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ABSTRACT

The nonlinearity of the seismic amplitude-variation-with-offset (AVO) response in the
presence of large relative changes in acoustic and elastic medium properties is investi-
gated with physical modelling data. A procedure for pre-processing reflection data, ac-
quired using the CREWES-University of Calgary physical modelling facility, is enacted
on a reflection from a water/plexiglas boundary. The resulting picked and processed am-
plitudes are compared with exact solutions of the plane-wave Zoeppritz equations, as well
as first, second, and third order RPP approximations. We conclude that in the angle range
0 − 20◦, the third order approximation is sufficient to capture the nonlinearity of the AVO
response to within roughly 1% from a liquid-solid boundary with VP , VS and ρ contrasts of
1485− 2745m/s, 0− 1380m/s, and 1.00− 1.19gm/cc respectively. This is in contrast to the
linear Aki-Richards approximation, which is in error by as much as 25% in the same angle
range.

INTRODUCTION

Recently Innanen (2011, 2012) has presented analyses of nonlinear AVO modelling in
situations of large relative change of elastic (or anelastic) parameters across a reflecting
boundary. A key step in moving towards field application of such formulations lies in
confirming their correct capture of real measurements. In this paper we compare the linear
and nonlinear AVO approximations to physical modelling data.

The CREWES-University of Calgary physical modelling facility has been used to gen-
erate data sets from which AVO and AVAz responses of anisotropic targets can be examined
(Mahmoudian et al., 2012). In carrying out that analysis, a pre-processing procedure was
developed to correct picked reflection amplitudes for the laboratory, acquisition, and geo-
metrical footprints in the data (a summary is provided in the following section). Here we
enact this procedure upon the reflection from the water-plexiglas boundary.

Nonlinear plane-wave AVO approximations are derived, using the aforementioned ap-
proach, to conform to an acoustic incidence medium interrupted by an elastic target, and
the known values of the density, P-wave and S-wave velocities of the water and plexiglas
are used as input. The data and first, second, and third order AVO approximations based
on the known elastic properties are compared over an angle range of 0 − 25◦. The stan-
dard Aki-Richards approximation is computed from the CREWES Zoeppritz explorer and
compared likewise.

Our overarching goal is to use these comparisons to establish the role nonlinearity may
have to play in AVO as contrasts become large. To accomplish this, we organize this
paper as follows. First, we review the physical modelling data set, its acquisition, and the
pre-processing procedure. Second, we analyze the mathematical form of the exact P-P
reflection coefficient associated with the shallowest reflector (which is an acoustic-elastic
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FIG. 1. The four-layered earth model used in physical modeling acquisition. The scaled thicknesses
of water column and plexiglas layer are about 700m and 500m respectively.

boundary), deriving approximations to RPP as functions of the relative changes ∆VP/VP ,
∆VS/VS , and ∆ρ/ρ. We lastly examine the accuracy of the approximations relative to our
measured data and the exact RPP curves, drawing conclusions about the ability of the third
order corrected RPP approximation to adequately capture AVO trends.

A PHYSICAL MODELLING DATA SET

A seismic physical model experiment has been conducted to acquire vertical-component
reflection data over a four-layered model (Mahmoudian et al., 2012). The model consists
of water and plexiglass, which are isotropic, and phenolic, which is a simulated fractured
medium (see Figure 1). We will focus on the top two media in this paper, the elastic prop-
erties of which are included in Table 1.

Medium VP (m/s) VS (m/s) ρ (gm/cc)
0 1485 ∼ 0 1.00
1 2745 1380 1.19

Table 1. Physical modelling medium elastic properties

A 2D vertical-component CMP gather of the data is shown in Figure 2. The target in this
study is the earliest reflection, which is labelled A. A sequence of deterministic corrections
are applied to the amplitudes picked on this event. In the remainder of this section we will
summarize the corrections.

Amplitude preparation

Neither field nor laboratory recordings of seismic data directly indicate target reflection
coefficients. The most important factors that disturb seismic amplitudes are: geometrical
spreading, transmission loss, anelastic attenuation, interference of primary and ghost re-
flections, interbed multiples, and source/receiver array response, or directivity (e.g., Spratt
et al., 1993). For the reflection labelled A in Figure 2, the relevant corrections are for ge-
ometrical spreading, emergence angle, and the source/receiver directivity. Because of the
material types being used (water and plexiglas), attenuation may be neglected. The ac-
quisition geometry was designed to avoid overlapping primary and ghost events, and the
interference of multiples with event A.
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FIG. 2. A vertical-component CMP gather acquired over the four-layered model with a long gate
automatic gain control applied. In the display, event "A" is the PP reflection from the water/plexiglas
interface (our target), event "B" is the PP reflection from the top of the fractured layer), event "C" is
the PS reflection from the top of the fractured layer, event "D" is the PP reflection from the bottom
of the fractured layer, and event "E" is the PP reflection from the base layer.

The corrections are carried out as follows (for greater detail, see Mahmoudian et al.,
2012):

1. Geometrical spreading. For a given offset and target depth, the primary ray-path is
traced to determine the propagation radius. This radius is used to correct for geomet-
rical spreading.

2. Emergence angle. Given the same inputs, P-P ray-tracing is also used to determine
the emergence angle at the receiver location, through which the vertical recording is
converted to total motion.

3. Source/receiver directivity. The source/receiver directivity correction compensates
for the transducer radiation pattern in physical modelling acquisition; transducers
when mapped to seismic scales are unphysical large.

The raw amplitudes picked on event A in Figure 2 are plotted in Figure 3 in light blue.
In pink, green, and red are the cumulative results of the geometrical spreading correction,
the emergence angle correction, and the directivity correction respectively. The red signal
is our final pre-processed output. It is compared with the exact plane wave and spherical
wave P-P solutions of the Zoeppritz equations in blue and black respectively.

In Figure 4a, the final form of the data set we will compare with AVO approximations
is illustrated again; in Figure 4b we consider only the lower angle range 0− 30◦ which will
be the focus of this paper.

NONLINEAR AVO MODELLING

Our objective is to examine the degree of AVO nonlinearity required to reproduce the
AVO amplitudes and trend in Figure 4b. We will do this by adapting the approach of
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FIG. 3. Water-plexiglas reflection amplitudes corrected for geometrical spreading, emergence an-
gle, and source/receiver directivity effects.
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FIG. 4. Corrected RPP values picked from the physical modelling reflection event A in Figure 2.
(a) RPP values for the full angle range; (b) RPP values for the smaller angle range 0 − 30◦ that
constitutes the focus of the modelling in this paper.

Innanen (2012) to accommodate an acoustic incidence medium.

RPP for water over an elastic half-space

The Zoeppritz equations (e.g., Aki and Richards, 2002; Keys, 1989), configured to
represent a P-wave in an acoustic medium incident on an elastic target, may be solved for
the P-P reflection coefficient RPP(θ) for small incidence angles θ as follows:

RPP(θ) ≈
AD(AC − 1) + 4A2D3 (D − C) sin2 θ − 1

2
ADC (A− C) sin2 θ

AD(AC + 1) + 4A2D3 (D − C) sin2 θ − 1
2
ADC (A+ C) sin2 θ

, (1)

where A–D are the ratios

A =
ρ1

ρ0

, C =
VP1

VP0

, D =
VS1

VP0

. (2)

Figure 5 illustrates the configuration, which matches the experimental arrangement dis-
cussed in the previous section.
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FIG. 5. Configuration of acoustic incidence medium/elastic target medium experiment. (a) We
focus on the top two media used in the full physical modelling experiment illustrated in Figure 1. (b)
The reflected P-P amplitude is modelled in terms of the acoustic and elastic properties above and
below the interface.

Defining relative changes in parameters

We next define the relative changes in elastic parameters, maintaining the standard def-
initions (Castagna and Backus, 1993) whenever possible given the configuration in Figure
5. The relative change in P-wave velocity is defined as usual: in terms of the ratio C from
equation (2):

∆VP
VP

= 2
VP1 − VP0

VP1 + VP0

= 2
1− C−1

1 + C−1
. (3)

We solve for C and expand in orders of the relative change:

C =
1 +

(
1
2

∆VP

VP

)
1−

(
1
2

∆VP

VP

)
= 1 +

(
∆VP
VP

)
+

1

2

(
∆VP
VP

)2

+
1

4

(
∆VP
VP

)3

+ ... .

(4)

The relative change in VS requires some adjustment from its standard definition. Here we
measure its change relative to VP0 . Together with the density relative change we have

∆VS
VS

= 2
VS1 − VP0

VS1 + VP0

∆ρ

ρ
= 2

ρ1 − ρ0

ρ1 + ρ0

,

(5)
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which may be related to the ratios A and D via

A = 1 +

(
∆ρ

ρ

)
+

1

2

(
∆ρ

ρ

)2

+
1

4

(
∆ρ

ρ

)3

+ ...

D = 1 +

(
∆VS
VS

)
+

1

2

(
∆VS
VS

)2

+
1

4

(
∆VS
VS

)3

+ ... .

(6)

In the next section we will substitute these series into equation (1), and perform a final
expansion to produce our linear and nonlinear approximations.

Expansion in orders of ∆VP

VP
, ∆VS

VS
, and ∆ρ

ρ

Substituting equations (4) and (6) into equation (1), we perform a final binomial expan-
sion of the denominator (e.g., Innanen, 2011). Collecting terms of equal order in the three
relative change measures of the previous section, we have

RPP(θ) = R
(1)
PP (θ) +R

(2)
PP (θ) +R

(3)
PP (θ) + ..., (7)

where the first order term, closely related to the Aki-Richards approximation, is

R
(1)
PP (θ) =

1

2

(
1− 3 sin2 θ

) ∆VP
VP

+ 2 sin2 θ
∆VS
VS

+
1

2

∆ρ

ρ
, (8)

the second order corrective term is

R
(2)
PP (θ) =

3

2
sin2 θ

(
∆VP
VP

)2

− 6 sin2 θ

(
∆VP
VP

)(
∆VS
VS

)
+ 5 sin2 θ

(
∆VS
VS

)2

, (9)

and the third order corrective term is

R
(3)
PP (θ) = −1

8

(
∆VP
VP

)2(
∆ρ

ρ

)
− 1

8

(
∆ρ

ρ

)2(
∆VP
VP

)
+

[
13

2

(
∆VS
VS

)3

+
1

4

(
∆VP
VP

)3

+
3

8

(
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VP

)(
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3
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)2(
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5
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)(
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− 9
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)2(
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)
− 1

2

(
∆ρ

ρ

)2(
∆VS
VS

)
−
(

∆VP
VP

)(
∆VS
VS

)(
∆ρ

ρ

)]
sin2 θ.

(10)

These may be calculated to any desired order; we will stop at third order in this paper.
Equation (7) is a forward modelling formula: given the acoustic and elastic properties of
a real or notional experiment, the resulting RPP values can be approximately calculated by
truncating at . The higher order terms should return numerical accuracy to the modelling in
situations of large contrast, while simultaneously maintaining the qualitative interpretabil-
ity of the the Aki-Richards approximation.
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RESULTS: NONLINEAR-APPROXIMATE VS. LABORATORY RPP

In Table 1 the elastic properties of the media involved in the physical modelling exper-
iment were enumerated. As a benchmark against which to evaluate our modelling, we use
these properties as input in an independent calculation of the exact plane-wave RPP and the
standard Aki-Richards approximation∗. Figure 6 illustrates the results.

FIG. 6. Modelling using CREWES’ Zoeppritz explorer. In bold orange is the exact RPP(θ) solution,
and the thin orange line is the linearized Aki-Richards approximation.

In Figure 6, the bold orange line represents the exact plane-wave RPP(θ), and the thin
orange line represents the Aki-Richards, or first order, approximate solution. The discrep-
ancy between the two is a strong indication of the nonlinearity of the AVO response of
this target, and suggests that the physical modelling data will be well-suited to test the
effectiveness of the second and third order corrective terms in equations (7)–(10).

We assess the effectiveness of three truncations of equation (7) in turn. The results
are summarized in Figure 7. In Figure 7a, the data after processing is plotted, with the
exact solution (identical to the bold orange curve in Figure 6) overlain. In Figure 7b, the
same data are plotted, with the linear approximate RPP(θ) ≈ R

(1)
PP (θ) in blue. As we might

expect, the curve is essentially identical to the Aki-Richards approximation in Figure 6. In
reproducing the AVO signature of the plexiglas target, the linear approximation exhibits
significant error in its capture of the angle trend and absolute values of the measured RPP

data. This re-emphasizes that the nonlinearity of the ∆VP

VP
, ∆VS

VS
, ∆ρ

ρ
v. RPP relationship

takes a deciding role in this example.

In Figure 7c the second order approximation RPP(θ) ≈ R
(1)
PP (θ) +R

(2)
PP (θ) is illustrated.

There appears to be a significant difference in the reproduction of the AVO trend, but a

∗The CREWES Zoeppritz Explorer 2.2 (C. Ursenbach, G. Margrave, E. Krebes)
http://www.crewes.org/ResearchLinks/ExplorerPrograms/

CREWES Research Report — Volume 24 (2012) 7



Innanen and Mahmoudian

5 10 15 20 25
0.3

0.35

0.4

e (deg)

R
PP

 E
xa

ct

(a)

5 10 15 20 25
0.3

0.35

0.4

e (deg)

R
PP

 1
st

 o
rd

er

(b)

5 10 15 20 25
0.3

0.35

0.4

e (deg)

R
PP

 2
nd

 o
rd

er

(c)

5 10 15 20 25
0.3

0.35

0.4

e (deg)

R
PP

 3
rd

 o
rd

er

(d)

FIG. 7. Modelled data vs. lab data. (a) Exact solution for RPP is plotted as a solid line, as are
measured lab data. (b) First-order (linearized) RPP approximation is plotted in blue against the
same measurements. (c)-(d) Second- and third-order approximations plotted agains the lab data
similarly.

remaining non negligible error in the absoluteRPP values. This is mathematically expected,
since the second order term which effects this alteration, being proportional to sin2 θ, has
no contribution at normal incidence. The absolute error in RPP for angles up to 20◦ is then
much more dramatically reduced in the third order approximation RPP(θ) ≈ R

(1)
PP (θ) +

R
(2)
PP (θ) +R

(3)
PP (θ), as illustrated in Figure 7d.

In Figure 8 we illustrate a simple quantification of these varying degrees of approxima-
tion error. In Figures 8a–c the percent error of the first, second, and third order approxima-
tions relative to the laboratory data are plotted. They are calculated as follows:

% error = 100%× Rlab
PP (θ)−Rapprox

PP (θ)

Rlab
PP (θ)

. (11)

in Figures 8d–f the percent error relative to the exact plane-wave Zoeppritz solutions are
likewise plotted. The first order (Aki-Richards) approximation is in error by roughly 50% at
25◦. In contrast, at 25◦, the second and third order approximations are in error by roughly
5%. However, the second order approximation displays this error over the whole angle
range 0-25◦, whereas the third order approximation exhibits a relative error of roughly 1%
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from normal incidence to an angle of 20◦.

Beyond 20◦, the exact curve alters in character, beginning to follow a pattern with a
degree of curvature more complicated than can be captured with terms proportional to
sin2 θ. This behaviour being therefore at least second order in sin2 θ, is thus not expected
to be reproduced by our particular approximation. Terms of order 2 and higher in sin2 θ
should be incorporated in equation (1) to increase the angle range over which the data are
accurately fitted.
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FIG. 8. Percent error of the AVO approximations relative to lab and exact synthetic RPP curves.
(a)–(c) Linear, second, and third order approximation error relative to the physical modelling lab
data respectively; (d)–(f) linear, second, and third order approximation error relative to the exact
synthetic RPP data respectively.

CONCLUSIONS

Nonlinear AVO models are used to reproduce physical modelling lab data in large con-
trast, low angle scenarios. A procedure for processing the laboratory data to be comparable
to plane-wave reflection coefficients is enacted and the results are compared with exact,
first, second and third order RPP approximations, whose forms are derived using recent
nonlinear methods adapted to the acoustic-elastic character of the boundary.

The linear approximation (i.e., first order in the relative changes), which is equivalent
to the Aki-Richards approximation, is seen have absolute amplitudes which are in error
by as much as 25% within the range 0 − 25◦, and to be unable to capture the AVO trend
at any angle. Correcting the linearized AVO curve with the nonlinear second and third
order terms reproduces the AVO response of a water-plexiglas boundary immersed in water
up to 20◦ to within 1-2%. We consider this to be strong evidence that nonlinearity is a
non-negligible, and in fact dominant, presence for acoustic/elastic contrasts of the kind in
Table 1. Low order corrections to the Aki-Richards approximation can account for this
nonlinearity, without losing the benefits associated with linearization (e.g., expression in
terms of relative changes and qualitative interpretability).
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