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ABSTRACT

Shot record modelling of VSP surveys can be computationally time intensive. To ad-

dress this issue, we parallelize the running of forward modelling code, and we discuss the

performance gains that result. The performance of this parallel implementation is measured

on a cluster, and we find that performance gains (see Figure 2) are achieved with only small

changes to the original code.

To discuss hardware effects on performance, hardware factors are tabulated with the

most expensive factors being number of processors, the processors, cluster memory and

the communications backbone. We derive an equation relating total computation time to

size of the survey, they are related through hardware dependent co-efficients. Software im-

plementation is most importantly done using Matlab’s Parallel Computing Toolbox (PCT)

and inline methods. The VSP experiment is done with computation of different shots being

distributed to Matlab workers.

INTRODUCTION

The parallelization of the serial VSP experiment code incorporates loop parallelism.

The costliest computational loop is implemented in a parallel way, and data generation

is then distributed across parallel nodes. The results are then written to the master node

(see Figure 1). Software implementation is most importantly done using Matlab’s Parallel

Computing Toolbox (PCT) and inline methods. Some tricks are neccessary to get the code

to run efficiently. In particular, profiling is important to identify bottlenecks in the software

design. Computation was conducted on a parallel cluster. The basic architecture of the

parallel cluster is a master node with 18 identical slave nodes. More information about the

hardware specifics and architecture can be found in the table on page 2, and in (Bonham

et al., 2008). We have 96 matlab workers running 8 workers on each of 12 slave nodes. We

favor Matlab for it’s syntax and data-handling capabilities.

The computation performed is a forward modelling experiment using a vertical seismic

profile (VSP) configuration. Computation of the VSP experiment is done with different

shots being distributed to different workers. The computational techniques can be applied

to other experiments and configurations, it is beyond the scope of this report to discuss

alternative implementations. The experiment is run using a VSP configuration for the pur-

pose of VSP imaging. VSP imaging is conducted using various techniques such as depth

migration as in (Dong and Margrave, 2005), VSP reverse-time migration as in (Sun et al.,

2011) and VSP interferometry as in (Wang et al., 2010) as well as VSP migration using the

Kirchoff integral as in (Dillon, 1988).
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RESULTS

Implementation of parallelization is primarily done at the software level using Matlab’s

Parallel Computing Toolbox (PCT). Most importantly, the parfor and matlabpool com-

mands as well as inlining of methods are utilized. Details of the hardware and cluster

architecture is given in the table on page 2 for our particular parallel environment. For

performance analysis, Gilgamesh is the parallel cluster used with an architecture discussed

in (Bonham et al., 2008). To measure the performance of the parallel and serial program

implementations, Matlab’s timing methods (tic and toc) are called.

The following table is a list of some of the contributing factors to increases in elapsed

times. The most important factor is the number of processors or number of workers. (Bon-

ham and Ferguson, 2009) show that increasing the number of workers decreases the compu-

tation time, although their separate computations were not in general independent of each

other as they are in our report. In our case, increasing the number of workers should reduce

the computation time even more, as there is no overhead associated with inter-node com-

mmunication during the computation itself. Other contributing factors are the processor

speed and cluster memory, which together affect the speed of each independent compu-

tation. The speed of the interconnect network affects mainly the time to write results to

the master node, as the data are sent over the network before being written, as is shown in

Figure 1.

Table 1: Some computational aspects of Gilgamesh cluster

Factor Value

Number of processors 96

Processors 2.66 GHz CPU

Cluster and Node Memory 300 GB and 16GB RAM respectively

Serial disk interface 3Gbps

Communications backbone Gigabit Ethernet

Number of nodes 1 Master and 18 slaves

Figure 1 shows the code and data distribution for the application. The parfor body is

distributed to N-workers located on slave nodes, the rest of the code runs on the master

node. Within the parfor loop runs the finite difference code running in parallel on workers.

Each instantiation of finite difference code outputs it’s data to master node in a temporary

directory, into a seperate data file. Due to the limited size of VSP shots and surveys, the

overhead associated with the over the network communication is seen as not as big a prob-

lem as potentially could be for a different survey configuration. Contention with writing the

shots to the master node’s disk, or network overhead could become problems if the clus-

ter is heavily loaded. This analysis was carried out during periods of little computational

loading of the cluster.

Figure 2 shows the total elapsed time plot for parallel application versus number of

shots where the line is a linear fit to the data. Symbols are the measured data points. The

Y-intercept is overhead having to do with setting up the parallel pool of workers. The slope

of the line is the incremental cost of adding another shot to the computation. Included in
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FIG. 1. Code and data distribution

this cost is the cost of distributing the task to a worker, as well as writing the resulting data

to the master node’s hard-disk.

The performance equation,

Tp = J +K ∗B (1)

is based on a linear fit to the data in Figure 2. Tp is the elapsed time of computation

in seconds. J is the overhead cost with the computation. J is a function of a number

of factors, one example of which is the cost of setting up the pool of workers . B is the

size of the computation, in this case number of VSP shots. K is the incremental cost of

adding another shot to the computation. K is also a function of several other factors, some

of which are the overhead associated with distributing a job to a parallel worker on the

cluster, as well as the costs associated with writing the data out to the master node. Tp is

shown in Figure 2, where J is the Y-intercept and K is the slope of the total elapsed time

curve.

CONCLUSIONS

We parallelize the running of VSP forward modelling code. We analyze the perfor-

mance of the parallel program. Parallelizing the code, as well as implementing the changes

CREWES Research Report — Volume 25 (2013) 3



McGee et al.

0 20 40 60 80 100 120 140 160 180 200
0

200

400

600

800

1000

1200

1400

Dataset size (Number of shots)

(s
e

c
o

n
d

s
)

Total elapsed time

FIG. 2. Computation performance: X-axis is number of shots, Y-axis is the total elapsed time in
seconds. The straight line is a linear fit to the performance data, circle and cross symbols are
elapsed time measurements.

in Matlab, prove worthwhile. Analyzing the performance of the parallel program is useful

as it allowed for identifying how various system factors affect performance. Analyzing the

total elapsed time allows us to determine how the software design affected performance.

A future direction could be to reduce the elapsed computation time of the plot in Fig-

ure 2. Experimenting with changing the scheduling algorithm proved to be not as useful

in the short-term, although comparison of computation time using a different scheduling

algorithm may prove beneficial as it will potentially reduce the K term in Equation (1).

Another future change could be to improve the data handling by having the nodes write out

to local disks, then having a collection script collect the data at the end of the computation.

This should also reduce the K term in Equation (1) because of reduced networking and

master disk write contention, while incurring an additional read and write to disk per shot.
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