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Absorbing boundaries in acoustic wave finite difference analogues 

P.F. Daley 

ABSTRACT 
The acoustic wave equation is considered using a combination of finite integral transforms 

and finite differences in the solution method. This approach is known as the pseudo – spectral 
method or Alekseev – Mikhailenko Method (AMM) after the Russian researchers who spent 
decades pursuing this avenue of solution which has resulted in numerous dozens of related 
papers in the literature.  One aspect of this solution method that is often referred to but has 
received little attention in the literature is the introduction of absorbing boundaries. Using the 
simple acoustic wave equation in this solution type, the algorithm developed by Clayton and 
Engquist (1977) is incorporated into the transformed wave equation to produce a manner of 
introducing an absorbing at the model bottom. 

 

INTRODUCTION 
The acoustic wave equation in a radial symmetric medium is employed in the derivation of 

absorbing boundary conditions at the fictitious boundary at the model bottom. Before this 
development is investigated, the wave equation has its radial dependence removed through the 
use of a finite Hankel transform. The resultant equation is then treated in a similar manner to that 
used in the paper of Clayton and Engquist (1977) where paraxial approximations to the two 
dimensional acoustic wave equation are derived. 

The method of employing finite integral transforms to remove one or more spatial dimensions 
so that a hyperbolic (wave) system of equations is reduced to a finite difference problem in depth 
and time is most often referred to as the pseudo-spectral method. However, due to the extensive 
work done in this area by B.G. Mikhailenko and A.S. Alekseev, it is sometimes referred to, in 
seismic applications, as the Alekseev-Mikhailenko Method (AMM), (Alekseev and Mikhailenko, 
1980). It falls within the genetic class of pseudo-spectral methods, but is possibly more formal 
and rigorous in its development.  However, much of their work is relatively physically 
inaccessible and a considerable number of the more significant contributions are in Russian. 
Other works of interest in this area are Gazdag (1973), Gazdag (1981) and Kosloff and Baysal 
(1982). Rather than attempt to solve the problem of wave propagation for the acoustic equation, 
a finite integral transform will be applied and then a plane wave solution will be used to remove 
the depth spatial dimension ( )z  and time. The resulting expression will then be manipulated to 
obtain parabolic equations, similar to those used by Clayton and Engquist (1977), in an effort to 
introduce an absorbing boundary in the transformed equation. 

 

ACOUSTIC WAVE EQUATION 
The well-known acoustic partial differential wave equation has the form 

 CREWES Research Report — Volume 26 (2014) 1 



Daley 
 

 ( ) ( )
2

2 2
2Pv f t

dt
ψρ ψ ρ δ∂

∇ − = x . (1) 

where the point source term (usually explosive) is on the right hand side and is solved with initial 
conditions 
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Depth ( )z is assumed to be positive downwards and radial symmetry has been assumed ( )2.5D . 
For the homogeneous case with no dependence of the media parameters on spatial variables, and 
no source term, the equation of motion for this case is given by 

 
2 2

2
2 2

1 0Pv r
r r r z dt

ψ ψ ψρ ρ
 ∂ ∂ ∂ ∂  + − =  ∂ ∂ ∂  
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First apply a finite Hankel transform on the interval ( )0,a where r a= is a fictitiously 

introduced boundary in the radial direction where ( )0 0jJ k a = is a transcendental equation that is 
solved numerically and the boundary condition 0r aψ = = , which implies that the introduced 
boundary at r a= is perfectly reflecting. The finite Hankel transform is defined as 
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where, as previously noted, the jk are obtained from the solution of the transcendental equation

( )0 0jJ k a = . The inverse of (4) is  
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It is clear that some finite upper bound must be determined, usually dictated by the frequency 
spectrum of the source wavelet, for the inverse series. The result of this transformation is 

 
2 2

2 2 2
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ψ ψρ ψ ρ ρ∂ ∂

− + − =
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If Fourier spatial and temporal transforms with respect to depth (z) and time (t) are applied 
( )exp zik z i tψ ψ ω = −   then 

 ( ) ( )2 22 2 2 0P j P zv k v ik iρ ψ ρ ρ ω ψ − + − − =  . (7) 

Under the assumption, 0ψ ≠ , it follows that 

 ( ) ( )2 22 2 2 0P j P zv k v ik iρ ρ ρ ω− + − − =  (8) 
or equivalently 
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 ( ) ( )2 22 2 2
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Rearranging and taking the downward propagating “+” sign produces 
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Approximating the ( )1 2
 radical under the assumption that ( )22 2

P jv k iω− is 1 , has  
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It is to be reiterated that the above is truly only valid if
( )
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Rearranging equation (11) results in 
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With ( ) ( )andzik z i tω→ ∂ ∂ − → ∂ ∂ and applying these operations to ψ yields   
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An explicit finite difference analogue for (13) is obtained by standard second order methods as 
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with andt z∆ ∆ being the time and depth increments with standard stability conditions assumed 

for finite difference analogues of order ( ) ( )2 2,O z O t ∆ ∆   Rearranging results in 
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 (15) 

Further simplification of (15) may be done but it is more useful in its present form. 
Theoretically, equation (15) provides an absorbing boundary at the model bottom for the 
problem considered here. However, much computed information remains unused in (15). The 
accepted manner to proceed in this problem is to utilize the (known) full waveform solution at 
the second last point in the vertical grid (point K-1) together with the paraxial ( )15

approximation for the Kth point. This is discussed in more detail in Clayton and Engquist (1977). 
Modifying their absorbing condition at the model bottom for the acoustic wave equation which 
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has undergone a finite transform of some type results in       
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where the / /0
qD+ −  are the forward, backward and center finite difference analogues with respect to 

the variable ( ),q q z t= . The operators qD+  , qD−  and 0
qD  are the forward, backward and center 

difference finite difference analogues with respect to the variable q and are defined as  
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The introduction of (17) – (19) into (16) produces the desired absorbing boundary conditions at 
the model bottom. 

HIGHER ORDER APPROXIMATIONS 
A Padé approximation to equation (10) can be assumed to be of the form 
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for some 2 2anda b which are constants to be determined and where it has been implied that 
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i

ξ
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− . Approximating (20) has 
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After rearranging the above equation and equating like powers in 2ξ (ignoring any powers of 2ξ
greater than or equal to 4ξ ) it may be determined that 2 3 4a = , so that 2 1 4b = and (20) may be 
written in the form 
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After further rearrangement 
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Introducing ( ) ( )andzik z i tω→ ∂ ∂ − → ∂ ∂  with equation (24) operating on ψ produces 
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This is known as the 45 degree approximation which may be put in a useable finite code 
using equations (16) – (19). From numerical modeling tests it has been found that except for 
exceptional cases, the 15degree approximation is sufficient for the damping of spurious 
reflections from the model bottom. 

NUMERICAL RESULTS  
A simple 4 layer acoustic model over a halfspace is used to check the usefulness of the 

absorbing boundary condition for the model bottom. The model is described in Table 1 and in 
the two panels in Figure (1). The first test is a vertical seismic profile recording geometry. The 
receivers are set at depths of 0.25km to1.75km  at ( )10 0.01m km intervals. The source is located 
at the surface in the borehole (zero offset). The upper panel in Figure (2) is the synthetic 
seismogram with no damping at the boundary bottom while the lower panel has damping 
introduced. Using the same model, except that the source and receivers are located at the surface, 
synthetics are computed. The receivers are located at offsets of 0.0km to1.75km at 

( )25 0.025m km intervals. The upper panel of Figure (3) has no damping while the bottom panel 
has damping introduce. Numerical experiments found that the 15degree paraxial approximation 
to the wave equation produced reasonable results. Consequently, although derived and 
programmed, the 45 degree approximation has not been implemented to this point. 

 

 CREWES Research Report — Volume 26 (2014) 5 



Daley 
 

CONCLUSIONS 
An absorbing boundary condition at the model bottom was derived for the case of an acoustic 

wave. Radial symmetry was assumed for the equation of motion and a finite Hankel transform 
was applied to remove the dependence on the radial coordinate. A finite difference problem in 
depth ( )z and time ( )t remained. In a manner similar to that presented in Clayton and Engquist 
(1977) both the 15 degree and 45 degree absorbing condition were obtained for this transformed 
problem at the model bottom removing spurious reflections from that artificial boundary. 
Numerical experiments showed that the 15 degree approximation was sufficient for most 
problems. Examples of the implementation of this method were shown for two types of 
recording; vertical seismic profile (VSP) acquisition geometry and the case where the source and 
receivers were located on the surface.  
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             Layer           Thickness                 VP             Density 
                  1                 0.4            1.8750                2.00 
                  2                 0.4            2.2020                2.25 
                  3                 0.4            2.5000                2.34 
                  4                                   0.4            3.3060                2.44 
            Hspace                 ---            4.0000                2.50 

 
Table 1: The parameters of the model used in the included figures. Thicknesses are in km, velocities in 
km/s and density in gm/cm3. 

 
 
 

 

 
Figure 1: The vertical P – wave velocity in km/s plotted versus depth in km in the upper panel. In the 
lower panel the scaled P – wave velocity velocity is plotted versus the number of depth grid points.  
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Figure 2: VSP synthetic traces for both source and receivers in the borehole. The source is at a depth of 
75m (0.075km). The upper panel shows the synthetic with no absorbing conditions and the lower panel 
has an absorbing boundary condition at the model bottom. 
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Figure 3: Offset synthetic traces for both source and receivers at the surface are shown. The upper panel 
shows synthetic traceswith no absorbing conditions and the lower panel has an absorbing boundary 
condition at the model bottom. 
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