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ABSTRACT

Conventional seismic differencing in time-lapse studies/ps to capture large errors
in seismic amplitude and smaller errors in seismic phasmutfir numerical experiments.
Keeping this observation in mind we implement four non-@ntional seismic differenc-
ing algorithms: 1) Cross-correlation differencing (CCR),Pseudo cross-correlation dif-
ferencing (PCCD), 3) Conventional imaging condition diffiecing (CICD) and 4) Imag-
ing condition differencing (ICD). The CCD algorithm usesss-correlation and Gaussian
function to create filtering operator that is further muleg by conventional difference
and later migrated. The algorithm proves to be computallipoastly as it is performed
in the time domain. Hence the same concept is implementeldeirirequency domain,
named PCCD algorithm. The PCCD algorithm improves computat time and resolu-
tion significantly. As both, CCD and PCCD algorithms are aej@nt on user to move
from filtering operator creation to non-conventional diffiecing to migration, we develop
CICD algorithm as a pilot algorithm to ICD. CICD is based oa fire-stack depth migra-
tion and conventional differencing. It performs wavefieldrapolation and conventional
differencing at the imaging condition. As CICD algorithnopes to be robust, we develop
ICD algorithm that is based on pre-stack depth migrationrasmdtconventional differenc-
ing, namely PCCD filtering operator. ICD algorithm fully miinates dependence on the
user, improves resolution and computational cost. Thasedigorithms are tested on two
data sets and prove to be a valuable alternative tool in sedifferencing and time-lapse
studies.

INTRODUCTION

Conventional seismic differencing relies on a number ofiagsions that may not al-
ways represent reality. Systematic error, error assatiaiéh the use of conventional
(imperfect) imaging algorithms, and error due to sour@&irer coupling variations are
assumed to be small relative to the seismic response of flamgport. Source / receiver
positioning must be the same between surveys in time-lapke.result is that conven-
tional differencing involves simple match filtering folled by subtraction where the in-
terpretable product is an image of the change in fluid locasigperimposed upon some
background noise level. In reality, errors are often vergda

We observe that though errors might be large, and with thepian of source / re-
ceiver location repeatability, coupling variation andtsys errors result in differences in
seismic amplitude and not necessarily seismic phase sarngahethodology beyond sim-
ple match-filtering and differencing might incorporatestbbservation.

In order to implement this concept cross-correlation is lewgxl. Cross-correlation
groups similarities and dissimilarities around zero lag afsewhere, respectively. The
cross-correlation models can be further used in filterindedé, where in this case similari-
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ties are eliminated. Now, seismic difference models wgkhtight primarily dissimilarities,
that is major reservoir property changes of two time-lapepss hence, significantly clean
ambiguity.

THEORY

The cross-correlation imaging condition of seismic depthration essentially uses a
model of the source wavefield to identify reflection amplésan an input data set. This
identification occurs most simply through cross-correlatiand this is a process that relies
on good phase fidelity in both the model and the data; reflecioplitude in the data
whose corresponding phase matches that of source ampistatgpped to zero lag. Data
at zero lag are then mapped to the image space and, when ttosesfor all depth grid
levels, the migrated seismic image is produced.

Central to the imaging condition, then, is that reflectiotadare identified, captured,
and used in the image, while all non matching data are disdarbh application to time-
lapse analysis, the imaging idea seems well suited as ih&tse to phase, and phase is
recorded most reliably in the seismic method. Rather thaemead model a reflection, and
then look for a similar reflection shape in the data, it seezasaonable to use a reference
data set (with all reflections, multiples, and so on) - the glete seismic wavefield instead
of a model. Used instead of a source model in the imaging tondihe reference wave-
field will act to find all similar energy in the monitor surveggthen map that energy to
zero lag. Any differences, i.e. variation due to fluid flowmdiscarded. A simple modifica-
tion to this approach causes all similar events to be digchathd the difference - the fluid
flow - is captured and imaged.

In this section conventional differencing is reviewed amarfnew differencing methods
based on ideas from seismic imaging are outlined. These are:

1. cross-correlation differencing (CCD),
2. pseudo cross-correlation differencing (PCCD),
3. conventional imaging condition differencing (CICD) and

4. imaging condition differencing (ICD).

The CCD is a method implemented in time domain. It calculttescross-correlation of

two time-lapse steps, that is further multiplied by a Gaasdilter to notch out data at
zero lag in cross-correlation. The result is further transied to time domain and multi-
plied by the conventional difference. As the algorithm isnpmtationally costly the same
method is implemented in frequency domain. We name croggiation in frequency

domain pseudo cross-correlation and implement the PCCEakés the pseudo cross-
correlation of two time-lapse steps. Then, Gaussian fitareated and convolved with
pseudo cross-correlation result to notch out data at zgrio faequency domain. The result
is further inverse Fourier transformed and multiplied bg tonventional difference. As
both algorithms are dependent on the user to move from fileyperator creation to non-
conventional differencing to migration, we develop CICDaithm as a pilot algorithm to
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ICD. CICD is based on the pre-stack depth migration and attitweal differencing. It per-

forms wavefield extrapolation and conventional differegcat the imaging condition. As
CICD proves to be robust, we develop ICD that is also based@stgack depth migration
but performs non-conventional differencing (PCCD) at imgg-ondition. ICD algorithm

fully eliminates dependence on the user, improves resm@nd computational cost.

Conventional Differencing

We define baseline and monitor surveys to image original dathdata after time
passed, respectively. Conventional differencing is olgéiemploying conventional matrix
subtraction (Vracar and Ferguson, 2010) as:

D =M - B, 1)

where B and M define baseline and monitor surveys, respéctiBaseline and monitor
surveys are recorded in time.

Step |: Step 11: Step 11: Step 1V:
Velocity | —| Seismic |—| Differencing |—| Migration
Models Models Models Models

Table 1. Conventional differencing workflow. The workflow consists of four steps: velocity models
are used to generate synthetic seismic models. Synthetics are then differenced and migrated to
produce conventional difference models.

In table 1 steps to obtain conventional difference modedgaesented. First, velocity
models are taken to generate synthetic seismic models. dnavrand Ferguson (2010)
paper we describe forward modelling flows and follow simiteodelling here. Then, syn-
thetics are differenced and migrated employing pre-stagkhdmigration to obtain con-
ventional difference models. Conventional differenceiset models are ambiguous and
hard to interpret for differences only, hence, we intendléac imaging by filtering and
eliminating similarities of two time-lapse steps (Vracadderguson, 2010).

Cross-correlation differencing in the time domain (CCD)

Cross-correlation differencing (CCD) is implemented e=hyi in the time domain and
as such, it is the most natural of the methods that we willgareto those familiar with
conventional differencing.
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Step 1
Step |: Step 11: Cross- Step 1V: Step V-
Velocity |—| Seismic |—| Correlation |—| Differencing |—| Migration
Models Models Filtering Models Models
Models

Table 2. CCD workflow. This workflow is similar to workflow 1 with the additional step of cross-
correlation filtering. This step is to locate and eliminate similarities to highlight dissimilarities.

The workflow 2 is similar to workflow 1, but it employs an addiial step of cross-
correlation filtering.
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Step |: CALCULATION OF CROSS-CORRELATION MATRIX

calculate the cross-correlation matrix of baseline anditopbaurveys

!
Step |1: CALCULATION OF CROSS-CORRELATION

multiply cross-correlation matrix by monitor survey

!
Step I11: GAUSSIAN FILTER

create Gaussian filter

!
Step |V: CROSS-CORRELATION FILTERING

multiply cross-correlation of baseline and monitor sus/by Gaussian filter,

!
Step V: INVERSION OF CROSS-CORRELATION MATRIX

build an inverse matrix of cross-correlation matrjx

!
Step VI: FILTERING BY INVERSE CROSS-CORRELATION MATRIX

multiply Gaussian filtered cross-correlation matrix
by inverse matrix of cross-correlation matrix

!
Step VII: CONVENTIONAL DIFFERENCE FILTERING

multiply conventional difference of monitor and baselinethe result of step VI

Table 3. CCD in the time domain. In Step we to VII outline actions executed in order to filter
conventional difference employing cross-correlation, Gaussian filter and matrix inversion.

In Step | (Table 3), the cross-correlation matrix is builtto€s-correlation is closely
related to convolution (Margrave, 2008): where in convolubf two signals we reverses
one, shift, multiply, add, and repeat, in cross-corretatieither signal is reversed and the
process is otherwise the same (Margrave, 2008). Since kdinrmand cross-correlation
share similar characteristics we refer to convolution tihemd modify it to accommodate
for cross-correlation operations.

Let’s step back and firstly look at the definition of convoduti(Lines and Newrick,
2008):

p(t) = a(t) o h(1), 2
wheree stands for the convolution operation amd), a(t) andh(t) denote convolution of
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two signals, signal one and signal two, respectively. Inhaatatical terms, convolution is
an operation on two functions(t) andh(t), producing the third functiory(¢), that can
be described as manipulated version of one of the origimadtians. Convolution honors
commutativity, associativity and distributivity (Margr, 2008). In geophysical terms,
convolution is an operation acting on two signals, such ¢tm&t is viewed as the filter to
the other. In practice, convolution models filtering of ssisenergy by various rock layers
in the Earth (Schlumberger, 2011).

Now, the convolution stated by equation (2) can be furthemgred mathematically
through a definition of convolutional integral (Margrave98):

oo - [ " alt - )h(r)dr, @3)

[e.e]

wherep(t), a(t — 7) and h(7) denote filtered output, filter impulse response and input
signal, respectively. Equation (3) can be rewritten in ®ohmatrix operations according
to

p=Ah (4)

(Margrave, 1998), wherd is a convolution matrix angh andh are column vectors. If
expanded equation (4) yields (Margrave, 1998):

g a—1 Qa_9

Po . ho
p1 ay aQy a—1 hy

= ) 5
P2 : : he ®)

7)) aq Qo .
b3 hs
: Doaz ay  ap :

Equation (5) highlights matriXd to have constant entries at each descending diagonal from
left to right. In mathematical terms, this matrix is knownlagplitz matrix, named by Otto
Toeplitz, a German mathematician working on functionalysia (Bini, 1995). Common
applications of Toeplitz matrices include the numericdlison of some differential and
integral equations, the computation of splines, time saielysis, Markov chains, signal
and image processing (Bini, 1995). In geophysical termis,rtfatrix structure is known

as the convolution matrix (Inannen, 2010). It is created dyyypating each row by a filter
with zero time shifted to the diagonal. Since convolutiobiigfly reviewed, we look at
cross-correlation.

Let's consider the definition of the cross-correlation @srand Newrick, 2008):
z(t) = m(t) @ b(t), (6)

where @ stands for cross-correlation operation ard), m(¢) and b(¢) denote cross-
correlation of two signals, signal one and signal two, respely. Recall the basic def-
inition of cross-correlation to be a measure of similarityveo waveforms.
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Its definition in equation (6) can be expressed as the crogsiation integral given by:

x(t) = /OO a(t + 7)b(7)dr, (7)

— 00

wherez(t), a(t+7), b(7) denote filtered output, reverse filter impulse responserapdlse
signal, respectively. Cross-correlation in equation &) now be related to convolution in
equation (3) by time reversing filter impulse and populatimrices as:

x = Ab, (8)

that is

a_9 a_1 Qg

Lo bo
Ty a-1 ay aip . by
= , 9)
i) . : b2
. Qo ay Ao .
T3 bs

a1 az as

wherex andb denote column vectors amtl denotes the cross-correlation matrix. Gener-
ation of matrixA is the goal of Step | in the CCD approach (Table 3).

In Step Il the cross-correlation matrix is multiplied by thenitor survey to calcu-
late the cross-correlation of baseline and monitor survéifge above statement can be
described in mathematical terms through matrix opera@sns

Xeorr = A m, (10)

whereA andm are the cross-correlation matrix for one baseline trace,tmte from the
monitor survey.

Equation (10) groups all similarities around zero lag ahdiakimilarities elsewhere.

In Step 1, a Gaussian filter is created. We employ the timmaio Gaussian function
defined as (Margrave, 2008):

g(t) = e ", (11)
whereg(t), « andt denote Gaussian filter, Gaussian width and time, respéctive

In Step IV the cross-correlation matrix in time is scalar timlied by the Gaussian filter
defined in equation (11) as
f= g © Xecorrs (12)

where® indicates scalar multiplication between the elements otors. Equation (12)
deletes zero lag, hence leaves only dissimilarities ofwlesurveys.
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Now, that the data is cross-correlated and filtered, thesecosrelation matrixA is
employed to provide inverse cross-correlation operator!, as Step V. This step is to
reverse the cross-correlation operation.

In Step VI filtered cross-correlation is then multiplied netinverse cross-correlation
matrix:

r=A10of (13)

In Step VII we multiply the conventional difference by fileet data:
d* = r[m — b]. (14)
Now all differences are highlighted and almost all simtias are eliminated.
As a single analytic process, CCD is
d*=A"gO[A m®[m-bl]]. (15)

Note, though much of the computational effort in CCD is rietgd to scalar multiplication,
convolution and then de-convolution Byand A ~! can be quite expensive.

Computational cost of CCD

Let's analyze the computational cost of CCD. We assume tlelib@ and monitor
surveys to bel/ x N matrices.

operation cost

build cross-correlation matrix O(MN)
multiplication O(M?*N?)
build Gaussian filter O(MN)
build cross-correlation operator ~ O(M3N3)
multiplication O(MN)
migration O(MNlog(MN))

Table 4. Computational cost of the CCD workflow in the time domain. It takes O(M°N® + 3M N +
MNlog(M N)) operations to complete the workflow. The process is successful, but costly.

Its computational cost is outlined in Table 4 (Knuth, 199Were” O” defines number
of operations. Although, the algorithm is successful, it@nputationally costly as it
takesO(M°N® + 3MN + M Nlog(MN)) operations to complete. The most expensive
operation seems to be the creation of the inverse croselabon operator. This is a step
is considered for optimization to reduce cost. We look irggedoping the same workflow
in the frequency domain.

Pseudo cross-correlation differencing in the frequency domain (PCCD)

Due to a large computational cost in the time domain the #lguaris adapted to work in
the frequency domain. We expect to save computational odstquency domain because
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the matrix inversion will be substituted by the Fourier sEommation. The algorithm is
named Pseudo cross-correlation differencing (PCCD).

Step 1
Step I: Step I1: Pseudo Step 1V Step V:
. I Cross- , . . .
Velocity |—| Seismic | — Correlation | Differencing | —| Migration
Models Models L Models Models
Filtering
Models

Table 5. PCCD workflow. This workflow is similar to workflow 3, however, the additional step that
takes place is pseudo cross-correlation filtering. This step is to locate and eliminate similarities to

highlight dissimilarities.

Table 5 is similar to Table 1, however, cross-correlatioterfiihg is computed in the

frequency domain.
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Step |: DATA TRANSFORMATION

transform of baseline and monitor surveys from time to tegdiency domain

!
Step |1: PSEUDO CROSS-CORRELATION

calculate the pseudo cross-correlation of baseline andtar@urveys

!
Step 111: GAUSSIAN FILTERING

create Gaussian filter in the frequency domain

!
Step 1V: CONVOLUTION

convolution of pseudo cross-correlation of
baseline and monitor surveys with Gaussian filter

!
Step V: INVERSION OF PSEUDO CROSS-CORRELATION

inversion of pseudo cross-correlatign

!
Step VI: INVERSE FOURIER TRANSFORMATION

inverse Fourier transform the result of step|V

!
Step VII: CONVENTIONAL DIFFERENCE FILTERING

multiply conventional difference of monitor and baselingthe result of step VII

Table 6. PCCD in the frequency domain. Step | to VII outline actions executed in order to filter
conventional difference employing pseudo cross-correlation, Gaussian filtering and pseudo cross-
correlation inversion.

Table 6 summarizes the PCCD algorithm. In Step I, the basslinveyb(¢) and moni-
tor surveym(t) are Fourier transformed to the frequency domain according t

Bw) = % /_ T b(e . (16)
M(w) = % /_ T (et (17)

where B(t), M (t) andw denote baseline and monitor surveys and frequency in the fre
quency domain, respectivelyg(¢) and M (t) are further decomposed into their phase and
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amplitude components according to
B(w) = Ay(w)e' ™), (18)

M(w) = Ap(w)e @), (19)

where A, (w), A,,(w), are the amplitude spectra of the baseline and monitor gsimes
spectively, and,(w) and¢,,(w) are the phase spectra.

In Step Il, B(t) and M (t) are cross-correlated according to
P = Ay (w)el@m@)=0s), (20)

Note that the amplitude spectrum of baseline survey is enhiih equation (20)as our

approach to differencing, in this case deletion of all datd &ire similar between baseline
and monitor, requires only phase information from both speand amplitude information

only from the monitor spectrum.

In Step Il the Gaussian filter in the frequency domain is teéas:

Gluw) = \/ga—w (21)

whereG(w) anda denote Gaussian filter in the frequency domain and Gaussidth,w
respectively. In Step IV pseudo cross-correlation is cbueawith Gaussian filter such as:

S(w) = /_OO G(w*)Pee(w — w*)dw*. (22)

[e.e]

wherew* denote a dummy frequency variable. In Step V pseudo crasstation inverse
operator (PCCIO) is computed from the following equation:

R(w) = e S (w). (23)

In order to compute PCCIO we only use the definition of the phafsthe monitor
survey to restore the phase of filtered data. This is becaeg@iase spectrum only depends
on seismic traveltime, and such provides confidence in teslihe amplitude spectrum,
not used in this calculation, can be ambiguous. Any vanmatia shot coupling, geophone
coupling or shot strength seem to reflect most strongly irathelitude rather than in the
phase spectrum. Seismic noise sources along with modelag&in and imaging errors
appear to distort amplitudes much more than phases.
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FIG. 1. Two guitars manufactured by different companies are presented: Gibson Explorer at the
top and Fender Jazzmaster at the bottom.

Two guitars are presented in Figure 1: Gibson Explorer gaitahe top and Fender
Jazzmaster guitar at the bottom. They are manufacturedfteyetit companies and will
serve for the experiment. First, employing MATLAB functeamplitude and phase spec-
tra are extracted to yield:

B(w) = Ay (w)e'®™), (24)

M (w) = Ag(w)e'®™), (25)

where A;, A,, ¢, and ¢, stand for amplitude spectrum of Gibson Explorer, amplitude
spectrum of Fender Jazzmaster, phase spectrum of Gibsdor&xand phase spectrum of
Fender Jazzmaster, respectively. Now, a third image igenteamploying the amplitude
spectrum of Fender and the phase spectrum of Gibson as:

B(w) = Ay(w)e'*™), (26)

$2399 |

L L I L L L
200 400 600 800 1000 1200

FIG. 2. Restored image using amplitude spectrum of Fender Jazzmaster image and the phase
spectrum of Gibson Explorer image.

The resulting image in Figure 2 resembles much like the Gipand the effect of the
Fender amplitude shows as blurring of the image. This erpanrt proves that amplitude
spectrum is less reliable when compared to phase spectremsgelproves the choice of
using just monitor survey’s phase spectrum in computing IPCSLifficient in Step V.
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In Step VI the computed result in equation (23) is inverserfeouransformed from
frequency to time domain:

r(t*) = /OO R(w)e™" dw. (27)

— 00

In Step VII the computed result multiplies the conventiatiéference as:

d*“=r®[m-Db]. (28)

Computational Cost of PCCD

Let's analyze the computational cost of PCCD. We assume dkeline and monitor
surveys to bel/ x N matrices.

operation cost

fast Fourier transform (FFT) X 2 O(2M Nlog(MN))
pseudo cross-correlation O(M?*N?)
build Gaussian filter O(MN)
convolution O(MNlogMN)
build inverse pseudo cross-correlation operator O(MN)
inverse fast Fourier transform (IFFT) O(MNlogMN)
migration O(MNlog(MN))

Table 7. Computational cost of the PCCD workflow in the frequency domain. It takes O(M2N? +
2M N + 5M NlogM N) operations to complete the workflow. The process is successful and much
cheaper if executed in the frequency domain.

PCCD’s computational cost is outlined in Table 4 (Knuth, 299rhe most expensive
calculation is convolution witlD (172 N?) operations, and the least expensive calculation
is fast forward/inverse Fourier transformation with V log,, V) operations. PCCD algo-
rithm is successful and computationally much cheaper, @@D algorithm:

O(M?*N? +2MN +5MNlogMN) << O(M°N® +3MN + MNlog(MN)). (29)
Simplifying equation 29 to:
O(4MNlogM N) << O(M*N* + MN) (30)

significant decrease in computational cost from CCD to PC&ibted.

Conventional imaging condition difference (Cl1CD)

The workflow 1 summarizes steps taking place sequentialiieunser’s supervision.
In order to improve its computational efficiency and elimendependance on the user
to move from step to step, pre-stack depth migration algori(lPSDM) implemented by
CREWES is modified. The migration algorithm of choice is thitStep Fourier (SSF)
migration (Stoffa et al., 1990) as it is computationally@ént.
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As a pilot experiment to implement PCCD with migration aigon, PSDM is manip-
ulated to take two time-lapse steps and calculate theireational difference.

RECURSIVE CICD ALGORITHM

Step 11
Step_l. Step ”.‘ Differencing and
Velocity |—| Seismic |— ) )
Migration
Models Models
(at every depth level)

Table 8. Recursive conventional difference imaging condition algorithm. The workflow starts with
velocity and seismic models, then at every depth level performs conventional differencing until it
reaches the maximum depth level.

Table 8 illustrates the general steps taking place withfdBCalgorithm. The workflow
begins with velocity and seismic models. It performs cotieral differencing at every
depth level until it reaches the maximum depth level.

RECURSIVE ALGORITHM
Step |: DATA TRANSFORMATION

transformation of baseline and monitor surveys from spag¢e-t £z domain

!
Step |1: DATA EXTRAPOLATION

wavefield extrapolation of baseline and monitor surveyvatyedepth step

!
Step |11: CONVENTIONAL DIFFERENCING

CD method at every depth step

Table 9. Imaging condition differencing at every depth step. Step | to VII outline actions executed
in order to filter conventional difference employing pseudo cross-correlation, Gaussian filter and
pseudo cross-correlation inversion.

Table 9 describes steps taken in modifying pre-stack depmihation algorithm to pro-
duce conventional difference of two time-lapse steps. ép $tbaseline and monitor sur-
veys are transformed from space ftd:x domain. PSDM is implemented to execute one
depth level at the time starting at the surface and endingaatmum depth level. In step
I, the isotropic split step extrapolation of baseline anohitor surveys at every depth step
occurs. Now, the conventional difference is embedded betfoe depth level increases.
The process recursively repeats until it reaches maximysthdd he output is, therefore,
conventional difference of two time-lapse steps.
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Computational Cost of CICD

Let's analyze the computational cost of CICD. We assume #seline and monitor
surveys to benxn matrices.

operation| cost
PSDM | O(MNlog(MN))
CD O(MN)

Table 10. Computational cost of the PCCD workflow in the frequency domain. It takes
O(MN + MNNlog(MN)) operations to complete the workflow. The process is successful and
much cheaper if executed in the frequency domain.

Table 10 is a summary of computational cost for CICD. It takessame number of op-
erations as execution of the conventional differencing migtation, however, eliminates
user dependance.

Imaging condition differencing (ICD)

Having successfully tested manipulation of PSDM for CD midg the CICD algo-
rithm, we proceed to accommodate PSDM for PCCD.

RECURSIVE ICD ALGORITHM

Step 1

Step I: Step I1: Filtering,
Velocity | —| Seismic | — Differencing and

Models Models Migration
(at every depth level)

Table 11. Recursive imaging condition differencing algorithm. The workflow starts with velocity and
seismic models, then at every depth step performs PCCD algorithm until it reaches the maximum
depth level.

Table 11 outlines steps taking place in the Imaging comtliiéferencing (ICD) algo-
rithm. It is similar to workflow in Table 8, however, it perfos PCCD as oppose to CD
algorithm at every depth level.
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RECURSIVE ALGORITHM
Step |: DATA TRANSFORMATION

transformation of baseline and monitor surveys from spageix domain

!
Step |1: DATA EXTRAPOLATION

wavefield extrapolation of baseline and monitor surveysetyedepth step

!
Step I11: DATA FILTERING AND DIFFERENCING

PCCD method at every depth step

Table 12. Imaging condition differencing algorithm. Pre-stack depth migration algorithm is modified
to migrate, filter and difference two time-lapse steps at every depth level producing only difference
of two time-lapse steps.

Table 12 outlines the recursive ICD algorithm. In step | théads transformed from
space tof-kx domain. Now, a series of operations take place at one depth Earting
at the surface. In step Il the isotropic split step extrajotatakes place at one depth
level of baseline and monitor surveys. In step Il the PCCfpathm takes place at the
same depth level. Then, the depth level increases and ticeggoepeats until it reaches
maximum depth level.

Computational Cost of ICD
Let’s analyze the computational cost of ICD.

operation| cost
PSDM O(MNlog(MN))
PCCD O(M2N2+2MN+5MNlogMN)
Table 13. Computational cost of the PCCD workflow in the frequency domain. It takes O(M?N? +

2MN + 6M NlogM N) operations to complete the workflow. The process is successful and much
cheaper if executed in the frequency domain.

Table 13 shows the computational cost of ICD algorithm. Tigerithm is optimal and
user independent.

EXAMPLE |
Velocity models and Synthetics

The data set used is the EAGE/SEG salt velocity model (Andekeaet al., 1996).
The model consists of complex salt structures with larg@aigl contrasts across the
salt/sediment interface (Aminzadeh et al., 1996). This vgetl known pre-stack depth
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migration (PSDM) free testing data set publicly availalbience convenient to use in this
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FIG. 3. EAGE/SEG salt velocity models: a) original model, b) author manipulated original model
by inserting small box in the sub-salt region to accomodate time-laspe analysis and c) conventional
difference of a) and b) models.

In Figure 3 velocity models are captured. Figure 3(a) shogimmal EAGE/SEG model.
Figure 3(b) shows manipulated model. To accommodate tapsd study and analysis the
author inserts a small reflector in the sub-salt region oBAGE/SEG salt velocity model
and assumes it to mimic changes due to production. The badxdsrstant velocity and
it location is indicated by the yellow cross arrow. | denotigimal model baseline survey
and manipulated model monitor survey. Assume that basafidenonitor survey are two
time-lapse steps. Figure 3(c) shows conventional difiegeat Figures 3(a) and 3(b).
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FIG. 4. EAGE/SEG salt zoomed in velocity models: a) baseline survey, b) monitor survey and c)
conventional difference of a) and b) models.

Figure 4 is a zoomed in version of Figure 3. It focuses on teerted reflector, that is
baseline to monitor surveys small change in the data is caghtu

Now, taking velocity models synthetics are created emplyif d_shotrec, MATLAB
CREWES toolbox function created by Dr Gary Margrave.
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FIG. 5. EAGE/SEG salt shot gathers: a) shot gather of baseline survey, b) shot gather of monitor
surveyl and c) difference of models a) and b).

Figure 5 shows shot gather of baseline survey, shot gatheitonsurvey and differ-
ence of the two gathers.

0.008

a) . T b) o Distance (m) m C)

Distance (m)

FIG. 6. Zoomed in EAGE/SEG salt shot gathers: a) shot gather of baseline survey, b) shot gather
of monitor survey and c) difference of models a) and b).

Figure 6 shows zoomed in models, focusing on the area arogsedéed box. Observing
closely Figure 6(c), it is hard to determine the locationha box.

Conventional Difference

Shot gathers are migrated employing a MATLAB function frdra CREWES toolbox,
ss_salt_psdm_dif f_script. This function is based on Split step Fourier migration ffato
et al., 1990) and implemented by CREWES.

Depth (m)
Depth (m)

Distnace (m) Distance (m) Distnace (m)

b)

FIG. 7. EAGE/SEG salt shot gathers migrated: a) migrated baseline shot gather, b) migrated
monitor shot gather and c) difference of a) and b).
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Figure 7 shows baseline survey migrated, monitor surveyateg and difference of
the two.

Depth (m)

500

Dist

au .
mmmmm

FIG. 8. Zoomed in EAGE/SEG salt shot gathers migrated: a) migrated baseline shot gather, b)
migrated monitor shot gather and c) difference of a) and b).

Figure 8is azoomed in version of Figure 7 around the areaefast. It is very difficult
to determine the location of the box if there were no crossvesr

Depth (m)
Depth (m)

4 DGDi)EStnace (lrn)ls 18 b) 02 0.4 DGDi)EStalnce (ll:n)ls 1.
FIG. 9. EAGE/SEG conventional difference models: a) conventional difference of migarated base-
line and monitor surveys and b) conventional difference of baseline and monitor shot gathers mi-

grated.

Figure 9(a) captures the difference of migrated baselimenaanitor surveys. Figure
9(b) captures migration of difference of baseline and nwrstrveys.
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FIG. 10. Zoomed in EAGE/SEG conventional difference models: a) conventional difference of

migarated baseline and monitor surveys and b) conventional difference of baseline and monitor
shot gathers migrated.

Figure 10 captures zoomed in models of Figure 9. There isgrifsiant difference,
apart from machine precision, as expected.

CCD

The baseline and monitor survey shot gathers are taken &erdilemploying cross-

correlation method. The filtered data is migrated using sp#p Fourier migration by the
user.

02 04 06 O 1 12 14 16 18

Distance (m)

FIG. 11. Cross-correlation differencing result.

Figure 11 captures the result of CCD and PSDM.
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FIG. 12. Cross-correlation differencing result.
Figure 12 is the zoomed in Figure 11. Although the yellow sragows point to the

location of inserted box, its location is clear to spot withthem. The algorithm achieves
considerable improvement when compared to conventioffateincing.

PCCD

The baseline and monitor survey shot gathers are filteredogimg pseudo cross-

correlation method. Then, the user migrates output dataing split step Fourier migra-
tion.

02 04 06

Distance (m)

FIG. 13. Pseudo cross-correlation differencing result.

Figure 13 captures the result of PCCD and PSDM.
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FIG. 14. Zoomed in pseudo cross-correlation differencing result.

Figure 14 is the zoomed in Figure 13. PCCD is also consideraiprovement to result

from conventional differencing. The location of the box atsdresolution are better when
compared to the CCD result.

CICD

CICD is implemented as a pilot algorithm to combine PSDM ami @hich would
otherwise involve user to execute each step.
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FIG. 15. Conventional imaging condition differencing result.

Figure 15 captures the result of CICD.
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FIG. 16. Zoomed in conventional imaging condition differencing result.

Figure 16 is the zoomed in Figure 15. CICD shows no improveswhen compared

to conventional differencing and migration result as expeclt proves the workflow for
combining PCCD and PSDM possible.

ICD

ICD is implemented as an algorithm to combine PSDM in PCCD.
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FIG. 17. Imaging condition differencing result.

Figure 17 captures the result of ICD.
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FIG. 18. Zoomed in imaging condition differencing result.

Figure 18 is the zoomed in Figure 17. The result shows impnaves to the PCCD
and the PSDM method as it eliminates dependence on the usgetate each step. The

ICD result captures the box location and cleans data ardwenddx when compared to the
PCCD and the PSDM method.

EXAMPLE I
Velocity models and Synthetics

The second data set used to test the CCD and PCCD filtering i9thSPE Compar-
ative solution project. Here, | only employ filtering, théseno migration. Recall velocity
and synthetic seismic models generated from Gassmann@ggsiand finite difference al-
gorithm in elastic medium presented in Vracar and FerguohQ) paper. Velocity models

are shown in Vracar and Ferguson (2010) paper. Seismiceayntinodels are shown in
Milicevic and Ferguson (2009) paper.

CCD

Seismic synthetic models are passed to the CCD algorithm.
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FIG. 19. CCD results on 3C-3D shot gather models: a) x-component conventional differencing of
day 1 and 14, b) x-component CCD filtering of day 1 and 14, c) y-component conventional differ-
encing of day 1 and 14, d) y-component CCD filtering of day 1 and 14, e) z-component conventional
differencing of day 1 and 14, f) z-component CCD filtering of day 1 and 14. The yellow and magenta
arrows denote waterfronts and numerical artifacts, respectively.
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FIG. 20. CCD results on 3C-3D shot gather models: a) x-component conventional differencing of
day 1 and 28, b) x-component CCD filtering of day 1 and 28, c) y-component conventional differ-
encing of day 1 and 28, d) y-component CCD filtering of day 1 and 28, e) z-component conventional
differencing of day 1 and 28, f) z-component CCD filtering of day 1 and 28. The yellow and magenta
arrows denote waterfronts and numerical artifacts, respectively.

Figure 19 captures day 1 and day 14 differenced models. Md#a), 19(c) and
19(e) capture the CCD filtering of days 1 and 14 of x, y and z comepts, respectively.
Models 19(b), 19(d) and 19(f) capture the CCD filtering of sldyand 14 of x, y and
Z components, respectively. The yellow arrows point to tdoation of waterfronts after
days 1 and 14. Figure 20 captures day 1 and day 28 difference@élsn Models 20(a),
20(c) and 20(e) capture the CCD filtering of days 1 and 28 of angt z components,
respectively. Models 20(b), 20(d) and 20(f) capture the Giiring of days 1 and 28 of
X, y and z components, respectively. The yellow arrows poittie location of waterfronts
after days 1 and 28. The magenta arrows point to the numenittcts produced by the
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algorithm. When compared the CCD filtered data is much etsieterpret as it eliminates
amplitude ambiguities around events.

PCCD

The same data set is used for testing the PCCD algorithm.
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FIG. 21. PCCD results on 3C-3D shot gather models: a) x-component conventional differencing
of day 1 and 14, b) x-component PCCD filtering of day 1 and 14, c) y-component conventional
differencing of day 1 and 14, d) y-component PCCD filtering of day 1 and 14, e) z-component

conventional differencing of day 1 and 14, f) z-component PCCD filtering of day 1 and 14. The
yellow arrows denote waterfronts.
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FIG. 22. PCCD results on 3C-3D shot gather models: a) x-component conventional differencing
of day 1 and 28, b) x-component PCCD filtering of day 1 and 28, ¢) y-component conventional
differencing of day 1 and 28, d) y-component PCCD filtering of day 1 and 28, e) z-component

conventional differencing of day 1 and 28, f) z-component PCCD filtering of day 1 and 28. The
yellow arrows denote waterfronts.

Figure 21 captures day 1 and day 14 differenced models. MdHRk), 21(c) and
21(e) capture the CCD filtering of days 1 and 14 of x, y and z camepts, respectively.
Models 21(b), 21(d) and 21(f) capture the CCD filtering of sldyand 14 of x, y and
Z components, respectively. The yellow arrows point to tdoation of waterfronts after
days 1 and 14. Figure 22 captures day 1 and day 28 difference@élsn Models 22(a),
22(c) and 22(e) capture the CCD filtering of days 1 and 28 of angt z components,
respectively. Models 22(b), 22(d) and 22(f) capture the Giiring of days 1 and 28 of
X, y and z components, respectively. The yellow arrows poittie location of waterfronts
after days 1 and 28. Note that numerical artifacts do not sbowhese plots. When
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compared the PCCD filtered data is much easier to interprétedsninates amplitude
ambiguities around events. When CCD and PCCD are compa@ZiDRhows favorable
due to imaging no numerical artifacts and it is computatilyreconomic.

FUTURE WORK

As in examples there are some numerical artifacts on seisidels, hence algorithm
optimization should be attempted. Computation time of C@D-nonventional algorithm
still has potential for improvement. CCD employs matrixarsion, therefore, if its com-
putation cost improves it will optimize the algorithm. Gaias filter is used to eliminate
zero-lag. Itis worth considering other filtering methodstgrove resolution.

CONCLUSIONS

We implement four seismic differencing methods: 1) crossetation differencing
(CCD), 2) pseudo cross-correlation differencing (PCCD)édhventional imaging condi-
tion differencing (CICD) and 4) imaging condition differ@ng (ICD).
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FIG. 23. Summary of differencing methods:

HTim_e (s)»
_Tim_e (s)_
HTim_e (s)»

istance (m) C)

by

FIG. 24. Comparison of 3C-3D shot gather models z-component: a) CD, b) CCD and c) PCCD.
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Figure 23 captures conventional differencing and four neisrsic differencing algo-
rithms for EGAE/SEG salt data. Figure 24 captures convaeatidifferencing and four
new seismic differencing algorithms for generated symthggita. The CCD and PCCD al-
gorithms are performed in time and frequency domains, ctisedy. They both depend on
the user to execute each step. They are further followed bipication by conventional
differencing and pre-stack depth migration (PSDM). The GO PCCD are considerable
improvements to conventional differencing as they cleahgw box location. CICD is a
pilot algorithm to combine PSDM with PCCD. It proves to be @ént and robust when
compared to conventional differencing, however, no imggimprovements are noted. The
ICD method combines PCCD, differencing and migration in algorithm, hence mini-
mizes user’s dependence and improves computational tichevaaging. In Figures 23 and
24, CCD, PCCD and ICD highlight differences in time-lapspsteliminating similarities
by cross-correlation, filtering and inversion. Also, sigrant imaging improvements are
noted, hence interpretation becomes easier.
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