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Time-lapse AVO inversion: Application to synthetic data 

A. Nassir Saeed, Laurence R. Lines, and Gary F. Margrave 

ABSTRACT 
A reservoir characterization workflow for time-lapse studies requires integrating 

seismic data of different vintages and well logs information into a single consistent model 
to delineate changes of reservoir parameters.  

In this study, we implemented three different time-lapse AVO inversion algorithms 
(total inversion of the differences, inversion of seismic difference only and sequential 
reflectivity-constrained inversion) using synthetic data that simulate a time-lapse model 
of a heavy oil reservoir.  Elastic physical parameters of the time-lapse model were chosen 
to represent reservoir conditions at pre-production and post-production periods after 
reservoir depletion. 

The time-lapse AVO inversion schemes simultaneously invert baseline and monitor 
seismic data to estimate the change of model parameters.  The proposed algorithms have 
proved their robustness in terms of computation time as well as stability in presence of 
noise to ensure smooth changes in estimating reservoir attributes from time-lapse 
inversion.   

INTRODUCTION 
In time-lapse AVO inversion, we seek to estimate elastic parameters changes for 

baseline and monitor seismic surveys of a hydrocarbon reservoir after depletion.  
Successful estimation of these elastic differences can further assist in delineation of fluid 
saturation and pressure changes (LandrØ, 2001) in the reservoir due to production 
processes.  

A time-lapse model (Saeed et al., 2010a) that simulates a heavy oil reservoir of Pikes 
Peak oil field is used in this study.  Synthetic data were generated using Syngram 
software developed by CREWES.  Figures (1 and 2) are for P-P synthetic data of baseline 
and monitoring models respectively, while figures (3 and 4) represent P-S synthetic data 
of the baseline and monitoring models. 

TIME-LAPSE AVO INVERSION 

Practical inversion techniques that simultaneously invert seismic data of different 
vintages (Saeed et al., 2011) are used in this study.  The objectives from proposed inverse 
techniques are to improve model parameters estimations in the presence of noise, and 
proposed algorithms have proved their robustness in terms of accuracy and computation 
time. 

For two given data sets, says (base, d0 , and a monitor, d1 ,), reflectivity data can be 
written as: 
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 d0=G0 m0    for base line (1) 

 d1=G1 m1   for monitor line (2) 
where, 

  d is seismic data, G is forward operator, and m is unknown model parameters 
sought. 

The least-squares inverse problems of time-lapse seismic surveys requires 
minimization of cost functions below 

 𝐽(𝑚0) = ‖𝑮𝟎𝒎𝟎 −𝒅𝟎‖2 + 𝜆2‖𝑮𝟎𝒎𝟎‖2 (3) 

 𝐽(𝑚1) = ‖𝑮𝟏𝒎𝟏 −𝒅𝟏‖2 + 𝜆2‖𝑮𝟏𝒎𝟏‖2 (4) 

which give the solutions 

 𝑚0 = (𝑮𝟎𝑻𝐺0 + 𝜆2𝑹𝟎𝑻𝑅0)−1𝑮𝟎𝑻𝒅𝟎 (5) 

 m1 = (G1
TG1 + λ2R1

TR1)−1G1
Td1 (6) 

where, 

R and λ are the regularization operator and parameter (Constable et al., 1987) 
respectively. 

The low frequency component of well logs is then added to model parameters using 
the BLIMP module (Ferguson and Margrave, 1996). The estimated model parameters 
(m0  and m1) resulting for inverting seismic data vintages separately are then manipulated 
to be either as differences between estimated base and monitor model parameters 
(𝚫𝐦 = 𝐦𝟏 − 𝐦𝟎) or as percentage of changes between base and monitoring model 
parameters (𝛀𝐦% = 𝚫𝐦

𝐦𝟎
.𝟏𝟎𝟎). 

In the following sections, we present applications of three different time-lapse AVO 
inversion schemes (total inversion of the differences, inversion of seismic differences 
only and sequential reflectivity-constrained inversion) simultaneously invert baseline and 
monitor seismic data to estimate the change of model parameters.  The obtained model 
parameters can also be presented as percentage of changes. 

Total inversion of differences  

The total inversion of differences to estimate model parameters change of time-lapse 
data is carried out by simultaneously inverting baseline and monitor data.  Thus, 
equations (1 and 2) are then re-arranged as 

 G1 m1 – G0 m0 = d1- d0 (7) 
By using ( 𝚫𝐆 = 𝐆𝟏 − 𝐆𝟎), and substituting for 𝐆𝟏in equation (7), the time-lapse AVO 
inversion for estimating model parameters of monitor line (𝒎𝟏) and model parameter 
changes (𝜟𝒎) requires that equation (7) to be written as: 
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 (ΔG+ G0) m1 – G0 m0 = Δd (8) 

Re-arranging (8), yields 

 ΔGm1+ G0Δm = Δd (9) 

In augmented matrix notation, cost functions (3 and 4) can be jointly- inverted, and 
written as: 

 𝐽(𝒎𝟏 ,𝚫𝐦) = ��Δ𝐆 𝟎
𝟎 𝑮𝟎

��𝒎𝟏
Δ𝐦� − �𝒅𝟏𝒅𝟎

��
2

+ �
𝜆2𝑹𝟏𝑻𝑹1 𝟎

𝟎 𝜆2𝑹𝟎𝑻𝑅0
� �𝒎𝟏
Δ𝐦� (10) 

Since the outputs from equation (10) are 𝐦𝟏  and 𝚫𝐦 respectively, then model 
parameters for the base model can also be estimated as: 

 𝐦𝟎 = 𝐦𝟏 − 𝚫𝐦 (11) 

Figures (5 and 6) are inverted to obtain model parameters (
∆𝐈
𝐈
 , ∆𝐉

𝐉
 and ∆𝛒

𝛒
) for monitor 

model and model parameters changes [∆(∆𝐈
𝐈

) , ∆(∆𝐉
𝐉

) and ∆( ∆𝛒𝛒 )] for the time-lapse 

survey before adding low frequency component from well logs.  Figure (7) shows 
estimated model parameters (

∆𝐈
𝐈
 , ∆𝐉

𝐉
 and ∆𝛒

𝛒
) for the base model, using equation (11), 

before adding low frequency components.  The low frequency components of the 
background model are added using band-limited impedance module, BLIMP.   

Figures (8 and 9) show inverted elastic parameters (IP-impedance, IS-impedance and ρ) 
for the baseline and monitor models respectively, while figure (10) represents change in 
elastic parameters (ΔIP-impedance, ΔIS-impedance and Δρ), after adding low frequency 
component of well logs,  as a result of inversion of total differences using equation (9). 

Note that the actual elastic parameters estimated from well logs are also calculated and 
superimposed in bold dashed line.  The inverted parameters are coinciding with actual 
parameters graphs. 

Inverting for the base line, 𝒎𝟎 and the time-lapse reflectivity model parameter 
changes (𝜟𝒎) requires that model parameters of monitor model 𝒎𝟏 in equation (7) be 
re-written as:  

 𝒎𝟏 = 𝚫𝒎 + 𝒎𝟎 (12) 

Substituting equation (12) into equation (7) yields 

 G1 (𝚫𝒎 +𝒎𝟎  ) – G0 m0 = Δd (13) 

 

By re-arranging the above equation, the inverse equation can be used to invert for base 
model parameter and the time-lapse change can be written as: 
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 𝚫𝐆𝒎𝟎 +𝐆𝟏 𝚫𝒎 = Δ𝐝 (14) 

In augmented matrix notation, cost functions (3 and 4) are inverted to obtain the base 
line, 𝐦𝟎 , and the time-lapse reflectivity model parameter changes, 𝚫𝐦 which can be 
written as: 

 𝐽(𝒎𝟎 ,𝚫𝐦) = ��Δ𝐆 𝟎
𝟎 𝑮𝟏

��𝒎𝟎
Δ𝐦� − �𝒅𝟎𝒅𝟏

��
2

+ �
𝜆2𝑹𝟎𝑻𝑹0 𝟎

𝟎 𝜆2𝑹𝟏𝑻𝑅1
��𝒎𝟎
Δ𝐦� (15) 

Figures (11 and 12) show inverted elastic parameters (IP-impedance, IS-impedance and 
ρ) for the baseline and monitor models, while figure (13) represents change in elastic 
parameters (Δ(IP-impedance), Δ(IS-impedance) and Δρ) as a result of inversion of total 
differences using equation (14) after adding low frequency component of well logs.  The 
resulting graphs form the time-lapse AVO inversions are in agreement with actual elastic 
parameters estimated from well logs. 

Inversion of seismic differences data (𝜟𝒅)only 

Figures (14 and 15) show the difference of PP- and PS- data for the baseline and 
monitor models respectively.  Note that seismic amplitudes of all seismic data sections 
are scaled to seismic amplitude of base line survey. 

When 𝚫𝐆 ≈ 𝟎, the time-lapse inversion equations (9 and 14) of total inversion of 
differences given in previous section will be reduced and re-written as: 

 𝐆𝟎  𝚫𝒎 = Δd (16) 
 𝐆𝟏  𝚫𝒎 = Δd (17) 

Thus, we are inverting for m∆  using the difference of data Δd.  Time-lapse inversion of 
differences data only is a quick inverse scheme used to estimate the change in elastic 
model parameters.  This method is based on assumption that if there is a change in time-
lapse seismic data Δd, this will yield a change in estimated m∆ .  However, if there is no 
change in Δd, then Δm = 0 at a specific depth interval.  The least-squares inversion 
equation for inverting of seismic difference only can be written as: 

 (𝐺𝑇𝐺 + 𝜆1𝑊𝑚 
𝑇𝑊𝑚)Δ𝑚 = 𝐺𝑇Δd (18) 

Figure (16) shows model parameter changes [∆(∆𝐈
𝐈

) , ∆(∆𝐉
𝐉

) and ∆( ∆𝛒𝛒 )] from inverting 

time-lapse seismic data using equation (18) while figure (17) shows elastic model 
changes (Δ(IP), Δ(IS) and Δρ)  after adding low frequency components of elastic model.  
Notice that the inverted elastic parameter changes are consistent with actual parameter 
changes as calculated from well logs. 

In real time-lapse seismic data, it is almost impossible get seismic differences 
𝚫𝐝 = 𝟎 at specific depth interval.  However, we would rather have very slight changes 
in amplitude that are not necessarily attributed to fluid property changes.   
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These very small changes in amplitudes in time-lapse seismic section can be attributed to 
geometry difference between time-lapse surveys or random noise or even processing 
differences.  Therefore, a cut-off point can be set such that the seismic differences 𝚫𝐝 fall 
below that cut-off point can then be set to zero.  Thus, resulting differences data would be 
more representative of fluid change. 

Sequential reflectivity-constrained inversion 

In geophysical inversion, constraints can be included in inversion problem so as to 
refine estimated model parameters; thus producing more realistic inverted model.  
Geophysical constraints can be incorporated in either data space (Bube and Langan, 
1997; Saeed et. al., 2010b) or in model spaces (Ajo-Franklin et. al., 2007; Saeed et al., 
2010c) or in both space domains, which is often called blocky inversion (Claerbout, and 
Muir, 1973). 

In the Pikes-Peak time-lapse seismic surveys, noise is noticeable and affects most of 
shot gathers of monitoring seismic survey, 2000, compared to baseline seismic survey, 
1991.  The source of noise is due to jack pumps that were operating during the course of 
seismic data acquisition.  Therefore, In order to simulate the effect of jack pump noise in 
time-lapse model, small random noise of 0.1%  were added to synthetic data of the base 
line (figures 18 and 19), while 1% of random noise were also added to monitoring model 
(Figures 20 and 21).  

The sequential reflectivity-constrained inversion in equation (19) is one form of robust 
time-lapse inversion method whereby estimated model parameters of base survey are 
used to constrain inversion of monitoring model so as to ensure smooth variation in 
estimated elastic model parameters of monitoring model.   

 [(𝑮𝑻𝑮+ 𝝀𝟏𝑾𝒎
𝑻 𝑾𝒎 + 𝝀𝟐𝑽𝑻𝑽)]𝒎𝒊 = �𝑮𝑻𝒅+ 𝝀𝟐𝑽𝑻𝑽(𝒎𝒊−𝟏

𝑴 − 𝒎𝟎
𝑩)𝑻� (19) 

 

Where  𝑽𝒎𝒐𝒏𝒊𝒕 . = 𝑑𝑖𝑎𝑔�𝑎𝑏𝑠�𝒎𝒊−𝟏
𝑴 − 𝒎𝟎

𝑩�� 

Estimated model parameters of base model will act as prior information in inversion.  
Because 𝑽 and (𝒎𝒊−𝟏

𝑴 −𝒎𝒊−𝟏
𝑩 )𝑻are functions of unknown base and monitor model 

parameters, this is a non-linear system, and iterative approach must be used.  This is 
referred to iteratively re-weighted least squares, IRLS, (Wolke and Schwetlick, 1988). 

We followed the approach of Farquharson and Oldenburg, (1998), by setting V and 
(𝒎𝒊−𝟏

𝑴 −𝒎𝒊−𝟏
𝑩 )𝑻= I for the first iteration, which result in a traditional least-squares 

solution.  The estimation of 𝒎𝒊
𝑩 for i=1 is then subsequently substituted again in equation 

(19) to obtain new 𝒎𝒊+𝟏
𝑴 .  The procedure is repeated until the estimated model parameters 

of monitoring survey between successive IRLS iterations becomes less than tolerance 
value, τ  given in convergence limit equation (20). 
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�𝐦𝐢+𝟏−𝐦𝐢�𝟐
𝟏+�𝐦𝐢+𝟏�𝟐

< 𝛕 (20) 

Figure (22) shows that inverted acoustic impedances for the monitoring model using 
reflectivity-constrained inverse scheme is matching actual impedances fairly well in the 
presence of noise.  Figure (23) shows regularization parameter during the inversion while 
RMS error during inversion (figure 24) shows converging of the program towards final 
solution. 

In order to test stability of inversion algorithm and reliability of resulting elastic 
parameters in the presence of high percentage of noise, random noise of a magnitude that 
10 times size of monitoring data is used in this test.  Figure (25) shows elastic 
impedances of monitoring model after inversion.  As expected, P-impedance is less 
affected by noise, while S-impedance and density are influenced by noise.  This 
experiment can assist in deciding which reflectivity attribute to be constrained more as 
well as the percentage of reflectivity attribute of base survey to be used to constrain 
inverting model parameters of monitor model. 

CONCLUSIONS 
The application of three different inverse schemes for time-lapse AVO inversion is 

presented in this report. Obtained elastic impedances from inverse schemes are in very 
good agreement with actual elastic impedances calculated from well logs.  The developed 
codes were optimized to perform inversion in less time, and shows fast convergence with 
less number of iterations for robust time-lapse AVO inversion.  Results from inverting 
noise data can assist in choosing appropriate reflectivity attributes of base model to be 
used in constraining inversion of monitor survey.  
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FIG.1. P-P synthetic seismic data for the baseline model of the Pikes Peak time-lapse model.  

 

 

FIG.2. P-P synthetic seismic data for the monitor model of the Pikes Peak time-lapse model. 
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FIG.3. P-S synthetic seismic data for the baseline model of the Pikes Peak time-lapse model.  

 

 

FIG.4. P-S synthetic seismic data for the monitor model of the Pikes Peak time-lapse model.  
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FIG.5 Estimated model parameters (∆𝑰
𝑰
 , ∆𝑱

𝑱
 and ∆𝑹

𝑹
) for the monitor model before adding low-

frequency of logs. 

 

 

FIG.6 Estimated model parameters changes [∆(∆𝑰
𝑰

) , ∆(∆𝑱
𝑱

) and ∆(∆𝑹
𝑹

)] for the time- lapse model 

before adding low-frequency of logs. 
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FIG.7 Estimated model parameters (∆𝑰
𝑰
 , ∆𝑱

𝑱
 and ∆𝑹

𝑹
) for the base model before adding low-

frequency of logs. 

 

 

FIG.8 Elastic parameters (IP, IS and ρ) of the base model after adding low frequency.  Embedded 
graphs in bold black dotted lines represent actual (IP, IS and ρ) calculated from logs. 
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FIG.9 Elastic parameters (IP, IS and ρ) of the monitor model after adding low frequency.  
Embedded graphs in bold black dotted lines represent actual (IP, IS and ρ) calculated from logs. 

 

 

FIG.10 Elastic parameter changes (ΔIP, ΔIS and Δρ) of the time-lapse model after adding low 
frequency.  Embedded graphs in bold black dotted lines represent actual elastic parameter 
changes calculated from logs. 
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FIG.11. Elastic parameters (IP, IS and ρ) of the base model using equation (14) after adding low 
frequency.  Embedded graphs in bold black dotted lines represent actual (IP, IS and ρ) calculated 
from logs. 

 

 

FIG.12. Elastic parameters (IP, IS and ρ) of the monitor model using equation (14) after adding 
low frequency.  Graphs in bold black dotted lines represent actual (IP, IS and ρ) from logs. 
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FIG.13 Elastic parameter changes (ΔIP, ΔIS and Δρ) of the time-lapse model using equation (14) 
after adding low frequency.  Embedded graphs in bold black dotted lines represent actual elastic 
parameter changes calculated from logs. 
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FIG.14. Difference of P-P synthetic seismic data for the baseline and monitor models of the Pikes 
Peak time-lapse model. 

 

 

FIG.15. Difference of P-S synthetic seismic data for the baseline and monitor models of the Pikes 
Peak time-lapse model. 
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FIG.16 Estimated model parameters changes [∆(∆𝑰
𝑰

) , ∆(∆𝑱
𝑱

) and ∆(∆𝑹
𝑹

)] from inversion of data 

differences only before adding low-frequency of logs. 

 

 

FIG.17 Elastic parameter changes (ΔIP, ΔIS and Δρ) of the time-lapse model from inversion of 
data differences only after adding low frequency.  Embedded graphs in bold black dotted lines 
represent actual elastic parameter changes calculated from logs. 
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FIG.18. P-P synthetic seismic data for the base model with 0.001 random noise added.  

 

 

 

FIG.19. P-S synthetic seismic data for the base model with 0.001 random noise added. 
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FIG.20. P-P synthetic seismic data for the monitor model with 0.1 random noise added. 

 

 

FIG.21. P-S synthetic seismic data for the monitor model with 0.1 random noise added. 
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FIG.22. Elastic parameters (IP, IS and ρ) using sequential reflectivity-constrained inversion of the 
noisy (0.01) monitor model after adding low frequency. 

 

 

 

FIG.23. Regularization parameter during reflectivity-constrained Inversion. 



Saeed, Lines, and Margrave 

20 CREWES Research Report — Volume 24 (2012)  

 

FIG.24. RMS error during reflectivity- constrained Inversion scheme. 

 

 

 

FIG.25. Elastic parameters (IP, IS and ρ) using sequential reflectivity-constrained inversion of the 
noisy (10 times amount of noise in figure 22) monitor model after adding low frequency. 
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