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Modelling, migration, and inversion using Linear Algebra 

John C. Bancroft and Rod Blais 

ABSTRACT 

Modelling migration and inversion can all be accomplished using Linear Algebra.  
Key to these processes is the diffraction array that is multidimensional.  Two dimensional 
poststack migrations require a four dimension diffraction array.  Current processing 
practices for Least-Squares analysis require a diffraction array that is two dimensional (a 
matrix), with one dimensional vectors for the reflectivity and seismic data.  These 
matrices and vectors can be derived from multidimensional data by helical unwrapping.  
The field of Multilinear Algebra may allow the data to retain their multidimensional 
arrays, but require defining processes such as a two dimensional transpose of a three, or 
higher, dimensional array.  Modelling, migration, and inversion are demonstrated using 
Linear Algebra with MATLAB software, along with a corresponding 2D transpose of a 
4D diffraction matrix. 

INTRODUCTION 

Claerbout has stated that one of his greatest contributions to geophysics was the use of 
cycle unwrapping to enabling Least-Squares (LS) solutions of seismic data (Claerbout 
1998).  This process converts multidimensional arrays of diffractions, reflectivity, and 
seismic data, into a matrix and two vectors.  The LS method provides an optimum 
inversion for the reflectivity when given the diffraction matrix and seismic data.   

Diffraction matrix 

A seismic diffraction is the surface recording of energy returned from a subsurface 
scatterpoint.  Scatterpoints are defined on a grid of the subsurface that represents the 
reflectivity, and with amplitudes that align to form reflecting surfaces.  The location and 
amplitude of a diffraction is defined for every scatterpoint.  This information is then used 
to locate and extract the recorded diffracted energy.   

The location and amplitudes of a diffraction for two dimensional data can be estimated 
from analytic equations or from modelling using ray-tracing or wavefield propagation as 
illustrated in the following three examples. 

1. A hyperbolic equation for the traveltime T of a diffraction is 
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where T0 is the vertical zero-offset traveltime, x is the spatial location, and v is the 
locally constant velocity, usually defined as an RMS velocity.  The amplitude is 
estimated from both T0 and T.  This is a very efficient form for the diffraction as it 
can be efficiently computed when required. 

2. The diffraction can also be estimated from modelling using ray-tracing or wave-
propagation methods with the results stored in two 1D arrays, such as:  



Bancroft 

2 CREWES Research Report — Volume 25 (2013)  

[ ]
[ ]

) 3 2 2 2 3   time or sample number

) 0.2 0.5 1.0 0.5 0.2   spatial amplitude of the diffraction
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where the elements in the array are defined at spatial locations.  The above arrays 
assume a single arrival time for the diffraction.  Multiple arrival times that represent 
first arrivals or maximum energy can also be incorporated with additional arrays. 

3. A third option is to store the diffraction in a matrix as illustrated in Figure 1a, which 
contains the data from the vectors displayed above.  A more realistic diffraction matrix 
is illustrated in Figure 1b, formed from wave-propagation modelling.  This diffraction 
matrix contains approximately 1000 columns and 1000 rows, and contains all the 
scattered energy.  The wavefield in (b) also includes blue dots that were computed 
using raytracing. 
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a)    b) 

FIG. 1  Two diffraction matrices with a) containing a simplified matrix, and b) a large matrix with 
results from wavefield modelling. 

Waveform data is efficiently stored in the matrix where each column is the spatial 
location, and each row represents the sampled travel time, with each element containing 
the amplitudes.  Multiple arrivals can be easily included in the matrix form.  Use of a 
diffraction matrix is desirable for processing with simple Linear Algebra equations, but 
very limited in practical applications because of the large storage requirements.  A 
Kirchhoff migration using the full wavefield can be a true matched filter and extract all 
the scattered energy. 

Most diffraction energy is processed using either the hyperbolic equation in a time 
migration, or in the two arrays for a depth migration.  These diffractions in 2D data may 
contain wavelets and filter operators for spectral shaping and anti-alias filtering.   

A SIMPLE EXAMPLE 

The following example will create, migrate, and invert a simple example of 2D post 
stack seismic data.  We will use a reflectivity matrix r to define a diffraction matrix at 
each location of a reflecting element, and then combine the diffraction matrices into a 4D 
array D.  The modelled seismic data s are then created from the reflectivity matrix and 
the diffraction array.  We then reverse the process using migration and inversion to 
reconstruct the reflectivity matrix. 
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Defining the reflectivity matrix 

We start with a very simple geological cross section r (for reflectivity) with 5 traces 
each with 3 samples to form a matrix.  Each element in the matrix is a scatterpoint.  There 
are two scatterpoints with amplitudes of 2 and 4.  I will use the MATLAB method of 
dimensioning these data which is similar to FORTRAN but opposite to that used in “C”.  
We have K=3 depth samples and L=5 traces, to form r(K L), as shown in Figure 2. 

 

FIG. 2  Reflectivity matrix with 5 traces, each with three depth samples. 

Defining the 4D diffraction array 

Simplified diffractions are defined at the location of each scatter point in r and plotted 
below in a matrix form in Figure 3.  A diffraction matrix is defined for each reflection 
point d(i, j) in Figure 2, then each diffraction matrix is located at the corresponding 
element to create a 4D array.  The size of the 4Darray is D(I J K L) with each element 
accessed as D(i, j, k, l).  The velocity is assumed to be constant, and the shape of all 
diffractions, at the same depth level, are identical, but the location of the apex is aligned 
with the location of the scatterpoint.  

 

FIG. 3  A 4D array containing diffraction matrices at the location of each scatterpoint. 

Converting the reflectivity matrix to a 2D vector 

We can create seismic data by converting the multidimensional arrays to data in a 
matrix and two vectors (Claerbout 1998).  Consider the r matrix as colour coded in 
Figure 4.  We can convert this data to a vector rv by concatenating the columns as in (b), 
but it is more efficient to display the transpose of this vector rv

T as in (c).  This is referred 
to as unwrapping the matrix into a vector. 
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a) 

 
b) 

 

c) 

FIG. 4  Vectorizing the reflector matrix, a) the matrix r  b) the column vector rv, and c) the 
transpose rv

T. 

Creating a 2D matrix from the 4D diffraction array 

We can place a diffraction matrix at each of these reflectivity elements as in Figure 5. 

 
FIG. 5  Diffraction matrices placed at the location of the reflectivity vector. 

We now convert each diffraction matrix Dkl to a column vector as described above to 
complete the process of converting the 4D diffraction array into a 2D matrix.  For 
example, diffraction D13, identified by the green square above, becomes a column vector, 
which is plotted as a row vector in Figure 6 for convenience.  The complete 2D 
diffraction matrix D2D is displayed in Figure 7, with D13 highlighted as a column.  
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rv = 

0   0   0 2   0   0 0   0   0 0   0   0 0   4   0rv
T = 

D11 D21 D31   D21 D22 D23 D31  D32  D33 D41 D42 D43 D51 D52  D53DvT = 
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FIG. 6  Vectorized form of the D13 diffraction matrix. 

 

FIG. 7  Complete 2D form of the 4D diffraction matrix. 

Creating the seismic data 

Using the reduced forms of the 2D diffraction matrix D2D, and the vector form of the 
reflectivity rv, we can define the seismic data sv from the linear equation 

 v 2D vs = D r  (2) 

The seismic data resulting from forward modelling is converted back to a matrix form 
s using the reverse process of unwrapping, and is shown in Figure 8. 

 

FIG. 8  The modelled seismic section. 

The notation of the diffraction data in an uppercase letter (D) is intended to convey it 
as a matrix, while the lower case letters for the reflectivity and seismic data (r and s) are 

0  0  1 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0D13
T = 

1  0  0  0  0  0  0 0  0  0  0  0  0  0  0
0  1  0  1  1  0  0 0  0  0  0  0  0  0  0
0  0  1  0  0  1  1 1  1  0  0  0  0  0  0
0  0  0  0  0  0  0 0  0  1  1  1  0  0  0
0  0  0  1  0  0  0 0  0  0  0  0  0  0  0
1  1  0  0  1  0  1 1  0  0  0  0  0  0  0
0  0  1  0  0  1  0 0  1  1  1  1  0  0  0
0  0  0  0  0  0  0 0  0  0  0  0  1  1  1
0  0  0  0  0  0  1 0  0  0  0  0  0  0  0
0  0  0  1  1  0  0 1  0  1  1  0  0  0  0
1  1  1  0  0  1  0 0  1  0  0  1  1  1  1
0  0  0  0  0  0  0 0  0  0  0  0  0  0  0
0  0  0  0  0  0  0 0  0  1  0  0  0  0  0
0  0  0  0  0  0  1 1  0  0  1  0  1  1  0
0  0  0  1  1  1  0 0  1  0  0  1  0  0  1
1  1  1  0  0  0  0 0  0  0  0  0  0  0  0
0  0  0  0  0  0  0 0  0  0  0  0  1  0  0
0  0  0  0  0  0  0 0  0  1  1  0  0  1  0
0  0  0  0  0  0  1 1  1  0  0  1  0  0  1
0  0  0  1  1  1  0 0  0  0  0  0  0  0  0

D2D = 

0   2 0   0   0
2 0   2 4 4
0   0   4 2 0
0 4 0 0   2

s  = 
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intended to convey them as vectors.  In these forms, they can be processes with 
conventional Linear Algebra.   

The migration 

We will now migrate the data in an attempt to recover the reflectivity.  This is 
accomplished with the transverse of the 2D diffraction array D2d

T, i.e.,   

 T
2D vm = D s  (3) 

The migration result is displayed in Figure 9.   It is very different from the reflectivity 
matrix in Figure 4a.  The migrated amplitudes at the scatterpoints are larger, and there is 
noise contaminating all the other scatterpoints.  However, the amplitudes at the 
scatterpoint locations do have a slight relative similarity. 

 

FIG. 9  The migrated matrix. 

The inversion 

We continue our processing with Linear Algebra to recover the reflectivity using a 
least squares approach (Yousefzadeh 2012).  The least squares solution is  

 ( )T T
2D 2D v 2D vD D r = D s , (4) 

or 

 ( ) 1−T T
v 2D 2D 2D vr = D D D s , (5) 

where some form of stabilization is required to invert DTD matrix.  The result is virtually 
the same as the initial reflectivity and is displayed below with “e” format to show how 
small the zero values are. 

 

FIG. 10  The least squares inversion for the reflectivity. 

Code 

Code to compute the inversion in MATLAB computes the DTD matrix with,  

DTD = D2d'*D2d; , 

inverts it with 

DTDI = inv(DTD); , 

4  10 4   6 12
6 8 6 10  16
4 8 6 6 10

m  = 

-2.2204e-016    2.0000e+000 2.6645e-015   -6.6613e-016   -6.6613e-016
-8.4377e-015    9.4369e-015   -4.4409e-015   -1.7764e-015    4.0000e+000
1.0936e-014   -8.4377e-015   -1.5543e-015    8.8818e-016    2.8866e-015

Inv = 
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then computes the reflectivity vector with 

Rvec = DTDI*(D2d'*S1d); , 

and then converts the reflectivity vector to the reflectivity matrix with 

R = reshape(Rvec, 3,5); . 
 

MATLAB prefers to use its internal inversion process with a black-slash operation 

Rvec = DTD\(D2d'*S1d); , 

that is apparently more stable than the previous method we used for the inversion. 

We included this last piece of code to emphasize that the data was in a vector-matrix 
format that required the reflectivity to be converted from a vector, back into its correct 
form as a matrix.  In prestack and or 3D data, the reflectivity would be a 3D array, the 
seismic data would have a higher dimension, and the diffraction matrix 3w2ould have an 
even higher dimension.  

All the above processes, using unwrapped data, are a well-established procedures 
(Yousefzadeh 2012).  It is “hoped” that these processing sequences can be accomplished 
without the need to unwrap the data. 

MULTIDIMENSIONAL PROCESSES 

It would be simpler to accomplish the above tasks without the need to unwrap or 
reduce the data to matrix and vector formats.  An example would be to convert the 4D 
diffraction matrix into a transpose of the 4D matrix.  This is not possible with Linear 
Algebra in its current form as the transpose is only defined for a 2D matrix.  However, 
we can define the 2D transpose of a multidimensional array to suit a particular 
application.  For example, the 4D diffraction array can be transposed into a 4D array for 
migration.   

The following Figure 11a shows a 3D diffraction array in (x, z, t) space where the 
vertical slices represent the diffractions at different depths in z.  In a constant velocity 
medium, the diffractions have a hyperbolic shape, and form on the surface of a cone.  
These diffractions are the impulse responses, or Green functions, for modelling.  

The cone can be rotated (transposed) as displayed in Figure 11b where the vertical 
slices are now semi-circles, which are the impulse responses for migration.   
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a)      b) 

FIG. 11  Three dimensional arrays showing in a) diffractions as vertical slices, and b) the 
transpose of (a) showing the vertical slices as migration semi-circles. 

In Figure 11, it is only the t and z axis that are transposed. 

The 4D diffraction array in Figure 3 can be transposed in a similar manner with the 
following code that only transposes the i and k elements: 

for i = 1:I 
    for k = 1:K 
        Dt(k,:,i,:) = D(i,:,k,:); 
    end 
end 
 

The result is displayed in Figure 12, where the semi-circles are approximated with box 
like shapes. 

 

FIG. 12  The 2D transpose of the 4D diffraction array in Figure 3.  Only the i and k elements have 
been transposed. 

Migration of the multidimensional arrays is then accomplished with the following 
code: 
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for i = 1:I             % I = 4 
    for l = 1:L         % L = 5 
        Mig(:,:) = Mig(:,:) + S(i,l)*Dt(:,:,i,l); 
    end 
end 
 
The results are identical to the previous migration in Figure 9 and are not shown. 

The code to accomplish these tasks can be inserted into functions that replicate those 
in Linear Algebra.  To some extent, this has been accomplished in the field of Multilinear 
Algebra (Hoffman 1971, and Greub1967).  A brief note on Multilinear Algebra is 
contained in an Appendix. 

It is anticipated that Multilinear Algebra can be used successfully to process seismic 
data, especially when using the full waveform modelling of diffractions.  

COMMENTS 

Defining the data format for use with Multilinear Algebra may difficult.  

The storage of data within a computer is basically one dimensional and may already 
be in an unwrapped form, such as a shot record, or a collection of shot records.  It will be 
the efficient access to these data that will establish the best performance of the multilinear 
or linear processes. 

Will algorithms for Multilinear Algebra be available in MATLAB or other software 
platforms? 

The inversion process may not be computed directly, but may use iterative algorithms 
such as the conjugate gradient method. 

The matrix method poses significant storage problems that limit the size of the 
applications.  The trivial example above contains 5 traces with 4 samples.  A typical 2D 
diffraction will be defined with 200 traces, each with 1,000 samples.  If we have 800 
traces, each with 1,000 samples, then we need to define 800,000 diffractions.  We will 
require about 1.6x1011 samples to store this information.   Let’s think for a fraction of a 
millisecond about the number of bytes for each sample, extending the problem to 3D, and 
then prestack 3D where we are talking about 5x1016 bytes.  (A tera byte is 1012 bytes, a 
petabyte is 1015 bytes, and an exabyte is 1018 bytes). 

CONCLUSIONS 

Linear algebra can be used to process seismic data.  The conventional Linear algebra 
process requires multidimensional data to be unwrapped to vectors and matrices for use 
with a least-squares application.  It is anticipated that the field of Multilinear algebra will 
bypass this requirement of allow the efficient programming and processing of seismic 
data. 
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APPENDIX 

Brief Notes on Multilinear Algebra and Applications (Rod Blais ) 

 

1.  Summation Conventions 

Given two matrices  A = [aij | i=1,…, I; j=1,…, J] and B = [bjk | j=1,…, J; k=1,…, K] 
compatible for multiplication as  AB ≡ C = [cik | i=1,…, I; k=1,…, K] where  

J

ik ij jk
j 1

c a b
=

=  is conventially written as   cik = aij bjk  when there is no possibility of 

confusion (otherwise, a note is needed),  i.e. for repeated subscripts  (and superscripts) in 
different terms, the summation is assumed. Note that e.g. aii would stand for diagonal 
elements and not the trace! 

2.   Vectorization of Arrays and Matrices  

A two-dimensional array or matrix  A = [aij | i=1,…, I; j=1,…, J]  is normally stored 
(columnwise) as a one-dimensional array  A ≈ [an | n = 1,…,  N]   with  an ≡ aij  where n = 
(j-1)I + i and N = I·J. This storage strategy can of course be extended to higher 
dimensional arrays. 

3.   Multidimensional Arrays 

A three-dimensional array  A = [aijk | i=1,…, I; j=1,…, J; k=1,…,K] can be post 
multiplied by a K-vector  U = [uk | k=1,…,K]  as simply  aijk uk  (with each element being 

summed over k) to give a two-dimensional array  AU ≡ V = [vij | 
K

ij ijk k
k 1

v a u
=

= , i=1,…, 

I; j=1,…, J].  Note the requirement for the compatible dimension K. 

Similarly, a four-dimensional array A = [aijkh | i=1,…, I; j=1,…, J; k=1,…,K; 
h=1,…,H] can be post-multiplied by a two-dimensional array U = [ukh | k=1,…,K; 
h=1,…,H]  as simply aijkh ukh (with each element being summed over k and h) to give a 
two-dimensional array   

     AU ≡ V = [vij | 
K H

ij ijkh kh
k 1 h 1

v a u
= =

= , i=1,…, I; j=1,…, J].   

Note the requirement for the compatible dimensions  K and H. 

4.   Least-Squares Estimation 

Given an overdetermined linear system  A X = B  with A = [aij | i=1,…, I; j=1,…, J] 
with I > J, X = [xj | j=1,…,J]  and B =  [bi | i=1,…,I]  i.e. with aij xj = bi, the simplest 
least-squares solution T 1 TX̂ (A A) A B−=  corresponds to solving  T T

ki ij j ki ia a x a b=  or simply  

ik ij j ik ia a x a b= . 

Starting with a four-dimensional system  G Y = F  with  G = [gijkh | i=1,…,I; j=1,…,J; 
k=1,…,K; h=1,…,H],  Y = [ykh | k=1,…,K; h=1,…,H]  and  F = [fij | i=1,…,I; j=1,…,J]  
overdetermined for the unknowns, then vectorizing the array Y implies that the k and h 
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indices become a single index  n = (h-1)K + k. Then the system becomes  gijn yn  = fij  
which can also be vectorized with respect to i and j giving a single index m = (j-1)I + i  
and the system becomes  simply gmn yn = fm, an overdetermined matrix system of linear 
equations.  Hence the previous least-squares solution can be readily obtained as above. 

 

 


