −0.01

−0.008

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

0.008

0.01

c) Distance (m)
T

im
e 

(s
)

 

 

7000 7500 8000 8500 9000 9500 10000 10500 11000 11500 12000

2.4

2.5

2.6

2.7

2.8

2.9

3

3.1 −5

−4

−3

−2

−1

0

1

2

3

4

5
x 10

−3

FIG. 6. Zoomed in EAGE/SEG salt shot gathers: a) shot gather of baseline survey, b) shot gather
of monitor survey and c) difference of models a) and b).

Figure 6 shows zoomed in models, focusing on the area around inserted box. Observing
closely Figure 6(c), it is hard to determine the location of the box.

Conventional Difference

Shot gathers are migrated employing a MATLAB function from the CREWES toolbox,
ss_salt_psdm_diff_script. This function is based on Split step Fourier migration (Stoffa
et al., 1990) and implemented by CREWES.
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FIG. 7. EAGE/SEG salt shot gathers migrated: a) migrated baseline shot gather, b) migrated
monitor shot gather and c) difference of a) and b).
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Figure 7 shows baseline survey migrated, monitor survey migrated and difference of
the two.
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FIG. 8. Zoomed in EAGE/SEG salt shot gathers migrated: a) migrated baseline shot gather, b)
migrated monitor shot gather and c) difference of a) and b).

Figure 8 is a zoomed in version of Figure 7 around the area of interest. It is very difficult
to determine the location of the box if there were no cross arrows.
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FIG. 9. EAGE/SEG conventional difference models: a) conventional difference of migarated base-
line and monitor surveys and b) conventional difference of baseline and monitor shot gathers mi-
grated.

Figure 9(a) captures the difference of migrated baseline and monitor surveys. Figure
9(b) captures migration of difference of baseline and monitor surveys.

CREWES Research Report — Volume 23 (2011) 19



Vracar and Ferguson

a) Distnace (m)

D
ep

th
 (

m
)

 

 

7000 7500 8000 8500 9000 9500 10000 10500 11000 11500 12000

2400

2500

2600

2700

2800

2900

3000

3100

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x 10
−3

b) Distance (m)

D
ep

th
 (

m
)

 

 

7000 7500 8000 8500 9000 9500 10000 10500 11000 11500 12000

2400

2500

2600

2700

2800

2900

3000

3100

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x 10
−3

FIG. 10. Zoomed in EAGE/SEG conventional difference models: a) conventional difference of
migarated baseline and monitor surveys and b) conventional difference of baseline and monitor
shot gathers migrated.

Figure 10 captures zoomed in models of Figure 9. There is no significant difference,
apart from machine precision, as expected.

CCD

The baseline and monitor survey shot gathers are taken and filtered employing cross-
correlation method. The filtered data is migrated using split step Fourier migration by the
user.
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FIG. 11. Cross-correlation differencing result.

Figure 11 captures the result of CCD and PSDM.
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FIG. 12. Cross-correlation differencing result.

Figure 12 is the zoomed in Figure 11. Although the yellow cross-arrows point to the
location of inserted box, its location is clear to spot without them. The algorithm achieves
considerable improvement when compared to conventional differencing.

PCCD

The baseline and monitor survey shot gathers are filtered employing pseudo cross-
correlation method. Then, the user migrates output data invoking split step Fourier migra-
tion.
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FIG. 13. Pseudo cross-correlation differencing result.

Figure 13 captures the result of PCCD and PSDM.
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FIG. 14. Zoomed in pseudo cross-correlation differencing result.

Figure 14 is the zoomed in Figure 13. PCCD is also considerable improvement to result
from conventional differencing. The location of the box andits resolution are better when
compared to the CCD result.

CICD

CICD is implemented as a pilot algorithm to combine PSDM and CD, which would
otherwise involve user to execute each step.
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FIG. 15. Conventional imaging condition differencing result.

Figure 15 captures the result of CICD.

22 CREWES Research Report — Volume 23 (2011)



Time-lapse differencing

a) Distance (m)

D
ep

th
 (

m
)

 

 

7000 7500 8000 8500 9000 9500 10000 10500 11000 11500 12000

2400

2500

2600

2700

2800

2900

3000

3100 −0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

FIG. 16. Zoomed in conventional imaging condition differencing result.

Figure 16 is the zoomed in Figure 15. CICD shows no improvements when compared
to conventional differencing and migration result as expected. It proves the workflow for
combining PCCD and PSDM possible.

ICD

ICD is implemented as an algorithm to combine PSDM in PCCD.
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FIG. 17. Imaging condition differencing result.

Figure 17 captures the result of ICD.
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FIG. 18. Zoomed in imaging condition differencing result.

Figure 18 is the zoomed in Figure 17. The result shows improvements to the PCCD
and the PSDM method as it eliminates dependence on the user toexecute each step. The
ICD result captures the box location and cleans data around the box when compared to the
PCCD and the PSDM method.

EXAMPLE II

Velocity models and Synthetics

The second data set used to test the CCD and PCCD filtering is the10th SPE Compar-
ative solution project. Here, I only employ filtering, thereis no migration. Recall velocity
and synthetic seismic models generated from Gassmann equations and finite difference al-
gorithm in elastic medium presented in Vracar and Ferguson (2010) paper. Velocity models
are shown in Vracar and Ferguson (2010) paper. Seismic synthetic models are shown in
Milicevic and Ferguson (2009) paper.

CCD

Seismic synthetic models are passed to the CCD algorithm.
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FIG. 19. CCD results on 3C-3D shot gather models: a) x-component conventional differencing of
day 1 and 14, b) x-component CCD filtering of day 1 and 14, c) y-component conventional differ-
encing of day 1 and 14, d) y-component CCD filtering of day 1 and 14, e) z-component conventional
differencing of day 1 and 14, f) z-component CCD filtering of day 1 and 14. The yellow and magenta
arrows denote waterfronts and numerical artifacts, respectively.
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FIG. 20. CCD results on 3C-3D shot gather models: a) x-component conventional differencing of
day 1 and 28, b) x-component CCD filtering of day 1 and 28, c) y-component conventional differ-
encing of day 1 and 28, d) y-component CCD filtering of day 1 and 28, e) z-component conventional
differencing of day 1 and 28, f) z-component CCD filtering of day 1 and 28. The yellow and magenta
arrows denote waterfronts and numerical artifacts, respectively.

Figure 19 captures day 1 and day 14 differenced models. Models 19(a), 19(c) and
19(e) capture the CCD filtering of days 1 and 14 of x, y and z components, respectively.
Models 19(b), 19(d) and 19(f) capture the CCD filtering of days 1 and 14 of x, y and
z components, respectively. The yellow arrows point to the location of waterfronts after
days 1 and 14. Figure 20 captures day 1 and day 28 differenced models. Models 20(a),
20(c) and 20(e) capture the CCD filtering of days 1 and 28 of x, yand z components,
respectively. Models 20(b), 20(d) and 20(f) capture the CCDfiltering of days 1 and 28 of
x, y and z components, respectively. The yellow arrows pointto the location of waterfronts
after days 1 and 28. The magenta arrows point to the numericalartifacts produced by the
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algorithm. When compared the CCD filtered data is much easierto interpret as it eliminates
amplitude ambiguities around events.

PCCD

The same data set is used for testing the PCCD algorithm.
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FIG. 21. PCCD results on 3C-3D shot gather models: a) x-component conventional differencing
of day 1 and 14, b) x-component PCCD filtering of day 1 and 14, c) y-component conventional
differencing of day 1 and 14, d) y-component PCCD filtering of day 1 and 14, e) z-component
conventional differencing of day 1 and 14, f) z-component PCCD filtering of day 1 and 14. The
yellow arrows denote waterfronts.
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FIG. 22. PCCD results on 3C-3D shot gather models: a) x-component conventional differencing
of day 1 and 28, b) x-component PCCD filtering of day 1 and 28, c) y-component conventional
differencing of day 1 and 28, d) y-component PCCD filtering of day 1 and 28, e) z-component
conventional differencing of day 1 and 28, f) z-component PCCD filtering of day 1 and 28. The
yellow arrows denote waterfronts.

Figure 21 captures day 1 and day 14 differenced models. Models 21(a), 21(c) and
21(e) capture the CCD filtering of days 1 and 14 of x, y and z components, respectively.
Models 21(b), 21(d) and 21(f) capture the CCD filtering of days 1 and 14 of x, y and
z components, respectively. The yellow arrows point to the location of waterfronts after
days 1 and 14. Figure 22 captures day 1 and day 28 differenced models. Models 22(a),
22(c) and 22(e) capture the CCD filtering of days 1 and 28 of x, yand z components,
respectively. Models 22(b), 22(d) and 22(f) capture the CCDfiltering of days 1 and 28 of
x, y and z components, respectively. The yellow arrows pointto the location of waterfronts
after days 1 and 28. Note that numerical artifacts do not showon these plots. When
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compared the PCCD filtered data is much easier to interpret asit eliminates amplitude
ambiguities around events. When CCD and PCCD are compared, PCCD shows favorable
due to imaging no numerical artifacts and it is computationally economic.

FUTURE WORK

As in examples there are some numerical artifacts on seismicmodels, hence algorithm
optimization should be attempted. Computation time of CCD non-conventional algorithm
still has potential for improvement. CCD employs matrix inversion, therefore, if its com-
putation cost improves it will optimize the algorithm. Gaussian filter is used to eliminate
zero-lag. It is worth considering other filtering methods toimprove resolution.

CONCLUSIONS

We implement four seismic differencing methods: 1) cross-correlation differencing
(CCD), 2) pseudo cross-correlation differencing (PCCD), 3) conventional imaging condi-
tion differencing (CICD) and 4) imaging condition differencing (ICD).
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FIG. 23. Summary of differencing methods: a) CD, b) CCD, c) PCCD, d) CICD and e) ICD.
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FIG. 24. Comparison of 3C-3D shot gather models z-component: a) CD, b) CCD and c) PCCD.
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Figure 23 captures conventional differencing and four new seismic differencing algo-
rithms for EGAE/SEG salt data. Figure 24 captures conventional differencing and four
new seismic differencing algorithms for generated synthetic data. The CCD and PCCD al-
gorithms are performed in time and frequency domains, respectively. They both depend on
the user to execute each step. They are further followed by multiplication by conventional
differencing and pre-stack depth migration (PSDM). The CCDand PCCD are considerable
improvements to conventional differencing as they clearlyshow box location. CICD is a
pilot algorithm to combine PSDM with PCCD. It proves to be efficient and robust when
compared to conventional differencing, however, no imaging improvements are noted. The
ICD method combines PCCD, differencing and migration in onealgorithm, hence mini-
mizes user’s dependence and improves computational time and imaging. In Figures 23 and
24, CCD, PCCD and ICD highlight differences in time-lapse steps eliminating similarities
by cross-correlation, filtering and inversion. Also, significant imaging improvements are
noted, hence interpretation becomes easier.
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