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ABSTRACT 

Acoustic impedance is a rock property that can be derived from seismic data and 
contains important information about subsurface properties. Direct measurements of 
acoustic impedance are available from acoustic and density well logs, but these well data 
can provide the acoustic impedance only at the well’s location. Mathematically it is true that 
acoustic impedance can be calculated from earth’s reflectivity function, and this function can be 
estimated from seismic data. Additionally, estimation of reflectivity from seismic data is 
always bandlimited and affects acoustic impedance significantly. Acoustic impedance 
inversion can easily be computed by a standard impedance inversion algorithm which 
uses well logs to fill in the low-frequency information that is missing in bandlimited 
seismic data.  

In this study we investigate the performance of standard deconvolution and its ability 
to recover low frequency content directly from seismic data. We find that standard 
deconvolution does not perform well at low frequencies and this is a limiting factor in 
impedance inversion. Using frequency domain deconvolution, we show that improving 
the spectral smoothing process and applying a minimum phase spectral color operator to 
the deconvolved seismic trace can improve the performance of impedance inversion and 
reduce the bandwidth necessary from well control. 

INTRODUCTION 

The ultimate goal of geophysics is to determine the earth’s reflectivity as a function of 
position beneath a seismic survey. Once the raw data is processed, it is possible to 
estimate the earth’s reflectivity from them. The low frequency seismic data is getting 
contaminated with low frequency noises, and it will result in missing low frequency data 
in the recorded data. The question is, can we otherwise suppress low-frequency noise 
without wasting good information?  Waters (1978) described an impedance inversion 
scheme which is a simple approach to derive impedance values from seismic data. An 
impedance estimate, from a well log or stacking velocities, is first combined with 
integrated seismic data in the frequency domain. Detailed impedance values are thus 
provided by the integrated seismic data, and the low-frequency trend is provided by the 
well-log. Lindseth (1979) also added low frequencies derived from velocity analysis, and 
Oldenburg et al. (1983) introduced two different approaches for recovering low 
frequency information. Acoustic impedance inversion can also be computed easily by a 
BLIMP (BandLimited IMPedance) algorithm (Ferguson & Margrave, 1996) which uses 
well logs to fill in the low frequency information that is missing in bandlimited seismic 
data. Recovering the low frequencies before passing through the impedance estimation 
process can be challenging. The key point of this idea is estimating the wavelet as 
accurately as possible during deconvolution hence the low frequency part can be 
recovered from estimated reflectivity. We start by reintroducing the convolutional model 
for normal incident seismograms and then show how reflectivity can be estimated by 
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deconvolution. Two approaches will be discussed for recovering low frequencies in a 
deconvolution algorithm, and the result of impedance inversion derived from the new 
deconvolution will be presented.       

 THEORY 

A wave source can put energy into the ground, and the wave can propagate through 
the earth and be reflected by reflectors (Figure 1). Regardless of the effect of geometrical 
spreading, transmission losses, an-elastic absorption and multiple reflections, a simple 
geophysical model can be introduced by a convolutional model. Seismic data recorded by 
a receiver are equal to a convolution of earth’s reflectivity function with a known wavelet 
(Sheriff & Geldart, 1995). 

 ( ) ( ) ( )s t r t w t= , (1) 

where ( )s t  is the recorded seismic data, ( )r t  is the reflectivity function, ( )w t  is the 
wavelet and “ • ” is a convolutional operator.  

 

FIG. 1. A homogeneous medium with a single reflector. 

It is also possible to add stationary and white noise to equation 1 to represent a 
recorded noisy seismogram. Equation 1 then becomes 

 ( ) ( ) ( ) ( )s t r t w t n t= +  (2) 

where ( )n t  is a stationary and white noise which means that it has a constant power at all 
frequencies. 

 As was mentioned before the main goal of geophysics is determining a reflectivity 
function from recorded seismic data. Once the seismic data is recorded by receivers, it is 
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used to estimate reflectivity. However, the only known parameter in equation 2 is ( )s t , 
which is a function of time, while all other parameters are unknown. 
Mathematically, deconvolution is an algorithm-based process which is used to reverse the 
effects of convolution on the recorded data. The goal of a deconvolution scheme is to 
remove the effect of the wavelet from seismic traces and then retrieving the earth’s 
reflectivity function. Wiener spiking deconvolution (Leinbach, 1995), maximum entropy 
(Burg) deconvolution (AuYeung, 1986), frequency domain deconvolution (Margrave, 
2002), and Gabor deconvolution (Margrave & Lamoureux, 2002) are different 
deconvolution methods that can be applied to seismic data to estimate reflectivity. This 
report outlines an attempt to estimate the reflectivity by applying frequency domain 
deconvolution to zero-offset seismic data and utilizing the result to calculate acoustic 
impedance inversion.  

Once the reflectivity function has been estimated it is possible to calculate the 
impedance inversion. The ratio of the amplitude of a reflected wave to the amplitude of 
the incident wave is called the reflection coefficient, and the function which defines the 
reflection coefficient for each point in the medium is the reflectivity function. In a one 
dimensional medium and the acoustic case for the normal incident wavelet, the reflection 
coefficient can be written as (Margrave, 2002) 
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where 1nρ +  and 1nv +  are representing density and velocity in the (n+1)th layer respectively, 

nρ  and nv  are density and velocity in the nth layer respectively, and nr  is the reflection 

coefficient in the nth layer.  

The product of density and acoustic velocity, which varies among different rock 
layers, is known as acoustic impedance, common symbols for it are I and Z. Acoustic 
impedance indicates how much sound pressure is generated by the vibration of molecules 
of a particular acoustic medium. Therefore, the equation (3) can be written as 
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where 1nI +  and nI  represent the acoustic impedance of the (n+1)th and nth layer 

respectively. To calculate the acoustic impedance instead of using the impedance to 
compute reflection coefficients in equation 4, it is possible to use reflection coefficients 
which are derived from seismic data, in order to determine acoustic inversion (Lindseth, 
1979). The reflection coefficients can be derived from recorded seismic data and well 
logs. Mathematically, the impedance can be written in terms of reflection coefficients like 
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By assuming 1nr  equation (5) can be approximately written as 
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 ( )( ) ( ) ( )2

1 1 1 1 1 2n n n n n n n nI I r r I r I r+ = + + + + . (6) 

Replacing n by n-1, equation 5 can be written for nI  as  

 ( )1 11 2n n nI I r− −+ . (7) 

Using the same procedure for upper layers, 1nI +  can be rewritten as 
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And by a simple calculation, 1 2 jr+  can be estimated as 
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Therefore, equation 8 becomes 
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Equation 10 is a type of inversion process which computes acoustic impedance from 
seismic reflection information and is known as impedance inversion (II). Therefore, 
given the impedance of the first layer and the estimated reflectivity function, acoustic 
impedance can be calculated.  

We want to know reflectivity with as much precision and resolution as possible for a 
variety of reasons. As an example, large reflection coefficients may indicate sand layers 
which are potential hydrocarbon reservoirs. On the other hand, seismic sources do not 
generate useful power at all frequencies, therefore it is accepted that any reflectivity 
estimate must be bandlimited. In this situation the bandlimited reflectivity includes fewer 
details than the actual earth reflectivity. The broadband and bandlimited reflectivity in the 
frequency and time domain is illustrated in figure 2. 
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FIG. 2. Comparing broadband and bandlimited reflectivity in both frequency and time domain 

The first diagram shows that the broadband reflectivity contains all frequencies from 
zero to 500 Hz, but the bandlimited one contains only the frequencies from 10 Hz to 120 
Hz. In the second diagram, the differences between two reflectivity functions are 
noticeable. It can be realized that the data which lack low and high frequencies have less 
resolution than the broadband data set.  

Frequency Domain Deconvolution 

The method described here is based on a frequency domain framework, which might 
be the easiest way to estimate reflectivity. Regardless of the phase spectrum of a seismic 
trace, the amplitude spectrum of seismic data is similar in shape to the amplitude 
spectrum of wavelet as shown in Figure 3. 

   

FIG. 3. Amplitude spectrum of white spectrum reflectivity (blue), seismic data (green) and a 
minimum phase wavelet (red). 
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If the amplitude spectrum of the wavelet can be computed by smoothing the amplitude 
spectrum of seismic data, the amplitude spectrum of the wavelet could be extracted and 
thus the reflectivity can be estimated. The perfect deconvolution operator can be defined 
as: 

 ( ) ( ) ( ),w t d t tδ=  (11) 

so ( )d t  is inverse of ( )w t . By substituting the inverse of ( )w t  into equation 1, ( )r t  
becomes 

 ( ) ( ) ( ),r t s t d t=  (12)      

where ( )r t  is the exact reflectivity function. But in practice, because of the bandlimited 
nature of wavelets and the unavoidable presence of noise, even if we could find ( )d t  as a 
function to make equation 11 equal to ( )tδ , such an operator would simply produce noise 
at frequencies where noise dominates signal. This important fact leads us to the concept 
that the estimated reflectivity function is never exactly the same as the true reflectivity 
function. Mathematically, it can be written as:  

 ( ) ( ) ( ),d ds t r t w t=  (13) 

where ( )ds t is the estimated reflectivity, and ( )dw t can be represented as 

 ( ) ( ) ( ),dw t d t w t=  (14) 

where ( )dw t  is the estimated wavelet and is an approximation of true wavelet. Figure 4 is 

illustrating an example of an actual wavelet and its estimation in the time and frequency 
domain.  

 

FIG. 4. True and estimated wavelet in the time domain (left) and frequency domain (right) from a 
noise-free seismogram. 

To construct a frequency domain deconvolution operator that can be applied to 
seismic data, some assumptions are required:  

1. The wavelet should be minimum phase. 

2. The wavelet spectrum should be smooth. 
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3. The wavelet should be stationary. 

4. The reflectivity is assumed to be random, therefore its amplitude spectrum is 
assumed to be white. 

On the other hand, by writing equation 2 in frequency domain, 

 ( ) ( ) ( ) ( ),S f R f W f N f= +  (15) 

 It is possible to define a specific region of frequency ( min maxf f f≤ ≤ ), in which the 

( ) ( )R f W f  term dominates over ( )N f and the noisy and noise-free seismograms are 
almost the same (figure 5). The white reflectivity assumption means 

 ( ) 1,R f ≈  (16)   

where the overbar indicates smoothing. Therefore, the amplitude spectrum of an 
estimated wavelet can be expressed as 

 ( ) ( ) .S f W f≈  (17) 

The amplitude spectrum of a deconvolution operator can be calculated from equation 
17 and equation 14 as following 

 
11

( ) ( ) ( ) ,
estimated

D f W f S f
−−= =  (18) 

which indicates that the amplitude spectrum of the deconvolution operator is the inverse 
of the estimated wavelet or inverse of the smoothing of the seismic amplitude spectrum. 
Therefore, the better smoothing of the seismic data we have the better reflectivity 
estimation.  

 

FIG. 5. Amplitude spectrum of noisy and noise-free seismograms. 

According to the minimum phase assumption of a wavelet and all above results, the 
complete form of a deconvolution operator becomes (Margrave, 2002) 
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where μ  is called the stability factor or white noise factor, a small positive number 
usually between 0.01 and 0.000001, and maxA  is the maximum value of the spectrum of 

( )
est

W f . Also, ( )D fφ is the phase of the deconvolution operator and can be defined as 

 ( ) ( )( )ln ( ) ,D f H D fφ =  (20) 

where H  is a linear transform and is called Hilbert transform. By applying equation 19 
to a seismic trace, the reflectivity function can be estimated.  

REAL WELL DATA DECONVOLUTION RESULTS 

Geophysics attempts to make a model of the subsurface that is as accurate as possible. 
To reach this goal synthetic data, which is the modelled data, are created for the purpose 
of study, and can be compared to the actual seismic data results. One option to produce 
very realistic synthetic seismic data is to use sonic and density logs. Sonic and density 
logs provide detailed and accurate information about the subsurface. However, this 
information is valid only at the well’s location. By having velocity and density at the 
well’s location, it is possible to calculate an exact reflectivity function by equation 3. By 
convolving the reflectivity with a specific wavelet it is possible to synthesize seismic 
data. In September 2011, CREWES initiated a seismic experiment with the goal of pushing 
the low-frequency content of seismic down as low as possible. This project was located near 
Hussar, Alberta, which is about 100km east of Calgary, Alberta. The line was 4.5km long and 
intersected three wells, 12-27, 14-27 and 14-35, shown in Figure 6 (Margrave, et al., 2012). 
In this study, the log data from well 12-27 have been used. Figure 8 illustrates the 
reflectivity function, a 15Hz minimum phase wavelet and synthetic seismic trace in the 
time domain, and Figure 9 shows these parameters in the frequency domain. 

 

FIG. 6. Location of the seismic line area near Hussar, Alberta, Canada, indicated by the red 
marker. (Lloyd, 2013) 
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FIG. 7. P-wave and density log of well 12-27 near Hussar. 

 

FIG. 8. Illustration of the reflectivity function (A), the 15Hz minimum phase wavelet (B), and the 
synthetic seismic trace (C) in time domain. 
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FIG. 9. Illustration of the reflectivity function, the 15Hz minimum phase wavelet, and the synthetic 
seismic trace, in the frequency domain. 

Figure 9 shows that the reflectivity spectrum does not have constant power which 
means that it is not a white reflectivity, and is called colored. This type of spectrum 
displays the principal character of amplitude spectra of the real earth’s reflectivity. 
However, a white spectrum is representative of random reflectivity. Therefore, applying a 
standard deconvolution operator, equation 19, to real seismic data causes an incorrect 
estimate, which will be described in further detail in the proceedings. In this study, we 
have tried to improve the reflectivity estimate at low frequencies. The followings are two 
different approaches to this issue: 

1. Improving the spectral smoothing process used to estimate the wavelet. 

2. Applying a spectral color operator to the deconvolved data to correct for the white 
reflectivity assumption. 

Spectral smoothing  

Returning to the deconvolution process, the first step was to take the magnitude of the 
complex-valued Fourier spectra, discarding all phase information. If the reflectivity is 
white, the resulting amplitude spectra for a typical case with synthetic data are shown in 
Figure 3. The general shape of the amplitude spectrum of the seismic signal comes 
entirely from the spectral shape of the source waveform. Put another way, if we smooth 
the amplitude spectrum of a seismic signal, we will estimate the amplitude spectrum of 
the source waveform. Once the amplitude spectrum of the source waveform has been 
estimated, the waveform’s phase spectrum needs to be estimated. This is where the 
assumption of minimum phase comes in. Therefore the most important stage of a 
frequency domain deconvolution process is the smoothing of seismic amplitude 
spectrum. Generally, smoothing or filtering techniques have been applied to suppress 
noise from noisy data. A common smoothing technique is to replace a given data point 
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with the mean value of points in its neighborhood.  The size of the “neighborhood” 
defines the size of the smoothing operator.  An equally whitened local average is 
achieved by convolving the spectrum with a boxcar function. This process naturally 
results in a smoother signal. In this study, we investigate the use of a Gaussian smoother 
instead of a boxcar smoother.  

Applying this deconvolution operator to our synthetic seismic data can cause some 
issues, since the synthetic seismic data used in this study are related to a colored spectrum 
reflectivity, and they are contaminated with white random noise where its signal to noise 
ratio is equal to two. For noisy seismograms we only need that part of a spectrum where 
signal dominates noise, as shown in Figure 5. This area is found in the same figure in the 
region between fmin and fmax. Therefore, the deconvolved seismogram should be filtered 
by appropriate low-cut and high-cut frequency filters. Figures 10 and 11 illustrate the 
deconvolution results for noise-free and noisy seismogram with boxcar smoother and 
Gaussian smoother, respectively. At each of these figures the right plot shows zooming 
on the low-frequency part of left plot. It is obvious from these two figures that the results 
from a Gaussian smoother match the spectrum of reflectivity much better than the results 
from a boxcar smoother. Here the length of the frequency smoother is 65Hz and 40Hz for 
the noise-free and noisy seismogram respectively. However the new results have still 
some fundamental problems which come from assumptions on the deconvolution that 
have been already mentioned and will be reintroduced in the next part.   

 

FIG. 10. Amplitude spectrum of deconvolved noise-free and noisy seismogram by using boxcar 
smoother (left) and zooming in low-frequency part (right).  

 

FIG. 11. Amplitude spectrum of deconvolved noise-free and noisy seismogram by using 
Gaussian smoother (left) and zooming in low-frequency part (right). 
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Minimum phase spectral color operator 
One of the important assumptions regarding the deconvolution operator was white 

reflectivity which means that the power of the reflectivity’s spectrum should be constant 
for all frequencies. The spectrum of estimated reflectivity matches very well with the 
spectrum of true reflectivity when this operator is being applied to the seismic data which 
is the convolution of white reflectivity with a minimum phase wavelet (Figure 12). 

 

FIG. 12.  Amplitude spectrum of deconvolved noise-free and noisy seismograms for a white 
spectrum (left) and zooming in the low-frequency part (right). 

The reflectivity is well predicted by the deconvolution operator for the white spectrum 
case, especially in a noise-free seismogram. However, real seismic data are the 
consequence of colored spectrum reflectivity convolved with a minimum phase wavelet. 
On the other hand, both noise-free and noisy deconvolved seismogram spectra for 
frequencies below 150Hz, have a white spectrum as shown in Figure 10. This is one of 
the most important defects of applying frequency domain deconvolution to a real seismic 
trace. Looking at the spectrum of reflectivity of frequencies below than 150 Hz, it can be 
realized that it is possible to derive the trend of reflectivity in this part and apply it to the 
deconvolved seismogram as an operator. This operator is called as a minimum phase 
spectral color operator which is shown in Figure 13 in the frequency domain. 

 

FIG. 13. Amplitude spectrum of colored spectral reflectivity (blue) and the spectral color operator 
(red). 
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Applying a spectral color operator to a deconvolved seismic trace can be done by 
convolving a deconvolved seismic trace and color spectral operator in the time domain or 
equivalently by multiplying these two vectors in the frequency domain. The results of the 
amplitude spectrum of a noise-free and a noisy seismic trace after this process are shown 
in Figure 14 and 15, respectively. It can be seen from these two figures that the new 
operator corrects the previous results effectively, and its amplitude spectrum is matching 
the spectrum of reflectivity much better than before the correction. In the time domain, 
the improvement of results is obvious as well. Figure 16 shows the true reflectivity, 
noise-free and noisy seismic trace in the time domain. It shows that our corrections in the 
time domain and frequency domain were quite effective. It should be noted that in Figure 
16 the diagrams of the noise-free seismogram and reflectivity are boosted to show the 
results the better. It should also be considered that, when reflectivity is convolved with a 
minimum phase wavelet, other attributes of a wavelet such as polarity and wavelet shifts 
can be transferred to the seismic data, and these will appear in the estimated reflectivity 
later. In this study both noise-free and noisy estimated reflectivity functions do not have 
any polarity changes, however, the noise-free one had a 0.3 lag and the noisy one had 1.6 
lag. After correction their lags were reduced to 0.1 and 0.5 respectively. The complete 
comparison for maximum correlation and lags between the old version of frequency 
domain deconvolution, which was without any smoothing and color spectral correction, 
and new version which was after applying the mentioned correction to both noise-free 
and noisy estimated reflectivity, are represented in table 1.         

 

 

   

FIG. 14. Spectrum of the noise-free estimated seismogram after applying the spectral color 
operator. 
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FIG. 15. Spectrum of the noisy estimated seismogram after applying the spectral color operator. 

 

 

 

FIG. 16. Comparing noise-free and noisy estimated reflectivity with true reflectivity in the time  

domain. 
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 Frequency Domain Deconvolution 
(Boxcar smoother before applying 

color spectral operator) 

Frequency Domain Deconvolution 
(Gaussian smoother after applying 

color spectral operator ) 

Estimated reflectivity 
(Noise-free) 

Maximum Correlation = 0.8668 

Lag = 0.2000 

Maximum Correlation = 0.9112 

Lag = 0.3000 

Estimated reflectivity 
(Noisy) 

Maximum Correlation = 0.3198 

Lag = 1.4000 

Maximum Correlation = 0.5698 

Lag = 0.5000 

Table 1. Table of maximum correlation between estimated reflectivity and true reflectivity in two 
different cases. 

Impedance inversion results 
Finally, after approximating reflectivity it is possible to estimate acoustic impedance 

from the estimated reflectivity. As was mentioned before the acoustic impedance of each 
layer can be calculated from equation 10. All we need is the first layer acoustic 
impedance and reflectivity function which was estimated in the last section. The acoustic 
impedance inversion for a noise-free seismic trace is illustrated in Figures 17 and 18. The 
first one is the results for the approximated reflectivity by the new approach, and the 
second one is the results for the approximated reflectivity by the old deconvolution. It is 
obvious that the differences are significant. The results for the noisy seismogram are 
shown in Figures 19 and 20. Again it is clear that the result of acoustic impedance after 
applying the new smoother and color spectral operator is matching the well acoustic 
impedance much better than the results before applying them.     

        

FIG. 17. Acoustic impedance estimation from the noise-free seismic trace and after applying new 
smoother and the color spectral operator.  
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FIG. 18. Acoustic impedance estimation from the noise-free seismic trace and before applying 
new smoother and the color spectral operator. 

 

 

FIG. 19. Acoustic impedance estimation from noisy seismic traces and after applying new 
smoother and the color spectral operator. 
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Fig. 20. Acoustic impedance estimation from noisy seismic trace and before applying new 
smoother and the color spectral operator. 

CONCLUSION 

The most challenging part in reflectivity estimation and acoustic impedance inversion 
is determining the low frequency components of seismic data. Although there are a 
number of approaches to extract low frequency information indirectly from other sources 
such as well log data, in this study we tried to investigate a new approach to reach this 
goal directly from seismic data. Using a proper smoother in the deconvolution process is 
an effective part of that procedure. It is realized that better seismic data smoothing can 
result in more realistic reflectivity estimates. However, our new smoother still needs 
some corrections to achieve much better results. On the other hand, as discussed, the 
deconvolution operator was designed for white spectrum reflectivity, and it had some 
issues in frequencies below 150Hz for colored reflectivity. Consequently, the spectral 
operator was applied to the deconvolved seismogram, and the result was well matching 
the amplitude spectrum of the colored reflectivity.  

An optimal smoother determination, as well as a reasonable color spectral operator, 
has significant effects on reflectivity estimation results. Returning to the acoustic 
impedance results shows us that suggested approaches can affect the impedance 
estimation considerably. However, our model still has a problem in determination of true 
impedance trend which means that the low frequency information is still missing.    
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