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ABSTRACT

Feasibility of using Full Waveform Inversion (FWI) to build velocity models has been
increasing as the computational power and more comprehensive forward modelling ap-
proaches have arose. Traditionally, the objective function used during the FWI process has
been minimized by the means of steepest-descent methods by conditioning the gradient
function. Quasi- and full-Newton methods use the Hessian, or an approximate to it, as a
gradient conditioning. For a 1D scalar medium, we derived an analytical expression for
the approximate-Hessian suggesting that it brings the model update to within a first order
approximation of the exact reflection coefficient for a single interface. In its functional
form the Hessian is represented by delta functions into the integration for computing the
model update. Compared to the approximate-Hessian, we found that the full-Hessian pro-
vides additional scaling information at the depth of the interface, improving the accuracy
of the inversion. These ideas were also tested using a numerical example displaying how
both Hessians move very fast toward the actual velocity model. It is also shown that the
full-Hessian leads to a very accurate inversion in the presence of large velocity contrasts
superior to the approximate-Hessian. Hence, the full-Hessian may achieves a faster con-
vergence and accurate inversion while providing amplitude information. For large velocity
contrasts, or in a 2D case, where strong AVO effects may be present, the application of the
full-Newton FWI might be a good candidate.

INTRODUCTION

Approaches to Full Waveform Inversion (FWI) have evolved since the initial works
of Tarantola (1984) and Lailly (1983) using the steepest-descent method for minimizing
the objective function in the inversion of seismic waveforms. Virieux and Operto (2009)
compiled a very comprehensive overview of the theory and challenges behind FWI. The
role of the Hessian in the FWI algorithms is one of these challenges. Pratt et al. (1998)
derived a matrix formalism for FWI regarding the use of the full-Hessian (Newton method)
or some approximation to the Hessian (Quasi-Newton method). Margrave et al. (2011)
developed a framework for interpreting the influence of the Hessian into FWI in a functional
form in terms of Green’s functions.

In this paper, for a 1D scalar medium, we show an analytical derivation of the Hessian
and its inverse. Using numerical examples we also show, the effect of the approximate- and
full-Hessian into the FWI process.

Minimizing the objective function in FWI

Under scalar medium assumptions, the goal of FWI is to find the squared-slowness
model s0(r) ≡ 1/c20,n(r) which "most likely" produced, the recorded wavefield P (rg, rs, ω).
Here, rg and rs are the receiver and source position vectors respectively, and ω is the angu-
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lar frequency. In order to achieve that goal, FWI seeks to minimize, after n iterations, the
objective function Φ(s

(n)
0 ) defined as

Φ(s
(n)
0 ) ≡ 1

2

∫
dω

(∑
s,g

|δP |2
)
, (1)

where δP is the residual wavefield given by

δP (rg, rs, ω|s(n)0 ) ≡ P (rg, rs, ω)−G(rg, rs, ω|s(n)0 ), (2)

and G(rg, rs, ω|s(n)0 ) is the modelled field due to the s(n)0 squared-slowness model iteration.

After evaluating the objective function at Φ(s
(n)
0 + δs

(n)
0 ), computing its derivative and

setting it to zero, Margrave et al. (2011), showed that the update δs(n)0 needed to move
toward the minimum of the objective function can be computed as

δs
(n)
0 (r′′) = −

∫
dr′H(n)−(r′′, r′)g(n)(r′), (3)

where

g(n)(r′) =
∂Φ(s

(n)
0 )

∂s
(n)
0 (r′)

, (4)

is the gradient of the objective function and H(n)−(r′′, r′) is the inverse of the Hessian
function defined as

H(n)(r′, r) =
∂2Φ(s

(n)
0 )

∂s
(n)
0 (r′)∂s

(n)
0 (r)

, (5)

r, r′ and r′′, are arbitrary positions into the slowness model.

Margrave et al. (2011) also showed that, in terms of Green’s functions G(r, r′, ω), the
Gradient can be computed as

g(n)(r) =
∑
s,g

∫
dωω2[G(r, rs, ω|s(n)0 )]× [G(rg, r, ω|s(n)0 )δP ∗(rg, rs, ω|s(n)0 )], (6)

while the Hessian can be expressed as composed of two terms,

H(n)(r′, r) = H
(n)
1 (r′, r) +H

(n)
2 (r′, r), (7)

where

H
(n)
1 (r′, r) = −

∑
s,g

∫
dωω4[G(rg, r, ω)G(r, r′, ω)G(r′, rs, ω)

+G(rg, r
′, ω)G(r′, r, ω)G(r, rs, ω)]δP ∗(rg, rs, ω)],

(8)

and

H
(n)
2 (r′, r) =

∑
s,g

∫
dωω4G(rg, r

′, ω)G(r′, rs, ω)G∗(rg, r, ω)G∗(r, rs, ω)). (9)
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Equation 7 is known as the full-Hessian and it is used for taking full-Newton steps
towards the minimum of the objective function. Under the assumption of small resid-
uals, equation 8 can be small enough to be omitted in the computations, leading to an
approximate-Hessian equal to equation 9. The latter one is used for taking quasi-Newton
steps for FWI. Dependency of the fields and residuals on s(n)0 is implicit in equations 8 and
9 and will be omitted in the following equation to save space.

1D Approximate-Hessian in a scalar medium

The approximate Hessian (equation 9) can be written in terms of Green’s functions
and its complex conjugates, representing the receivers and source wavefields observed at
positions r and r′. The general expression for a causal homogeneous Green’s function, in
a 1D scalar medium is

G(z, zs, ω) =
eik|z−zs|

i2k
, (10)

where z and zs are the depths of the observation point and source point respectively, and k
is the wave number in the direction of propagation.

Figure 1 shows the interface model used for deriving the analytical expressions for
the Hessian; (left) shows a representation of the background homogeneous medium with
velocity c0 and (right) shows the true model with just one interface at depth z1.
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FIG. 1. (left) Background velocity model used as the initial model for 1D FWI. (right) Actual velocity
model we are trying to invert

For the initial conditions mentioned above and considering just one source-receiver pair
fixed at depth zg = zs = 0, the approximate-Hessian can be written as

H2(z
′, z) =

∫
dωω4G(0, z′, ω)G(z′, 0, ω)G∗(0, z, ω)G∗(z, 0, ω)). (11)
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Using equation 10, the two modelling Green’s functions and their complex conjugate,
for a wavefield propagating through an background medium with wave number k = k0 are

G(z, 0, ω) = G(0, z, ω) =
eik0z

i2k0
, (12)

G∗(z, 0, ω) = G∗(0, z, ω) = −e
−ik0z

i2k0
. (13)

Substituting equations 12 and 13 into equation 11 we get

H2(z
′, z) =

∫
dωω4 e

ik0z′

i2k0

eik0z
′

i2k0

(
−e
−ik0z

i2k0

)(
−e
−ik0z

i2k0

)
. (14)

Multiplying and collecting alike terms, equation 14 reads into

H2(z
′, z) =

1

24

∫
dω

(
ω

k0

)4

ei2k0(z
′−z). (15)

Since w/k0 = c0 we can take this term out of the integral and using the variable change

dω =
c0
2
d(2k0), (16)

equation 15 becomes

H2(z
′, z) =

(c0
2

)5 ∫
d(2k0)e

i(2k0)(z′−z). (17)

The remaining integral over the variable (2k0) can be recognized as the Fourier transform
of a delta function at point (z′ − z), then the approximate-Hessian becomes

H2(z
′, z) =

(c0
2

)5
(2π)δ(z′ − z),

=
c50π

24
δ(z′ − z).

(18)

Inverse Approximate 1D Hessian

The inverse Hessian must satisfy the expression (Margrave et al., 2011)∫
dr′H(n)(r′′, r′)H(n)−(r, r′) = δ(r′′ − r). (19)

Rewriting equation 19 for the 1D case, using equation 18 gives∫
dz′H(z′′, z′)H−(z, z′) = δ(z′′ − z), (20)∫

dz′
[
c50π

24
δ(z′′ − z′)

]
H−(z, z′) = δ(z′′ − z), (21)

c50π

24

∫
dz′δ(z′′ − z′)H−(z, z′) = δ(z′′ − z). (22)
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Using the sifting property of the delta function,

c50π

24
H−(z, z′′) = δ(z′′ − z), (23)

and solving for H−(z, z′′),

H−(z, z′′) =
24

c50π
δ(z′′ − z). (24)

Model update given by the approximate-Hessian

In order to fully understand the effect of the Hessian in updating the initial model, the
action of it on the gradient (equation 3) should be known.

The gradient of the objective function Φ(s
(n)
0 ) for a 1D scalar homogeneous medium is

given by (Innanen, 2013)

g(z) =
R1c

3
0π

4
H(z − z1), (25)

where R1 is the scalar reflection coefficient for normal incidence computed as
R1 = (c1 − c0)/(c1 + c0), and H(z − z1) is a Heaviside function with a step located at
the reflector depth z1.

Rewriting equation 3 for the 1D scenario and substituting equations 24 and 25 into it

δs
(n)
0 (z) = −

∫
dz′H−(z, z′)g(z′), (26)

= −
∫
dz′
[

24

c50π
δ(z′ − z)

] [
R1c

3
0π

4
H(z′ − z1)

]
, (27)

= −4R1

c20

∫
dz′δ(z′ − z)H(z′ − z1). (28)

invoking the sifting property of the delta function

δs
(n)
0 (z) = −4R1

c20
H(z − z1). (29)

Equation 29 shows that the model update after using the inverse Hessian acting over the
gradient of the objective function, gives a step with amplitude −4R1/c

2
0 at the actual depth

of the interface z1.

In order to understand the significance of the step amplitude in the model update, lets
recall the definition of the scalar reflection coefficient and write it in terms of the slowness
(s0 = 1/c0 and s1 = 1/c1) of each medium as,

R =
c1 − c0
c1 + c0

=
1− c0/c1
1 + c0/c1

=
1− s1/s0
1 + s1/s0

. (30)
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Solving for s1/s0,

s1
s0

=
(1−R)

(1 +R)
. (31)

Expanding the denominator of equation 31 as a Taylor series,

s1
s0

= (1−R)(1−R +R2 −R3...), (32)

and keeping terms up to the first order results

s1
s0
≈ (1−R)(1−R), (33)

≈ 1− 2R +R2. (34)

Then, squaring both sides of equation 34 and collecting again terms up to the first order
results

s21
s20
≈ (1− 2R)2 = 1− 4R +R2, (35)

≈ 1− 4R. (36)

Solving for s21 reads

s21 ≈ s20 − 4s20R. (37)

Finally, the squared-slowness change that must happen to get the reflection coefficient R is
given by

∆S ≈ s21 − s20 = −4s20R, (38)

≈ −4R

c20
. (39)

Comparing equation 29 and 39 it can be concluded that the inverse Hessian produces a
model update which is equal to the change in slowness associated with the reflection coef-
ficient R, up to a first-order approximation. While the role of the gradient is to provide the
location of the interface through a Heaviside function, the "spiky" character of the approx-
imate inverse Hessian is focusing and correcting the amplitude of the gradient, leading to a
first order approximation of the actual slowness change.

1D Full-Hessian

For finding an analytical expression for full-Hessian, the H1(r
′, r) term given in equa-

tion 8 should be computed. This term includes information about the residual wavefield
δP (rg, rs, ω) into the Hessian computation. The complex conjugate of the residual wave-
field for a 1D scalar medium FWI can be expressed as (Innanen, 2013)

δP ∗(0, 0, ω) = −R1
e−i2k0z1

i2k0
. (40)
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Rewriting equation 8 for the 1D case results

H1(z
′, z) = −

∫
dωω4[G(0, z, ω)G(z, z′, ω)G(z′, 0, ω)

+G(0, z′, ω)G(z′, z, ω)G(z, 0, ω)]δP ∗(0, 0, ω).

(41)

Substituting equations 10, 12, 13 and 40 into 41, it can be written as

H1(z
′, z) = −

∫
dωω4

[
eik0z

i2k0

eik0|z−z
′|

i2k0

eik0z
′

i2k0
+
eik0z

′

i2k0

eik0|z
′−z|

i2k0

eik0z

i2k0

](
−R1

e−i2k0z1

i2k0

)
.

Since |z′ − z| = |(−1)(z − z′)| = |z − z′|,

H1(z
′, z) =

R1

24

∫
dω2

(
ω

k0

)4 [
eik0(z+z′−2z1+|z−z′|)

]
. (42)

Defining the variable Z = (z + z′ − 2z1) equation 42 can be written as

H1(z
′, z) =

R1

23

∫
dω

(
ω

k0

)4 [
eik0(Z+|z−z′|)

]
. (43)

The integral in equation 43 can be solved in a similar way to equation 15, therefore

H1(z
′, z) =

R1c
5
0π

23
δ(Z + |z − z′|). (44)

As we can see in equation 44, the H1(z
′, z) term is a new delta function, which has an

absolute value function within it. This result confirms that the role of the full-Hessian is to
scale the gradient function, after integrating it over depth. Hence, the depth of the interface
predicted by the gradient function will not be changed by the Hessian.

Lets take one more step forward and consider z > z′. Then

H1(z
′, z) =

R1c
5
0π

23
δ(Z + z − z′), (45)

=
R1c

5
0π

23
δ(z + z′ − 2z1 + z − z′), (46)

=
R1c

5
0π

23
δ(2(z − z1)), (47)

Using the scaling properties of the delta function,

H1(z
′, z) =

R1c
5
0π

23

(
1

2

)
δ(z − z1). (48)

=
R1c

5
0π

24
δ(z − z1). (49)
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It can also be shown, following the same steps as before, that for z′ > z the H1(z, z
′) term

reduces to

H1(z
′, z) =

R1c
5
0π

24
δ(z − z1). (50)

For both cases (equations 49 and 50) the effect of the residual-dependent term of the Hes-
sian is to scale the gradient function just at the depth of the interface. Compared with
the approximate-Hessian (equation 18), the H1(z

′, z) includes information about R1 which
was not present before.

Substituting equations 18 and 44 into equation 7 the full-Hessian can be written as

H(z′, z) =
R1c

5
0π

23
δ(Z + |z − z′|) +

c50π

24
δ(z′ − z). (51)

Comparing equation 51 and 18 reveals that the full-Hessian is now carrying out additional
information just at the depth of the interface (z1). From equation 49, the scaling to be
applied by the H1(z

′, z) term is R1 times the scaling of H2(z
′, z). Hence, it can also be

concluded that in the presence of large reflection coefficients the residual-dependent term
of the full-Hessian will have an important effect on the FWI.

Developing an analytical expression for the inverse of the full-Hessian is one of the
goals of an ongoing research project. However, we may expect it to keep the feature men-
tioned above regarding the localization of the additional scaling. Tarantola (2005) states
that full-Hessian may become different to the approximate-Hessian, not only when the
residuals are large but when the non-linearities of the forward problem are large. There-
fore, it can be expected that using the full-Hessian may have an effect similar to including
high order terms into the approximation for computing the magnitude of the model update,
in contrast to the first order approximation given by the approximate-Hessian.

Numerical experiments

Hessian in matrix-vector form

Computing the approximate- or the full-Hessian numerically may have a high compu-
tational cost, especially for multi-parameter or multi-dimensional cases. The approximate-
Hessian requires m forward modellings, while the full-Hessian requires m2 additional for-
ward modellings, where m is the number of model cells (Pratt et al., 1998).

Mathematical expressions for the numerical computation of the Hessian are better un-
derstood in their matrix form. In this setting, the Hessian can be computed as (Pratt et al.,
1998)

H = Re
{
JtJ
}

+Re

{[(
∂

∂p1
Jt

)
δd∗

(
∂

∂p2
Jt

)
δd∗ . . .

(
∂

∂pm
Jt

)
δd∗
]}

, (52)

where J is the Frechét derivative matrix, the elements of which are given by

Jij =
∂ui
∂pj

, i = (1, 2, . . . , n); j = (1, 2, . . . ,m). (53)
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δd∗ is the complex conjugate of the residuals vector with elements

δdi = ui − di, i = (1, 2, . . . , n), (54)

where ui is the model response at receiver location i, di is the modelled data at the same
location, and pj is the j-th model parameter.

As in equation 52, the full-Hessian can be split in two terms. The approximate Hessian

Ha = Re
{
JtJ
}
, (55)

and the residual-dependent term,

R = Re

{[(
∂

∂p1
Jt

)
δd∗

(
∂

∂p2
Jt

)
δd∗ . . .

(
∂

∂pm
Jt

)
δd∗
]}

. (56)

Equations 55 and 56 are equivalent to the expressions in equation 9 and 8 respectively.
Equation 55 can be interpreted as the zero-lag cross-correlation between the first-order
partial derivatives of the wavefields computed at different model cells. Similarly, equation
56 represents the cross-correlation of the second-order partial derivative of the wavefields
and the data residuals (Pratt et al., 1998).

Once the Hessian has being computed the model update δp is given by

δp = −H−1∆pE, (57)

where ∆pE is the gradient of the objective function E(p) and can also be computed in
terms of J and the data residuals as

∆pE =
∂E

∂p
= Re{Jtδd∗}. (58)

Full-Newton and quasi-Newton 1D FWI

In equations 55 and 56, the key term for computing the Hessian is the partial derivative
seismograms. Here we use a first-order differencing scheme,

∂u

∂pj
=
u(p0,j + ∆p)− u(p0,j)

∆p
, (59)

where u(p0,j) is the forward modelled seismogram using the initial parameter model value
p0 and u(p0,j + ∆p) is the modelled seismogram after "perturbing" the initial parameter
model. This computation has to be done after perturbing each j-th cell of the parameter
model. The same first order differencing scheme may be used for computing the derivatives
of the partial derivative seismograms, i.e. the second derivative of the wavefields respect to
each parameter model.

Figure 2 shows the initial model and the actual model used for the tests. The initial
model has a constant velocity chosen to match the velocity of the first layer. Synthetic
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FIG. 2. (left) Initial velocity model used for the inversion (velocity was chosen to be constant with a
value equal to the velocity of the first layer (c0 = 2, 000m/s)). (middle) "Actual" velocity model used
for computing the input data shown at the right.
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FIG. 3. (left) Gradient of the objective function computed by the means of the cross-correlation of
the derivative matrix J and the data residuals. (middle) Approximate-Hessian. (right) Full-Hessian.
The small change in the diagonal value at 200m depth was introduced by the residual dependent
term of equation 52. The colour scale has been clipped to highlight the presence of the change in
the diagonal values
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FIG. 4. Inversion results after using both the approximate-Hessian (quasi-Newton method) and the
full-Hessian (full-Newton method).

data was computed as full-band seismograms hence the input trace is a spike scaled by the
reflection coefficient R1 and located at time t1 = 2z1/c0.

Following the relationships established in equations 55, 56 and 58, we computed the
gradient and both the approximate- and full-Hessians (Figure 3). As it was expected, the
gradient is a spike located at the depth of the interface. Integration of this spike respect to
depth leads to the "step" function that was used in the analytical derivation of the Hessian
(equation 25). The approximate-Hessian is a diagonal matrix and the exact Hessian looks
very close to it but it has additional information at the depth of 200 m. From the analytical
derivation (equations 44 and 51) it is known that the residual dependent term in the full-
Hessian provides additional information at the depth of the interface, which is shown in
figure 3 as a small change in the diagonal value at z1 depth.

From equation 3, the model update should be given by the multiplication of the in-
verse Hessian and the gradient vector. However, computing the inverse of the Hessian is
not needed since there are numerical methods for directly computing this product without
inverting the matrix.

Figure 4 shows the inverted models using both versions of the Hessian. The inverted ve-
locity values are very close to the actual model (c1,QN = 2, 192m/s; c1,FN = 2, 202m/s).
While the full-Newton FWI gave almost a perfect match with a relative error of just 0.09%,
the quasi-Newton gave a relative error of 0.35%, in just one step. This shows the power
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FIG. 5. Approximate-Hessian (left) and full-Hessian (right) after increasing the velocity contrast up
to 50%. The change in the diagonal at 200m has now a larger value than in figure 3. Colour bar
has been clipped and set at the same range than figure 3

of the Hessian in the search for the minimum of the objective function. Compared to a
gradient-based FWI where, after computing the gradient, a line search must be performed
to get the proper step-length, the Hessian is directly producing a model update which leads
the inversion closer to the minimum of the objective function in just one step.

The second important result obtained from the analytical derivation, was the role of
the full-Hessian in the presence large velocity contrasts. Figure 5 shows both Hessians
for a model with a contrast of 50% the background velocity (i.e. c0 = 2, 000m/s; c1 =
3, 000m/s). Although both Hessians look very similar, the change in the diagonal value
located at the interface depth, is larger after increasing the contrast. This effect is related
with the dependency on R1 of the scaling produced by the residual-dependent term in the
full-Hessian.

Figure 6 shows the inverted models after considering the 50% increase in velocity
mentioned above and an additional result for an increase of 100% in the velocities. The
quasi-Newton FWI result shows a consistent underestimation of the velocity of the second
layer by a relative error of 5% (c1,QN = 2, 840m/s), for the 50% velocity contrast and
up to 13% (c1,FN = 3, 467m/s), when the contrast is 100% larger. On the other hand,
despite the full-Newton FWI also shows an increase in its relative error, it does so in a
much lower magnitude. The relative errors obtained using the full-Hessian were of 1.27%
(c1,FN = 3, 038m/s) for the 50 % velocity contrast, and 2.8% (c1,FN = 4, 112m/s) for the
100% velocity contrast. Results for both contrast levels are still very good for being just
the first step into a larger loop of iterations.

The behaviour of the relative error in the estimation of c1 for a wide range of velocity
contrasts can be seen in Figure 7. The error obtained using the full-Newton inversion is
consistently lower than the error of the quasi-Newton method. While the quasi-Newton
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FIG. 6. Inversion results after increasing the velocity the velocity contrast up to 50% (left) and 100%
(right).

method tends to increasingly underestimate the value of c1 the full-Newton FWI is very
close to the actual c1 value, slightly overestimating its value for velocity ratios up to 4.8,
before starting to underestimate it. This result may have an important effect in the con-
vergence of the FWI to the actual c1 value. Since the velocity updates given by the quasi-
Newton method are smaller than the updates given by the full-Newton inversion it will be
needed a larger number of iterations to achieve the actual velocity value. Despite the high
computational cost of computing the full-Hessian, in settings with large velocity contrasts
it will lead to a more accurate velocity estimation. Moreover, the ability of the full-Hessian
for taking into account the non-linear part of the amplitude changes makes it a very good
candidate for inverting seismic data under the presence of large velocity contrasts or when
AVO information is important.

CONCLUSIONS

The analytical development made in this work showed that the approximate-Hessian
provides the proper scaling for obtaining a very close match to the actual velocity change
in just one step. Comparing the model update given by a quasi-Newton step with a se-
ries expansion of the reflection coefficient, it can be concluded that the update given by
the approximate-Hessian is exact up to a first-order approximation of the velocity change
related with the actual reflection coefficient. On the other hand, by the means of includ-
ing information about the residuals, the full-Hessian is able to provide additional scaling
at the actual depth of the interface. The numerical experiments confirmed the expected
effect of the full-Hessian regarding its role when the non-linearity of the forward problem
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FIG. 7. Error in the estimation of c1 for the quasi- and full-newton FWI, based on the relative
magnitude of the velocity contrasts.

becomes important. On the presence of a large velocity contrast, the full-Newton FWI was
able to give a very close match to the actual velocity model in just one step. Despite the
approximate-Hessian is able to give a very good match when velocity contrasts are small,
it starts to fail when velocity changes are very large. Moving to a 2D scenario, is needed to
understand the role of the Hessian when large AVO effects are present in the data.

There is still much work to do in terms of the time-efficient computation of the Hes-
sian for large datasets. The requirement of a huge number of forward modellings makes it
very costly in a computational sense, particularly when multidimensional or multipareme-
ter FWI comes into the scene. However, computational power has shown to increase ex-
ponentially with time, making the use of the full-Hessian a very good option for FWI in a
short to medium term.
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