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ABSTRACT

Full waveform inversion, as applied to reflection-mode, multicomponent land data is
considered, in the context of the iterated recovery of parameters ranging from standard
elastic λ, µ, and ρ through to petrophysically-relevant parameters such as the fluid term
of Russell and Gray. Much of the effort lies in constructing a flexible framework for elas-
tic multicomponent sensitivities. We approach the problem with a linearized scattering
framework, employing a two-stage integration by parts procedure. Matrix forms for a mul-
ticomponent objective function, and a three-term gradient and nine-term Hessian are then
determined, and the reductions necessary to invert PP, PS, SP, and SS modes independently
or jointly are formed.

INTRODUCTION

CREWES is developing a type of full waveform inversion (FWI) we call IMMI, or
iterated modelling, migration and inversion (Margrave et al., 2013; Pan et al., 2014), which
appears to us to have the potential to determine subsurface elastic / geological properties
from broadband, multicomponent land seismic surveys. The multicomponent aspect of the
problem has some outstanding theoretical issues which need to be broached before we can
tackle all of the practical implementation issues.

The precise parameterization of a full waveform inversion problem is a surprisingly
subtle and important matter. This is already true in the scalar inverse problem, as was
recently demonstrated by Anagaw (2014), in which significant differences in convergence
between scalar FWI updates in velocity, slowness, and squared-slowness (with squared
slowness appearing to win out) were reported. We must expect it to be doubly so for updates
in multiple parameters, constructed with several components of elastic data. At present, we
do not know how to predict in advance which of a candidate set of parameterizations will
lead to the fastest convergence and the most useful model estimate. So, our approach is
to frame FWI such that moving from one parameterization to another is as simple and
seamless as possible.

The standard quantities of seismic full waveform inversion we require for this enter-
prise, namely the gradients, Hessian operators, sensitivity matrices and so on, have been
discussed at great length in the geophysics literature (Lailly, 1983; Tarantola, 1984; Virieux
and Operto, 2009), but although significant discussion can be found on the particulars of
the multiparameter problem (Brossier et al., 2010; Plessix et al., 2013), the multicomponent
nature of the general seismic inverse problem (Weglein et al., 2003; Zhang and Weglein,
2009), and applications involving multicomponent data (Operto et al., 2013), a flexible
theory for land application, invoking in particular precritical reflection amplitudes, is no-
ticeably lacking. In particular, an approach which is modular and straightforward to adapt
viz. parameterization is sought. We might, for instance, find it important in one applica-
tion to update in fluid-type parameters (Russell et al., 2011), while in another to update

CREWES Research Report — Volume 26 (2014) 1



Innanen

VP , VS and ρ, and still another to update Lamé impedances λρ, µρ (Goodway, 2001). The
history of AVO inversion and interpretation quite dramatically illustrates how varied the
situationally-optimal seismic parameterization can be (Shuey, 1985; Castagna and Backus,
1993; Castagna et al., 1998; Russell et al., 2011; Lines et al., 2008; Innanen, 2011). Again,
without being able to discern what if any single parameterization is optimal, our course is
to remain as flexible as possible here.

We arrive at formulas for updating multiple elastic parameters using a range of mul-
ticomponent data modes. More importantly, in doing so we provide a definite procedure
whereby updates in any desired parameterization can be formulated with any combination
of PP, PS, SP and/or SS data.

Most of the legwork lies in the calculation of the sensitivities, which are the route
by which elastic wave theory is introduced to the mathematics and computer science of
FWI/IMMI. It is in the construction of sensitivities that most of the variability of re-
parameterizing inversion, from, say, (γ, µ, ρ), to (VP , VS, ρ) is found. The sensitivities
we will derive in this paper are entirely linearized (some of the wrinkles of moving to
nonlinear updates are discussed in this year’s report by Innanen, 2014a,b), and originate
with the elastic Born approximation. We begin by reviewing a 2D P- and Sv-mode scatter-
ing formalism introduced by Weglein and Stolt in a set of unpublished notes in 1992, and
recently extended to 3D P/Sv/Sh by Stolt and Weglein (2012).

Amongst the contributions of the Weglein-Stolt framework is the suggestion (and demon-
stration) that via integration by parts the Born integral can be transformed such that any
differential operators within the scattering potential are moved to the Green’s functions.
This fact turns out to be crucial when we apply the Born formulation to the sensitivity
calculation. We enact an altered two-stage version of it in our derivations. The first stage
shifts the derivatives arising from the transformation from displacement to potential space.
This occurs in all cases, independent of which sensitivity is being calculated at any later
point. The second stage depends on the specific set of parameters being considered.

After the first stage of integration by parts, we can move to the calculation of the sensi-
tivities. The parameters (γ, µ, ρ) are chosen as the basic set, and the procedure for jumping
from (γ, µ, ρ) to any other set is detailed. Two classes of re-parameterization are identified,
those involving addition and those involving multiplication of the elements of the basic set.
The scattering potential operator is then written down in terms of perturbations in the cho-
sen parameter set. The sensitivities are obtained by setting two of the three perturbations
to zero, and sifting out the influence of the third at a fixed point in the Earth volume. This
provides a 2×2 matrix of derivatives of wave components (PP, SP, PS, SS) calculated with
respect to the parameter whose perturbation we kept.

Thereafter update formulas emerge pretty straightforwardly. We keep the gradient and
Hessian operator constructions in a compact matrix form by using a quantity called the
Frobenius product∗. The Hessian is approximated such that the updates are of Gauss-

∗It sounds worse than it is.
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Newton type. Finally, we show how to restrict the updates to represent inversion of mul-
ticomponent data by the individual treatment of PP, PS, SP and/or SS modes, or by their
simultaneous (joint) use.

The current developments are thus seen to be essentially generalizations of the multi-
component inversion methodologies which are longstanding CREWES deliverables. A key
outcome of this paper is, thus, to demonstrate explicitly how in-place CREWES ideas and
technology are a natural part of the CREWES IMMI / FWI package.

BACKGROUND

In this review section we discuss the 2D scattering formalism due to Weglein and Stolt
(unpublished), which was described and extended significantly in a recent book (Stolt and
Weglein, 2012). It has elsewhere been used as the basis for development of nonlinear
inverse scattering series imaging and parameter estimation (Zhang and Weglein, 2009).
Here we will use it as the starting point for multicomponent elastic sensitivity analysis.

2D elastic wave quantities

In a 2D elastic environment with one lateral coordinate x and one depth coordinate z, a
displacement field u = (ux, uz)

T excited by the source f = (fx, fz)
T satisfies

Lu = f , (1)

where

L =

[
ρω2

(
1 0
0 1

)
+

(
∂xγ∂x + ∂zµ∂z ∂x(γ − 2µ)∂z + ∂zµ∂x

∂z(γ − 2µ)∂x + ∂xµ∂z ∂zγ∂z + ∂xµ∂x

)]
. (2)

Here ρ = ρ(x, z) is the mass density, and γ = γ(x, z) and µ = µ(x, z) are the bulk
and shear moduli respectively. The same force exciting a reference medium produces a
reference field, u0, which satisfies L0u0 = f , where

L0 =

[
ρ0ω

2

(
1 0
0 1

)
+

(
∂xγ0∂x + ∂zµ0∂z ∂x(γ0 − 2µ0)∂z + ∂zµ0∂x

∂z(γ0 − 2µ0)∂x + ∂xµ0∂z ∂zγ0∂z + ∂xµ0∂x

)]
is the elastic wave operator characterized by the reference properties ρ0 = ρ0(x, z), γ0 =
γ0(x, z) and µ0 = µ0(x, z). The solutions u and u0 are obtained with the resolvents or
Green’s operators G and G0,

G = L−1 and G0 = L−10 , (3)

whereby

u = Gf and u0 = G0f , (4)

are determined.
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P- and S-wave potential representation

Next, the elastic motions are transformed to the space of P- and S-wave potentials. Stolt
and Weglein (2012) make use of the operator Π, which in 2D is

Π =

[
∂x ∂z
−∂z ∂x

]
, (5)

noting that when it is applied to the displacement vector u with a scaling operator Γ0 it
correctly produces the potentials φp and φs:[

φp

φs

]
= Γ0Πu, (6)

where

Γ0 =

[
γ0 0
0 µ0

]
. (7)

An operator O is transformed to the same space via

O = ΠOΠ−1Γ−10 , (8)

where

Π−1 = ΠT∇−2. (9)

In 2D, the operator∇−2 is the formal inverse of the operator∇2 = ∂2x + ∂2z .

Elastic scattering of P- and S-wave potentials

The scattering picture involves the definition of the scattering operator V , defined as
the difference between two wave operators, a perturbed operator L and an unperturbed
operator L0:

V = L − L0, (10)

which forms the basis for the Lippmann-Schwinger, or Scattering equation, a relationship
between the perturbed and unperturbed Green’s operators:

δG = G − G0 = G0VG. (11)

These relationships lead rapidly to relationships between perturbed and unperturbed dis-
placement fields. Because u = Gf , we have

δu = G0Vu. (12)

Transforming these operator relationships using equation (8) we find an expression for the
change in the field δG in the presence of a general change in the properties of the medium
(through V):

δG = G0VG. (13)

Our purpose in this paper is to produce clear, explicit formulas for calculating. The results
so far quoted are largely formal; in the next section we will consider the explicit form of V
and its transformation to V, which underlie the sensitivity calculations.
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ELASTIC BORN APPROXIMATION

We now begin to manipulate the scattering quantities reviewed in the previous section,
such that full waveform inversion sensitivities emerge from it as straightforwardly as possi-
ble. The key step will be to implement a two-stage integration by parts regimen, a variation
on the approach Stolt and Weglein (2012) found convenient for analyzing the direct inverse
scattering problem. In our case it permits the denominator of the ratio we need to calculate,
δG/δs, to be cleanly extracted from the integral so that the limit δs→ 0 can be taken. The
first stage of the integration by parts, which we carry out once, in this section, is general and
applies to all sensitivities. The second stage depends on the parameter whose sensitivity is
being calculated, and so it must be deployed case by case.

Let the data comprise measurements of elastic motions on a surface z = zg of line re-
ceivers occupying positions xg along the horizontal coordinate direction. Further, let these
motions be due to line sources on a surface z = zs occupying positions xs horizontally.
These measured fields are Fourier-transformed with respect to time, xg, and xs, such that
the results are functions of the respective conjugate variables ω, kg and ks. Under the Born
approximation, equation (13),whose rightmost term becomes G0,

δG ≈ G0VG0, (14)

represents the difference between two such fields when the medium undergoes a small
change V. Writing this expression explicitly, and taking it to be a definition† and thus
omitting the ≈ sign, and taking the dependence of all wave quantities on ω as implied, we
have

δG(kg, zg, ks, zs) =

∫
dx′
∫
dz′Gout

0 (kg, zg, x
′, z′)V(x′, z′)Gin

0 (x′, z′, ks, zs), (15)

where

δG(kg, zg, ks, zs) =

[
δGPP(kg, zg, ks, zs) δGPS(kg, zg, ks, zs)
δGSP(kg, zg, ks, zs) δGSS(kg, zg, ks, zs)

]
(16)

is a 2×2 matrix containing the first order changes in the fields for wave components scatter-
ing from P to P (top left), S to P (top right), P to S (bottom left), and S to S (bottom right)‡

associated with the changes in the medium contained in V(x, z). If the reference (unper-
turbed) medium varies sufficiently slowly that P- and S-waves propagate approximately

†It is important to emphasize that although we adopt the Born approximation as a definition of the forward
model in the sensitivity calculation, the resulting FWI updates are not consequently iterated linear inverse
procedures. The first-order Fréchet kernel as used in FWI is built based on a linearization, but the forward
modelling regimen by which the residuals are calculated is normally fully nonlinear, involving 2-way wave
equations etc.
‡In scattering theory wave interactions occurring in sequence along the path between the source and the

receiver appear in the mathematics going from right to left. Thus a C-wave converting from P to S is labelled
“SP”. Care should be taken that this backwards labelling does not cause confusion.
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independently, the Green’s operators Gout
0 and Gin

0 can be written

Gout
0 (kg, zg, x

′, z′) =

[
GP0(kg, zg, x

′, z′) 0
0 GS0(kg, zg, x

′, z′)

]
Gin

0 (x′, z′, ks, zs) =

[
G′P0

(x′, z′, ks, zs) 0
0 G′S0

(x′, z′, ks, zs)

]
,

(17)

where G′P0
= −GP0V

2
P0
/ω2γ0 and G′S0

= −GS0V
2
S0
/ω2µ0, and GP0 and GS0 are Green’s

functions which away from the source and in the space domain satisfy[
∇2 + ω2V −2P0

(x, z)
]
GP0(x, z, xs, zs, ω) = 0 (18)

and [
∇2 + ω2V −2S0

(x, z)
]
GS0(x, z, xs, zs, ω) = 0 (19)

respectively. Most importantly for our purposes is the transformed scattering potential

V(x′, z′) = ΠV(x′, z′)ΠT . (20)

The extra Γ−10 in equation (8) has been incorporated into Gin
0 in equation (17), through the

primed functions G′P0
and G′S0

. In the following developments we will spend most of our
time manipulating the elements of the perturbation operator in displacement space, V , be-
cause the parameters we would like to use are more conveniently expressed in that domain,
at least initially. However we do want the end result to be in the P- and S-wave potential
domain, as that domain is where our multicomponent ideas are most clearly exposed. To
manage this, we analyze the entire operator ΠV(x′, z′)ΠT , but we move the Π operators
off the perturbation V and onto the Green’s functions on the left and the right of the Born
integral.

Integration by parts

It is not difficult to show by construction that, provided there are no contributions to the
scattering integral at infinity, the replacement

δG =

∫
dx′
∫
dz′Gout

0

[
ΠV(x′, z′)ΠT

]
Gin

0

= −
∫
dx′
∫
dz′
(
ΠTGout

0

)T V(x′, z′)
(
ΠTGin

0

) (21)

can be made. Then the derivatives in the Π operators act on the Green’s operators rather
than on the perturbations, freeing the latter up to be conveniently manipulated in the sensi-
tivity calculation. Meanwhile the two effective Green’s operators on the left and right side
of the perturbation operator are

(
ΠTGout

0

)T
=

[
∂x′GP0 ∂z′GP0

−∂z′GS0 ∂x′GS0

]
, (22)
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and (
ΠTGin

0

)
=

[
∂x′G

′
P0
−∂z′G′S0

∂z′G
′
P0

∂x′G
′
S0

]
. (23)

A further step we could now take would be to replace these derivatives with products of
the individual (P- and S-) components of the Green’s operator and horizontal and vertical
wavenumbers. Since we have already assumed the media are smooth enough that we can
approximate the elastic field as the independent propagation of P- and S-wave potentials, no
generality would be lost in doing so. Stolt and Weglein (2012) take that approach. However,
since the eventual use of the quantities we are constructing (i.e., practical and numerical
implementation of FWI) is different from that conceived of by Stolt and Weglein (i.e.,
analysis and implementation in a plane-wave environment or within a ray-based coordinate
system), we will leave the derivative forms in place. In numerical schemes we anticipate
that these will be easier to calculate than local wavenumber vectors.

ELASTIC PARAMETERIZATIONS OF FWI UPDATES

We are now in a position to decide on the parameterization of interest (Figure 1). Each
set of three parameters we could choose leads to a different sensitivity, and we will not cal-
culate all of them straight through. Rather, we will show a general approach and exemplify
it with a few cases. We begin with γ, µ and ρ (i.e., P-wave modulus, S-wave modulus and
density) having been chosen as the basic set, from which all others are derived.

sx

sz rx

rz

�f �µ �⇢

�� �VP �VS�µ �⇢ �⇢

P

Sv

P

Sv

FIG. 1. 2D elastic/multicomponent inversion and sensitivity analysis for a variety of parameteriza-
tions: moduli γ µ ρ, velocities VP VS ρ, or the fluid Russell-Gray form f µ ρ are examples.
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Basic parameterization: γ, µ, ρ updates

The elastic equation of motion was written in equation (2) in terms of the γ, µ, ρ
parameterization. Choosing these as the FWI model parameters, i.e.,

sγ = γ, sγ0 = γ0, δsγ = sγ − sγ0
sµ = µ, sµ0 = µ0, δsµ = sµ − sµ0
sρ = ρ, sρ0 = ρ0, δsρ = sρ − sρ0 ,

(24)

the scattering operator in displacement space V defined in equation (10) is found to be

Vγµρ =

[
ω2δsρ + ∂x′δsγ∂x′ + ∂z′δsµ∂z′ ∂x′ [δsγ − 2δsµ]∂z′ + ∂z′δsµ∂x′
∂z′ [δsγ − 2δsµ]∂x′ + ∂x′δsµ∂z′ ω2δsρ + ∂z′δsγ∂z′ + ∂x′δsµ∂x′

]
. (25)

Each of the perturbations δsγ , δsµ, and δsρ are general functions of space, but for neatness
we will not always explicitly put the dependence into the formulas. Vγµρ can be substituted
into equation (21) and analyzed for sensitivities in each of the three parameters in the
subscript.

If a different parameterization is desired, the transformation should happen now, to
equation (25). Let us consider some of the possible transformations we might consider em-
ploying, distinguishing between ones involving addition and ones involving multiplication
of the base set.

Re-parameterization involving addition

If the transformation between parameters involves only addition, then the transforma-
tion should be done using the “bare” perturbations δsX .

Example 1: λ, µ, ρ updates

The most straightforward mapping is from γ, µ, ρ to λ, µ ρ. Take the perturbation operator
in equation (25) and replace the three update functions with

δsγ → δsλ + 2δsµ

δsµ → δsµ

δsρ → δsρ.

(26)

These will correctly lead to updates in the parameter set sλ = λ, sµ = µ and sρ = ρ.

Example 2: κ, µ, ρ updates

Similarly, to map from γ, µ, ρ to κ, µ, ρ, replace the steps in equation (25) as follows:

δsγ → δsκ + (4/3)δsµ

δsµ → δsµ

δsρ → δsρ.

(27)

These will correctly lead to updates in the parameter set sκ = κ, sµ = µ and sρ = ρ.

8 CREWES Research Report — Volume 26 (2014)



Multicomponent elastic reflection full waveform inversion

Re-parameterization involving multiplication

If the transformation from γ, µ, ρ to the desired parameter set involves multiplication,
we proceed not with the bare updates δsX , but instead using the dimensionless perturba-
tions (δsX/sX0). Thus, the transformations will involve background model parameters sX0 ,
both in the base set and in the new set, sometimes alone and sometimes in ratios with other
background parameters.

Example 3: VP, VS, ρ updates

To map from γ, µ, ρ to VP , VS and ρ, replace the steps in equation (25) as follows:

δsγ →
(
sγ0
sp0

)
δsp +

(
sγ0
sρ0

)
δsρ

δsµ →
(
sµ0
ss0

)
δss +

(
sµ0
sρ0

)
δsρ

δsρ → δsρ.

(28)

These steps will correctly update the parameter set sp = V 2
P , ss = V 2

S and sρ = ρ.

Example 4: Goodway updates λρ, µρ, ρ

Meanwhile to map to the Lamé impedances as examined in AVO analysis by Goodway
(2001) we first move from γ, µ, ρ to λ, µ, ρ, and thence make the replacements

δsλ →
(
sλ0
sλρ0

)
δsλρ −

(
sλ0
sρ0

)
δsρ

δsµ →
(
sµ0
sµρ0

)
δsµρ −

(
sµ0
sρ0

)
δsρ

δsρ → δsρ,

(29)

which update the parameter set sλρ = λρ, sµρ = µρ and sρ = ρ.

Example 5: Russell-Gray updates f , µ, ρ

Russell et al. (2011) employ a f , µ, ρ formulation, in which f is the fluid term, which is a
perturbation upon a dry κ or λ value. We can accommodate it in FWI by replacing

sλ = sλ0 + δsλ (30)

with

sf = sλ0 + δsf , (31)

where the key difference is one of interpretation: the reference medium would be con-
sidered dry, and the task of updating would be to determine the updates δsf which as
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iterations progress determine the saturated model. Thus the mathematical parameterization
would simply be

δsλ → δsf

δsµ → δsµ

δsρ → δsρ,

(32)

with the main difference from the λ, µ, ρ updates being their interpretation in terms of
poroelastic geology rather than straight elastic properties.

SENSITIVITIES FOR MULTICOMPONENT INVERSION

Next we will discuss the procedure for determining the sensitivities in any three elastic
parameter sets. We will go through the procedure in detail for the base set of parameters
γ, µ, and ρ; once this procedure is set, the nature of the variations needed to derive any
of the sensitivities is evident, and a particular example of interest can be produced without
introducing any new concepts.

Base parametrization: γ, µ, ρ

In equation (25) we had the displacement-space perturbation operator written in terms
of γ, µ and ρ:

Vγµρ(x′, z′) =

[
ω2δsρ + ∂x′δsγ∂x′ + ∂z′δsµ∂z′ ∂x′ [δsγ − 2δsµ]∂z′ + ∂z′δsµ∂x′
∂z′ [δsγ − 2δsµ]∂x′ + ∂x′δsµ∂z′ ω2δsρ + ∂z′δsγ∂z′ + ∂x′δsµ∂x′

]
.

To form the Born approximation, this quantity was sandwiched between Green’s operators
and the result was integrated over all space (see equation 21):

δG = −
∫
dx′
∫
dz′
[

∂x′GP0 ∂z′GP0

−∂z′GS0 ∂x′GS0

]
V(x′, z′)

[
∂x′G

′
P0
−∂z′G′S0

∂z′G
′
P0

∂x′G
′
S0

]
. (33)

The first-order Fréchet kernel, or sensitivity, is the limit of the linearized ratio of the small
change in the field arising from a small local change in the medium. Since δG is precisely
a change in the field — the change associated with the general perturbation V — equation
(33) is close to providing a linearized form of this quantity for us. What remains to do is

1. Isolate the effect of variation in one parameter within V (in its raw form it contains
variations in all three), and

2. Isolate the point location at which this variation takes place (the integral currently
sums up variations distributed over all space).

Task (1.) is where the second integration-by-parts procedure occurs.
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The γ sensitivity and integration by parts

Let us carry these two tasks out in detail and solve for the γ sensitivity. First, we set
δsµ = δsρ = 0, in which case the displacement-space perturbation operator simplifies to

Vγγµρ(x′, z′) =

[
∂x′δsγ∂x′ ∂x′δsγ∂z′
∂z′δsγ∂x′ ∂z′δsγ∂z′

]
, (34)

which can be written

Vγγµρ(x′, z′) =

[
∂x′ 0
0 ∂z′

] [
δsγ δsγ
δsγ δsγ

] [
∂x′ 0
0 ∂z′

]
. (35)

This isolates the influence of γ on the field. Now we do two things simultaneously. We
integrate by parts, moving the left and right derivative operators in equation (35) onto
the left and right operators in equation (33), and, we make the replacement δsγ(x′, z′) =
δsγ(x, z)δ(x− x′)δ(z − z′), in order to calculate the special δG due to a point variation in
γ at the coordinates (x, z). We obtain

δG =

∫
dx′
∫
dz′δsγ(x, z)δ(x− x′)δ(z − z′)

×
(
Lγγµρ(x

′, z′)

[
1 1
1 1

]
Rγ
γµρ(x

′, z′)

)
,

(36)

where

Lγγµρ(x
′, z′) =

([
∂x′ 0
0 ∂z′

] [
∂x′GP0 ∂z′GP0

−∂z′GS0 ∂x′GS0

]T)T

=

[
∂2x′GP0 ∂2z′GP0

−∂x′∂z′GS0 ∂z′∂x′GS0

]
,

(37)

and

Rγ
γµρ(x

′, z′) =

[
∂2x′G

′
P0
−∂x′∂z′G′S0

∂2z′G
′
P0

∂z′∂x′G
′
S0

]
(38)

are the left and right operators respectively. The delta functions sift out values at (x, z)
from the integral, whereupon we divide by δsγ(x, z) and take the limit as this step goes to
zero, which is the sensitivity we seek:

∂G(kg, ks)

∂sγ(x, z)
= Lγγµρ(x, z)

[
1 1
1 1

]
Rγ
γµρ(x, z). (39)

Written out explicitly, the 2×2 matrix of sensitivities of the P-to-P, S-to-P, P-to-S and S-to-
S wave field components to variations in γ is given by

∂G(kg, ks)

∂sγ(x, z)
=

[
∂2xGP0 ∂2zGP0

−∂x∂zGS0 ∂z∂xGS0

] [
1 1
1 1

] [
∂2xG

′
P0
−∂x∂zG′S0

∂2zG
′
P0

∂z∂xG
′
S0

]
. (40)
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Example: PP-γ sensitivity

To exemplify the process we have now undertaken, let us consider the (1,1) element of the
matrix in equation (40):

∂GPP(kg, ks)

∂sγ(x, z)
= − ω2

V 2
P0

(
1

sγ0

)
GP (kg, zg, x, z, ω)GP (x, z, ks, zs, ω). (41)

This individual element is analogous to a scalar wave velocity sensitivity (e.g., Margrave
et al., 2011) or the acoustic bulk modulus sensitivity (Innanen, 2014b), and can be seen to
have essentially the same form as both/either of those two quantities.

The µ sensitivity

We next discuss the calculation of the µ sensitivity. We begin again with the γ, µ, ρ per-
turbation operator in equation (33), but this time set the γ and ρ perturbations to zero:
δsγ = δsρ = 0, from which we obtain

Vµγµρ(x′, z′) =

[
∂z′δsµ∂z′ −2∂x′δsµ∂z′ + ∂z′δsµ∂x′

−2∂z′δsµ∂x′ + ∂x′δsµ∂z′ ∂x′δsµ∂x′

]
. (42)

This can be broken up into the sum

Vµγµρ = Vµ(1)γµρ + Vµ(2)γµρ , (43)

where

Vµ(1)γµρ (x′, z′) =

[
∂z′δsµ∂z′ ∂z′δsµ∂x′
∂x′δsµ∂z′ ∂x′δsµ∂x′

]
=

[
∂z′ 0
0 ∂x′

] [
δsµ δsµ
δsµ δsµ

] [
∂z′ 0
0 ∂x′

]
,

(44)

and

Vµ(2)γµρ (x′, z′) = −2

[
0 ∂x′δsµ∂z′

∂x′δsµ∂z′ 0

]
= −2

[
0 ∂x′
∂z′ 0

] [
0 δsµ
δsµ 0

] [
0 ∂z′
∂x′ 0

] (45)

are summands whose derivatives can be brought out into left and right matrix operators.
With all of the derivative operators shifted off δsµ, we then set δsµ(x′, z′) = δsµ(x, z)δ(x−
x′)δ(z − z′), substitute the two components of Vµγµρ into equation (33), enact the second
stage of integration by parts, and evaluate the new integral. We obtain the µ sensitivity:

∂G(kg, ks)

∂sµ(x, z)
=

[
∂z∂xGP0 ∂x∂zGP0

−∂2zGS0 ∂2xGS0

] [
1 1
1 1

] [
∂x∂zG

′
P0
−∂2zG′S0

∂x∂zG
′
P0

∂2xG
′
S0

]
− 2

[
∂2xGP0 ∂2zGP0

−∂x∂zGS0 ∂z∂xGS0

] [
1 0
0 1

] [
∂2zG

′
P0

∂z∂xG
′
S0

∂2xG
′
P0
−∂x∂zG′S0

]
,

(46)

the second of our base set of three sensitivity operators.
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The ρ sensitivity

The density sensitivity is relatively straightforward. Setting δsγ = δsµ = 0, the perturba-
tion operator becomes

Vργµρ(x′, z′) =

[
ω2δsρ 0

0 ω2δsρ

]
, (47)

from which, upon setting δsρ(x′, z′) = δsρ(x, z)δ(x−x′)δ(z−z′) (no second integration by
parts is necessary in this case) and integrating equation (33), we obtain the desired result:

∂G(kg, ks)

∂sρ(x, z)
=

[
ω∂xGP0 ω∂zGP0

−ω∂zGS0 ω∂xGS0

] [
1 0
0 1

] [
ω∂xG

′
P0
−ω∂zG′S0

ω∂zG
′
P0

ω∂xG
′
S0

]
. (48)

Other parametrizations

The above examples demonstrate three specific applications of the two-stage integration
by parts procedure leading to multicomponent elastic sensitivities appropriate for reflection
full waveform inversion. The same procedure can be applied to (V1

123,V2
123,V3

123) for any
three parameters, for instance those in equations (26)–(32), to derive the appropriate sensi-
tivities.

OBJECTIVE FUNCTION AND ITS DERIVATIVES

We will now construct a simple least-squares objective function whose derivatives make
use of the sensitivities calculated in the previous section, and which brings in the matrix
multicomponent framework in a natural way. Assuming we have access to some or all of
four components of measured data, P-to-P, P-to-S, S-to-P and S-to-S, such that the residuals
can be written

δP(kg, ks) =

[
δPPP(kg, ks) δPSP(kg, ks)
δPPS(kg, ks) δPSS(kg, ks)

]
, (49)

the simplest least-squares objective function φ is of the form

φ =
1

2

∫
dω
∑
kg ,ks

tr
(
δPHδP

)
, (50)

where ·H is the Hermitian transpose, and “tr” indicates the trace, or sum of the diagonals,
of a matrix. The quantity trATB is called the Frobenius product of A and B; it is a gener-
alization of the scalar product between two vectors, generating the sum of the products of
every element of two square matrices.

The gradient and Hessian functions are then produced by taking the first and second
derivatives of φ with respect to each of the three model parameters. The gradient function
associated with parameter X is given by

gX(x, z) = −
∫
dω
∑
kg ,ks

tr

{[
∂G(kg, ks)

∂sX(x, z)

]T
δP∗

}
, (51)
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and the residual-independent part of the Hessian function associated with the pair of pa-
rameters X and Y is given by

HXY (x, z, x′, z′) =

∫
dω
∑
kg ,ks

tr

{[
∂G(kg, ks)

∂sX(x′, z′)

]H [
∂G(kg, ks)

∂sY (x, z)

]}
. (52)

We have again made use twice of the Frobenius product to keep the notation compact.

UPDATING

A Gauss-Newton update in three parameters X , Y , and Z, distributed in spatial coordi-
nates x and z is  δsX(x, z)

δsY (x, z)
δsZ(x, z)

 =

∫
dx′
∫
dz′H−1(x, z, x′, z′)g(x′, z′), (53)

where

g(x, z) =

 gX
gY
gZ

 , H(x, z, x′, z′) =

 HXX HXY HXZ

HY X HY Y HY Z

HZX HZY HZZ

 . (54)

Example: γ, µ, ρ update

To give one explicit example, consider our base parameters γ, µ, ρ. The Gauss-Newton
update will be in our framework δsγ(x, z)

δsµ(x, z)
δsρ(x, z)

 =

∫
dx′
∫
dz′H−1(x, z, x′, z′)g(x′, z′), (55)

where

gγµρ(x, z) =

 gγ(x, z)
gµ(x, z)
gρ(x, z)

 , (56)

and

Hγµρ(x, z, x
′, z′) =

 Hγγ(x, z, x
′, z′) Hγµ(x, z, x′, z′) Hγρ(x, z, x

′, z′)
Hµγ(x, z, x

′, z′) Hµµ(x, z, x′, z′) Hµρ(x, z, x
′, z′)

Hργ(x, z, x
′, z′) Hρµ(x, z, x′, z′) Hρρ(x, z, x

′, z′)

 . (57)

The individual gradient functions are

gγ(x, z) = −
∫
dω
∑
kg ,ks

tr

{[
∂G(kg, ks)

∂sγ(x, z)

]T
δP∗

}
,

gµ(x, z) = −
∫
dω
∑
kg ,ks

tr

{[
∂G(kg, ks)

∂sµ(x, z)

]T
δP∗

}
,

gρ(x, z) = −
∫
dω
∑
kg ,ks

tr

{[
∂G(kg, ks)

∂sρ(x, z)

]T
δP∗

}
,

(58)
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and those for the Hessian are likewise

Hγγ(x, z, x
′, z′) =

∫
dω
∑
kg ,ks

tr

{[
∂G(kg, ks)

∂sγ(x′, z′)

]H [
∂G(kg, ks)

∂sγ(x, z)

]}

Hγµ(x, z, x′, z′) =

∫
dω
∑
kg ,ks

tr

{[
∂G(kg, ks)

∂sµ(x′, z′)

]H [
∂G(kg, ks)

∂sγ(x, z)

]}

Hγρ(x, z, x
′, z′) =

∫
dω
∑
kg ,ks

tr

{[
∂G(kg, ks)

∂sρ(x′, z′)

]H [
∂G(kg, ks)

∂sγ(x, z)

]}
,

(59)

and

Hµγ(x, z, x
′, z′) =

∫
dω
∑
kg ,ks

tr

{[
∂G(kg, ks)

∂sγ(x′, z′)

]H [
∂G(kg, ks)

∂sµ(x, z)

]}

Hµµ(x, z, x′, z′) =

∫
dω
∑
kg ,ks

tr

{[
∂G(kg, ks)

∂sµ(x′, z′)

]H [
∂G(kg, ks)

∂sµ(x, z)

]}

Hµρ(x, z, x
′, z′) =

∫
dω
∑
kg ,ks

tr

{[
∂G(kg, ks)

∂sρ(x′, z′)

]H [
∂G(kg, ks)

∂sµ(x, z)

]}
,

(60)

and

Hργ(x, z, x
′, z′) =

∫
dω
∑
kg ,ks

tr

{[
∂G(kg, ks)

∂sγ(x′, z′)

]H [
∂G(kg, ks)

∂sρ(x, z)

]}

Hρµ(x, z, x′, z′) =

∫
dω
∑
kg ,ks

tr

{[
∂G(kg, ks)

∂sµ(x′, z′)

]H [
∂G(kg, ks)

∂sρ(x, z)

]}

Hρρ(x, z, x
′, z′) =

∫
dω
∑
kg ,ks

tr

{[
∂G(kg, ks)

∂sρ(x′, z′)

]H [
∂G(kg, ks)

∂sρ(x, z)

]}
.

(61)

The three sensitivities combined to produce these twelve functions are given in equations
(40), (46) and (48).

Updating with individual PP, PS, SP, SS components

To update using only PP, PS, SP or SS data we can set the other three components of
the residuals matrix to zero, that is, we reduce to an update with PP data only with the
replacement

δP(kg, ks)→
[
δPPP(kg, ks) 0

0 0

]
, (62)

with converted wave data only with the replacement

δP(kg, ks)→
[

0 δPSP(kg, ks)
0 0

]
, (63)
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with S to P conversions only with the replacement

δP(kg, ks)→
[

0 0
δPPS(kg, ks) 0

]
, (64)

and with pure S wave data only by the replacement

δP(kg, ks)→
[

0 0
0 δPSS(kg, ks)

]
. (65)

Joint inversion

Multicomponent inversion has been posed in CREWES research as joint inversion§, a
framework most often employed to integrate data sets from different physical experiments
(e.g., gravity and seismic). PP and PS data come from the same experiment, but their
significant practical differences are such that implementing joint inversion makes sense.
We must do some more work in order to incorporate practical differences between PP and
PS inversion (e.g., data bandwidth etc.), but we can easily formulate a joint PP, PS inversion
or SP, SS inversion.

P source

The full inverse problem given a P-wave source is set up with the replacement

δP(kg, ks)→
[
δPPP(kg, ks) δPSP(kg, ks)

0 0

]
. (66)

S source

Meanwhile the full inverse problem given an S-wave source is set up with the replacement

δP(kg, ks)→
[

0 0
δPPS(kg, ks) δPSS(kg, ks)

]
. (67)

CONCLUSIONS

Full waveform inversion applied to reflection mode, multicomponent land data is con-
sidered, in the context of the iterated recovery of sets of three parameters, ranging from
standard elastic λ, µ, and ρ through to petrophysically relevant parameters such as the fluid
term f of Russell and Gray. Much of the effort lies in constructing a flexible framework
for elastic multicomponent sensitivities, which we address with a two-stage integration by
parts regimen. Matrix forms for a multicomponent objective function and three term gra-
dient and nine term Hessian are then determined, and the reductions necessary to invert PP,
PS, SP, and SS modes independently or jointly are formed.

§See, for instance http://www.crewes.org/ResearchLinks/JointInversion/.
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Two lines of research will be high priorities going forward. First, this theory can be
integrated into ongoing CREWES research efforts in progressing IMMI (Margrave et al.,
2013). The 2014 Priddis shoot (Hall et al., 2014) will likely be a key early-stage dataset
to which this will apply. Second, analysis of the theoretical character of the possible pa-
rameterizations of FWI can begin. In this there are several dovetailing issues. It has been
demonstrated in an acoustic setting that certain approximations of the inverse Hessian pro-
duce FWI updates which are consistent with linearized AVO inversion and linearized mul-
tiparameter inverse scattering (Innanen, 2014b). This analysis can now be rounded out to
include more complete pictures of AVO, with the ability to include virtually any convenient
AVO parameterization in the FWI framework.

Moreover, the linearized AVO results can now be extended to incorporate nonlinear
amplitude phenomena. Recent theoretical and laboratory analysis (Innanen, 2013; Innanen
and Mahmoudian, 2014; Kolb et al., 2014) has highlighted the importance of nonlinearity
to real measurements and interpretations of AVO data. In a scalar setting, an incorporation
of nonlinearity as far as second order in full waveform inversion reflected data amplitudes
has been discussed (Innanen, 2014a); in principle this can now also be brought to bear on
any three-parameter isotropic-elastic framing of AVO, through an integration of the current
paper’s results with the scalar nonlinear results.
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