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Numerical analysis of 1.5D internal multiple prediction 

Pan Pan and Kris Innanen 

ABSTRACT 

Multiples attenuation is a key process in seismic data processing, and the quality of 
multiples elimination will affect the final imaging directly. In this paper, we present a 
1.5D MATLAB implementation of the inverse scattering series internal multiple 
prediction algorithm developed by Weglein and collaborators in the 1990s. This method 
does not require any subsurface information. However, near offset traces information will 
be needed for applying this method. We discuss the whole prediction operation, and 
illustrate the procedure with a synthetic example. Effects of various epsilon values 
chosen will reveal a more efficient method of choosing the epsilon value. Usefulness of 
our 1.5D internal multiple prediction algorithm in situations where primaries are mixed 
together with internal multiples, and dipping interface exists are also demonstrated. 

INTRODUCTION 

For the exploration of oil and gas reservoirs, multiples can be one of the main issues in 
applying the seismic method. The key characteristic of the inverse scattering series based 
method is that they do not require any a priori information from the subsurface as they 
are fully data-driven. Furthermore, the primary reflections remain untouched. However, 
source wavelet and near offset traces information will be needed for applying this 
method. It will compute internal multiples from all possible generators. The output of the 
algorithm is a data set that contains the predicted internal multiples (Hernandez and 
Innanen, 2012). 

In this paper we review the basic principles of the inverse scattering series internal 
multiple prediction algorithm, which was introduced to the industry in the 1990s (Araújo et 
al., 1994; Weglein et al., 1997, 2003), and demonstrate its use to 1.5D data using a 
MATLAB implementation. This implementation has been tested with good results on 
band-limited synthetic data, even for situations where primaries are mixed together with 
internal multiples, and dipping interface exists. Our plan forward is to explore the field 
application of the current algorithm using a similarly staged approach as Hernandez and 
Innanen (2012) from synthetic, physical modeling and finally to land data environments. 

THEORY 

The discussions of the transformation of the data from the space and time domain to 
those of wavenumber and pseudo-depth, as well as derivations of 1D and 2D inverse 
scattering series internal multiple prediction algorithms are given in Pan and Innanen 
(2013). In this section, we only focus on the 1.5D internal multiple prediction algorithm. 

If the data have offset but the Earth is nearly layered, a 1.5D version of the algorithm 
can be considered, in which  

                                                          ݇௚ = ݇௦,                                                               (1) 

then we can obtain the 1.5D algorithm 
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                 ܾଷூெ൫݇௚, ߱൯ = ׬ ௜௞೥௭ܾଵஶିஶ݁ݖ݀ ൫݇௚, ൯ݖ ׬ ᇱ݁ି௜௞೥௭ᇲܾଵ௭ିఢିஶݖ݀ ൫݇௚,                                      ᇱ൯ݖ
                                             × ׬ ௜௞೥௭ᇱᇱஶ௭ᇲାఢ݁′′ݖ݀ ܾଵ(݇௚,  (2)                                                 (′′ݖ

where ݇௭ =   .௚ݍ2

Compared to the 2D algorithm, the computation cost has been dramatically reduced, 
with the equivalent of a single 1D prediction for every output ݇௚ (Innanen, 2012). As 
fewer wavenumbers are participating in the calculation, it is much cheaper and faster than 
2D.  

SYNTHETIC EXAMPLE 

We first apply the 1.5D internal multiple prediction algorithm in synthetic data, which 
is generated by the finite difference method, with a three-layer velocity model (see Figure 
1). The depth and velocity of each layer in this model are shown in Table 1. In Figure 2, a 
single shot record of data is illustrated. In Figure 2a, three primaries are indicated in 
yellow. In Figure 2b, two internal multiples are indicated in red. Our goal is to use the 
primaries as subevents to predict these two internal multiples at all offsets. The CREWES 
acoustic finite difference function afd_shotrec.m is used to create the data. To avoid free 
surface multiples, we need to ensure that the boundary condition is absorbing on all four 
sides. The source and receiver interval is 10m, and the record length is 3s, with a 
sampling rate of 2ms. A frequency band of [5 10 30 40] is chosen in order to get a 
localized wavelet. Also, we need to remove the direct wave, as direct wave is not 
concerned in the calculation. Deconvolution and deghosting are useful steps in 
preprocessing, but if the internal multiples are resolvable in the data set without these 
steps, they may be avoided (Innanen, 2012). 

 

FIG. 1. Three layered velocity model used to generate synthetic data and test the 1.5D internal 
multiple prediction algorithm. 
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FIG. 2. Shot record calculated using the synthetic model in Figure 1. (a) Zero offset travel times of 
primaries are indicated in yellow; (b) Zero offset travel times of internal multiples are indicated in 
red. 

PARAMETER VALUE 

Number of x 512 

Number of z 512 

Interval sample time 2ms 

Velocity and depth of the first interface 2800m/s at 640m 

Velocity and depth of the second interface 4500m/s at 1280m 

Velocity and depth of the third interface 5500m/s at 1800m 

Wave speed of the source/ receiver medium 1500m/s 

Time step 1ms 

Maximum time of the shot record 3s 

Location of the source (2, 256) 

Frequency band (Hz) [5 10 30 40] 

Optimum epsilon 200 

Source and receiver interval 10m 
Table 1. Parameters of the velocity model and shot record 

Secondly, we need to create the input ܾଵ൫݇௚,  ൯. We Fourier transform the data fromݖ
the time domain to the frequency domain and then define a regular output grid on 

x
g
 (m)

T
im

e 
t 
(s

)

(a)

0 1000 2000 3000 4000 5000

0.5

1

1.5

2

2.5

3

x
g
 (m)

T
im

e 
t 
(s

)

(b)

0 1000 2000 3000 4000 5000

0.5

1

1.5

2

2.5

3



Pan and Innanen 

4 CREWES Research Report — Volume 25 (2013)  

൫݇௚, ݇௭൯ . Since the wavenumber ݇௭  is conjugate to pseudo depth ݖ = ܿ଴2/ݐ , we can 
choose an optimum grid for resampling vectors by starting with time vector: ݐ = ݐ݀ ∗ ൫(1: ܰ) − 1൯,                                                    (3) 

where ݀ݐ is the sampling interval. We can thereafter map to pseudo-depth ݀ݖ = ܿ଴ ∗  (4)                                                          ,2/ݐ݀

where ܿ଴ is the reference medium P-wave velocity, and then defining  ݇௭ = − ܰ 2⁄ : ܰ 2⁄ − 1; ݇௭ = ݇௭ (ܰ ∗ ⁄(ݖ݀ ,                                                      (5) 

as the regularly sampled output depth wavenumber. 

Since the relationship between (݇௚, ߱) and (݇௚, ݇௭) is nonlinear, a direct change of 
variables from this regular grid would lead to a data set on an irregular (݇௚, ݇௭) grid 
(Innanen, 2012). So we compute a regular (݇௚, ݇௭) grid to get around this problem. 

 

FIG.3. The input ܾଵ൫݇௚,  .൯ is generated using the input data and reference velocity ܿ଴ݖ

Figure 3 is the core input to the prediction algorithm. Note it is constructed for 
positive ݇௚  values only. We will fill the negative wavenumbers using conjugate 
symmetry, then inverse Fourier transform the input over ݇௭ , appearing in the pseudo 
depth domain. Three primaries are visible on the graph when݇௚ > 0. Figure 4 is the 
comparison of the input zero offset trace and constructed ܾଵ൫݇௚,  ൯ stacked over ݇௚. Inݖ
Figure 4b, positions of primaries are indicated in red circles and internal multiples are 
indicated in blue circles.  
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FIG. 4. Comparison of the input zero offset trace and constructed ܾଵ൫݇௚,  ൯ stacked over ݇௚. (a)ݖ
Input data: zero offset trace; (b) ܾଵ൫݇௚,  .൯ stacked over ݇௚ݖ

Finally, we put the input ܾଵ൫݇௚,  ൯ into the prediction algorithm. This 1.5D predictionݖ
contains three nested loops which are lateral wavenumber, temporal frequency and 
pseudo depth. Optimal choices of beginning and ending integration points in all three 
cases will speed up computation (Innanen, 2012).  

Figure 5 is the output of the 1.5D internal multiple prediction. In Figure 5a, the 
prediction output matches well with the travel times of internal multiples in Figure 5b. 
Internal multiples around 1.8s and 2.0s are correctly predicted. The zero offset travel 
times and moveout patterns of the internal multiples are correctly displayed in the 
prediction output, which means our 1.5D internal multiple prediction algorithm works 
well on layered synthetic data.  

Now another scenario with mixed primaries and internal multiples will be tested. All 
the parameters are the same as the above case except for the velocity and depth of each 
layer, which are shown in Table 2. Figure 6 is the prediction output of this case. The 1.8s 
internal multiple, which is mixed with primary, has been correctly predicted. Through 
this figure, we can see that even though a primary and an internal multiple are mixed 
together, our 1.5D prediction algorithm still yields promising results.  

PARAMETER VALUE 

Velocity and depth of the first interface 2800m/s at 640m 

Velocity and depth of the second interface 4000m/s at 1280m 

Velocity and depth of the third interface 5000m/s at 2000m 

Wave speed of the source/ receiver medium 1500m/s 
Table 2. Parameters of the velocity model 
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FIG. 5. The output of the 1.5D internal multiple prediction with epsilon value equals 200. (a) The 
prediction, in which two internal multiples are predicted. (b) The original data with both primaries 
and internal multiples shown in the data set. 

 

FIG. 6. The output of the 1.5D internal multiple prediction with epsilon value equals 200. In this 
case, a primary and an internal multiple are mixed together. (a) The prediction, in which two 
internal multiples are predicted. (b) The original data with both primaries and internal multiples 
shown in the data set. 

ANALYSIS ON EFFECTS OF EPSILON VALUES 

In this section, we will perform an analysis on the effects of various epsilon values 
chosen. Epsilon values of 100, 200 and 300 are chosen to represent this study with the 
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optimal epsilon value determined to be 200. We use the first velocity model and shot 
record as the input to implement the test. Figure 7 is the output with epsilon value equals 
100. Figure 5 is the output with epsilon value equals 200 and Figure 8 is the output with 
epsilon value equals 300.  

 

FIG. 7. The output of the 1.5D internal multiple prediction with epsilon value equals 100. (a) The 
prediction, in which two internal multiples are predicted. (b) The original data with both primaries 
and internal multiples shown in the data set. 

 

FIG. 8. The output of the 1.5D internal multiple prediction with epsilon value equals 300. (a) The 
prediction, in which two internal multiples are predicted. (b) The original data with both primaries 
and internal multiples shown in the data set. 
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Comparing these three figures, we can see that if the epsilon value is smaller than the 
optimal value, artifacts will be seen at the arrival times of primaries, while the larger 
value will damage the important information in the prediction output. So far, there exists 
no rule with which epsilon values can be directly calculated. This analysis gives us an 
idea on how to choose epsilon values more efficiently. 

ANALYSIS ON EFFECTS OF DIPPING ANGLES 

Our assumption that the 1.5D internal multiple algorithm can correctly predict the 
internal multiples is based on the Earth is nearly layered. In this part, we test the theory 
that even if the assumption cannot be satisfied, our 1.5D internal multiple prediction 
algorithm is still able to predict internal multiples and show some examples of shot 
records with dip to analyze the effects of dipping angles on the 1.5D algorithm. Figure 8 
is the velocity model, where the generator is the dipping interface with dipping angle 
equals 2 degrees. Figure 9 is the shot record of the velocity model. In this Figure, the 
arrival times of the internal multiples are affected with the appearance of dipping angle in 
the generator. The prediction output of 1.5D algorithm is displayed in Figure 10.  

Another test of a larger dipping angle is also performed. We choose dipping angle 
equals 5 degrees this time. Figure 11, 12 and 13 are velocity model, shot record and 
prediction output, respectively. 

Comparing Figure 9 and Figure 12, we can see that as dipping angle increases in the 
generator, more artifacts show up in the shot record. As well, the effects on the internal 
multiples become greater. 

 

FIG. 8. Three layered velocity model with the first layer’s dipping angel of 2 degrees used to test 
the effects of dipping angels on 1.5D internal multiple prediction algorithm. 
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FIG. 9. Shot record calculated using the synthetic model in Figure 8. (a) Zero offset travel times of 
primaries are indicated in yellow; (b) Zero offset travel times of internal multiples are indicated in 
red. 

 

FIG. 10. The output of the 1.5D internal multiple prediction with epsilon value equals 200. (a) The 
prediction, in which two internal multiples are predicted. (b) The original data with both primaries 
and internal multiples shown in the data set. Red lines indicate the positions of the internal 
multiples, which mean the zero offset travel times are correctly predicted. 
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FIG. 11. Three layered velocity model with the first layer’s dipping angel of 5 degrees used to test 
the effects of dipping angles on 1.5D internal multiple prediction algorithm. 

 

FIG. 12. Shot record calculated using the synthetic model in Figure 11. (a) Zero offset travel times 
of primaries are indicated in yellow; (b) Zero offset travel times of internal multiples are indicated 
in red. 
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FIG. 13. The output of the 1.5D internal multiple prediction with epsilon value equals 180. (a) The 
prediction, in which two internal multiples are predicted. (b) The original data with both primaries 
and internal multiples shown in the data set. Red lines indicate the positions of the internal 
multiples, which mean the zero offset travel times are correctly predicted. 

Figure 10 and Figure 13 are the output prediction of the above two cases, neither of 
which satisfy the assumption. Comparison of these two figures shows that the zero offset 
travel times in both two cases are correctly predicted.  For the smaller dipping angle case, 
the results are more accurate as both the zero offset travel times and moveout patterns of 
the internal multiples are captured in the prediction. For the larger dipping angle case, 
when the offset becomes larger, the prediction error increases. Also, more artifacts and 
edge effects emerge at the arrival times of the predicted internal multiples, which are 
matters of ongoing study. 

CONCLUSIONS 

We implement a 1.5D version of the inverse scattering series internal multiple 
prediction algorithm developed by Weglein and collaborators in the 1990s in MATLAB. 
Compared to the 2D algorithm, the computation cost has been dramatically reduced. With 
fewer wavenumbers participating in the calculation, it is much cheaper and faster than 2D. 
We illustrate the procedure of predicting internal multiples with a synthetic model. This 
method does not need any subsurface information and is suitable for the situation of 
primaries and internal multiples mixed together. However, near offset traces information 
will be needed for applying this technique. We also perform an analysis on the effects of 
various epsilon values. For a smaller epsilon value, artifacts will be seen at the arrival 
times of primaries. For a larger epsilon value, it will damage the important information in 
the prediction output. By these principles, we can now choose the epsilon value more 
efficiently. Our 1.5D internal multiple prediction algorithm is also demonstrated to be 
useful for the situation where dipping interface exists. For smaller dipping angles, the 
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results of the algorithm are quite promising, correctly predicting both the zero offset 
travel times and moveout patterns. For larger dipping angles, only the zero offset travel 
times can be correctly predicted with errors in the larger offset. However, it can also 
assist in verifying the positions of internal multiples, which is helpful for later inversion 
and interpretation. 
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