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ABSTRACT

Azimuthal AVO can be used to determine anisotropic elastic parameters in the sub-
surface. AVO methods often separate the effects of elastic parameters on the reflection
coefficient into three terms: intercept, gradient, and curvature. In this paper we show
that the gradient is characterized by multiple independent terms that change with azimuth,
leading to nonuniqueness when used to characterize anisotropy, while the curvature term is
only influenced by a single term proportional to the change in horizontal P-wave velocity
across the interface along an azimuth. This gives the curvature the capability of determin-
ing anisotropy without ambiguity and makes it a useful quantity to estimate, especially
when it is combined with the gradient. Additionally, we analyze the nonlinearity present in
the precritical region of large-contrast reflections and demonstrate the advantage of using
exact reflection coefficients for nonlinear inversion by employing a Markov chain Monte
Carlo algorithm.

INTRODUCTION

Estimation of the azimuthal variation of elastic parameters is useful for a number of rea-
sons. For example, it can be used to improve imaging (see Tsvankin et al., 2001) and can
provide information about natural fracture density and orientation (Hudson, 1981; Schoen-
berg and Sayers, 1995), preferred stress orientation (Prioul et al., 2004), and brittleness
(Parney et al., 2010).

Methods for azimuthal AVO used in industry traditionally assume a single set of vertical
fractures and HTI symmetry (e.g. Rüger, 1998), whereas most reservoirs typically contain
multiple fracture sets (e.g. Gillespie et al., 1993). It has been suggested that one of the
reasons these methods often fail is due to this assumption (Sayers, 2009), and accurate
estimation of more general anisotropic parameters could lead to better results.

Another problem in azimuthal AVO inversions is an ambiguity in the fracture direction.
The equation often used to determine the symmetry axis of an HTI medium from Rüger
(1998) is nonlinear and produces two possible solutions, with two mutually perpendicular
fracture orientations possible. The inversion can be reduced to a single solution if the sign
of the AVO gradient is known, but as shown by Goodway et al. (2010) the sign can be
negative or positive and is difficult to constrain.

In this paper we use a formulation for general anisotropy provided by Vavryčuk and
Pšenčík (1998) to write the effect of stiffness coefficients along a single azimuth on the
reflection coefficient along that same azimuth. Using this formulation, we show that the
simplicity of the curvature allows for unique inversions, while the complexity of the gra-
dient (it has two terms that vary with azimuth) is what causes the nonuniqueness of its
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solutions.

BACKGROUND THEORY

Shuey (1985) showed that the linearized reflection coefficient for PP reflections at small
incidence angles in isotropic media could be written in the form

Riso
PP (θ) = A+B sin2 θ + C tan2 θ sin2 θ, (1)

where A is the normal-incidence or intercept term, B affects the slope of the reflection
coefficient at small angles and is often called the gradient term, and C only affects the
reflection coefficient at large angles and is called the curvature term. Thomsen (1990) used
this form to describe the effect of common seismic parameters VP , VS , ρ, and µ on the
reflection coefficient:
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Thomsen (1993) derived the linearized PP reflection coefficient for small-contrast weak
anisotropy:

RPP (θ) =
1

2

[
∆Z0

Z0

]
+

1

2

[
∆VP0

V P0

−
(

2V S0

V P0

)2
∆µ0

µ0

+ (δ2 − δ1)

]
sin2 θ

+
1

2

[
∆VP0

V P0

− (δ2 − δ1 − ε2 + ε1)

]
tan2 θ sin2 θ,

(3)

where VP0 and VS0 are vertical P and S velocities, Z0 = ρVP0 and µ0 = ρV 2
S0

are the vertical P-
wave impedance and shear modulus, and δ and ε are anisotropy parameters from Thomsen
(1986). ∆ denotes the difference in a parameter’s values across the interface and the overbar
denotes the average of a parameter’s values on both sides of the interface. Rüger (1995)
showed that equation 3 is more accurate without the δ2 and δ1 in the curvature.

Vavryčuk and Pšenčík (1998) calculated linearized reflection coefficients for an inter-
face between weak, generally anisotropic media using perturbations from background P-
wave velocities, α, and S-wave velocities, β, and expressed the PP reflection in a form
similar to Thomsen (1993) as given below:
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and Aαβ is Voigt notation for the density-normalized elastic parameters. The ’ symbol
denotes that the parameters are in the coordinate system which is rotated to be aligned
with the vertical plane containing the source and receiver. Vavryčuk and Pšenčík (1998)
then showed that by using a coordinate transformation, equation 4 could describe the PP
reflection along any arbitrary vertical plane of incidence and reflection.

A REXPRESSION OF THE CURVATURE TERM

By substituting ∆ε∗′ into equation 4 and combining terms the curvature becomes

1

2

(
∆A′33

2α2
+

∆A′11 −∆A′33

2α2

)
=

∆A′11

4α2
≈ 1

2

∆V ′PH

V
′
PH

, (6)

where VPH is the horizontal P-velocity. Eq. 6 seems to be simpler to understand than the
original form, at least for generally anisotropic media with no assumed symmetry axes in
which the meaning of ∆ε∗′ is less useful. Zillmer et al. (1998) expressed the curvature
in a form similar to eq. 6 but did not explicitly describe how this simplification could be
used in azimuthal AVO measurements. The curvature is proportional to ∆A′11, the change
in the square of the horizontal P-velocity along the vertical plane containing the source
and receiver. This also makes it clear that curvature is not being caused by a change in
vertical P-wave velocity as might be assumed by the presence of ∆VP0 in the curvature of
equation 3 and ∆A′33 in the curvature of equation 4, if one does not inspect the equations
further. Also, when looking back at the isotropic reflection coefficients in equation 2 it is
now clear that the ∆VP in the intercept is the change in vertical P-wave velocity and the
∆VP in the curvature is the horizontal P-wave velocity but since the media are isotropic
they simply become the same. It should be noted that if there is anisotropy in a layer and
one tries to use the curvature to separate the P-velocity and density terms from each other
in the intercept term, that this could cause problems since the intercept’s velocity and the
curvature’s velocity will not necessarily be the same.

Equation 6 is the curvature along a single plane, but a 21 parameter stiffness tensor de-
scribes all parameters in all directions and can be used to make the curvature more general
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if so desired. From Bond (1943), the coordinate transformation for A′11 along an arbitrary
vertical plane at an angle φ from the original plane is

A′11 = A11 cos4 φ+ 4A16 cos3 φ sinφ+ 2(A12 + 2A66) cos2 φ sin2 φ

+ 4A26 sin3 φ cosφ+ A22 sin4 φ.
(7)

This allows the curvature to be written as

1

4α2

[
∆A11 cos4 φ+ 4∆A16 cos3 φ sinφ+ 2(∆A12 + 2∆A66) cos2 φ sin2 φ

+4∆A26 sin3 φ cosφ+ ∆A22 sin4 φ
]
.

(8)

Rüger (1998) writes the weak contrast curvature for two HTI media with the same
symmetry axis as

1
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(9)

and if we substitute the weak anisotropic parameters from Vavryčuk and Pšenčík (1998)
shown in equation 5 into expression 9 and assume α2 = A33, expression 9 becomes
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(10)

In media with transverse isotropy with a horizontal axis of symmetry the following are
true:

A12 = A13, A66 = A55, A22 = A33, A16 = A26 = 0, (11)

and expression 8 can be written in the form of equation 10. Expression 8, however holds
for general (weak) anisotropy and expressing the terms as A12, A66, and A22 is a good
reminder that it is the horizontal stiffnesses (or velocities, depending on parameterization)
affecting the curvature rather than the vertical stiffnesses even if the media has symmetry
which allows the terms to be interchanged.

EXPLANATION OF AMBIGUITIES IN FRACTURE DIRECTION

Substituting ∆δ∗ into equation 4, the gradient term along a single plane is
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FIG. 1. Two solutions for the azimuthal AVO gradient. The azimuthal gradient for an isotropic half-
space overlaying a halfspace with HTI symmetry is shown in blue. Two different solutions for Biso,
Bani, and φsym from equation 14 are shown in green and red (the values of φsym for the solutions
are 0◦ and 90◦). (top) Two gradient for two isotropic backgrounds along with the true gradient (mid-
dle) anisotropic perturbations are added to the isotropic backgrounds, both oriented at 0 degrees
(bottom) for one of the solutions (red), the anisotropic perturbation of the gradient has to be rotated
by 90 degrees (a shift of 90 degrees on this plot) to fit the true gradient. This nonuniqueness is
caused in part by what is considered the isotropic response and what is considered the anisotropic
deviation from that response.
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The only terms in equation 12 that change with azimuth are ∆A′55 and ∆A′13 under the
following relations (from Bond (1943)):

A′55 = A55 cos2 φ+ 2A45 cosφ sinφ+ A44 sin2 φ,

A′13 = A13 cos2 φ+ 2A36 cosφ sinφ+ A23 sin2 φ.
(13)
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In Figure 1 the gradient for a model from Vavryčuk and Pšenčík (1998) (Case A and C)
of an isotropic halfspace overlaying a halfspace with HTI symmetry assumed to be caused
by vertical parallel dry (gas-filled) cracks taken from is shown in blue. This was calculated
using the Center for Wave Phenomena’s reflection coefficient code and solving a system of
linear equations for the sin2 θ term. A now commonly used parameterization of the gradient
for HTI media is the gradient from "Rüger’s equation" given in Rüger (1998) as

B(φk) = Biso +Bani cos2(φk − φsym), (14)

which allows the gradient to be broken into the contribution of the isotropic component
Biso, an anisotropic componentBani and the symmetry axis φsym. Unfortunately, as shown
in Figure 1 the solution to equation 14 is nonunique and there are two possible solutions,
shown in red and green for the example in Figure 1. This formula is often used to attempt
to determine a symmetry axis, and the two solutions have a 90 degree difference in φsym, so
it is often said that Rüger’s equation has a 90 degree ambiguity in it. Since Bani

2 = −Bani
1

for the two possible solutions, if the sign of Bani is known then it can be used to constrain
the symmetry axis.

Another way of looking at the gradient curve’s azimuthal change is simply as the fluc-
tuations of the quantity 1

2α2 [−2∆A′55 + ∆A′13] with azimuth. At least when using synthetic
data, there is no ambiguity in the system; there are just minimums and maximums in the
gradient corresponding to minimums and maximums in [−2∆A′55 + ∆A′13]. The ambi-
guity comes when one decides to assume that a minimum or maximum in the gradient
corresponds with a symmetry axis. The problem with saying if a minimum or maximum in
this term corresponds to the symmetry axis is that dry fractures will decrease both A′55 and
A′13 along the symmetry axis. In fact, it can easily be seen that these terms could cancel
and there could be no change in gradient with azimuth for an interface between anisotropic
media.

Figure 2 from Bakulin et al. (2000) shows the change in the difference of the gradient
parallel and perpendicular to fractures with Vs/Vp ratio for an isotropic halfspace over an
HTI halfspace caused by fractures. They show that with their model, reasonable Vs/Vp
ratios, and a crack density of .07 for dry (gas-filled) cracks it is possible to have no az-
imuthal change in the gradient while for wet (liquid-filled) cracks there is always a change.
This makes sense because wet cracks will have minimal excess normal compliance and
will not influence A13 or A23 while they will still influence the S-wave polarized along the
symmetry axis changing A55. For the dry cracks, which add excess normal and tangential
compliance,A13 will be reduced and it is possible for−2∆A55 and ∆A13 to cancel. For dry
cracks, larger P-velocities, shown on the left side of Figure 2, will be more influenced by
excess normal compliances, ∆A13 dominates the change in gradient, and the gradient along
the symmetry axis will be negative, while for larger S-velocities, shown on the right side of
Figure 2, excess tangential compliances will have a larger effect, −2∆A55 will dominate,
and the gradient along the symmetry axis will be positive. Even without knowledge of the
symmetry axis (if there is one), the change of the combination of [−2∆A′55 + ∆A′13] with
azimuth could be a useful quantity to estimate. Also, although this example is for HTI,
this change in gradient with the change in [−2∆A′55 + ∆A′13] with azimuth should apply
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FIG. 2. Change in the anisotropic gradient with Vs/Vp ratio of the background rock in a rock with
HTI symmetry due to aligned vertical fractures. The difference between the anisotropic gradient
perpendicular and parallel to the cracks (Bani) for wet fractures are given by the solid line and for
dry fractures by the dashed line. Dots signify values of Bani from the exact reflection coefficients.
The red arrow shows the increasing influence of ∆A13 as Vs/Vp decreases, and the increasing
influence of ∆A55 as Vs/Vp increases (figure adapted from Bakulin et al. (2000)).

to more general cases.

RESOLVING FRACTURE DIRECTION AMBIGUITY

Figure 3 shows every other azimuth of processed azimuthal AVO data from an interface
between plexiglas and phenolic material, collected and processed by Faranak Mahmoudian
for her thesis (Mahmoudian, 2013). Prior to azimuthal AVO tests, the stiffnesses and veloc-
ities of the materials used were estimated by Mahmoudian (2013) and are shown in Table 1
and Table 2. The plexigas is approximately isotropic and the phenolic layer is orthorhom-
bic, but can be approximated as a medium with HTI symmetry, simulating a set of aligned
fractures with the symmetry axis along the x1-axis corresponding to an azimuth of 0◦. Be-
cause in this problem the overburden is isotropic, solving for the change in parameters
across the interface provides us with the anisotropy of the bottom layer.

Mahmoudian (2013) used a method outlined in Jenner (2002) that uses Rüger’s equation
to estimate the fracture direction. She was able to successfully estimate the correct direction
with an error of just 0.8◦. Unfortunately, due to the ambiguity previously mentioned, the
method predicts both the correct symmetry axis, and a symmetry axis perpendicular to the
true symmetry axis, and it is unclear which is correct.

We solved a system of linear equation to find the coefficients to 1, sin2 θ, and sin2 θ tan2 θ

CREWES Research Report — Volume 26 (2014) 7
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FIG. 3. Azimuthal reflection data from Mahmoudian (2013) for a physical model with elastic param-
eters given in Table 1 and Table 2. A small anomaly at incidence angles of ∼ 0-12 degrees was
unable to be removed during processing. At large angles and for azimuths with faster velocities a
large reflection is recorded near the critical angle.


8.70± 0.49 4.68± 0.21 5.07± 0.21 0 0 0

13.25± 0.49 5.13± 0.23 0 0 0
12.25± 0.49 0 0 0

2.89± 0.12 0 0
2.34± 0.12 0

2.28± 0.12


Table 1. Approximate P-velocities, S-velocities, and densities for the materials used in the physical
model, estimated from group velocities by Mahmoudian (2013).

Table 2. Approximate P-velocities, S-velocities, and densities for the materials used in the physical
model, estimated from group velocities by Mahmoudian (2013).
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(which are the the AVO intercept, gradient, and curvature) that best fit the data for each az-
imuth, and the results are shown in Figure 4. In order to do this we could only use certain
incident angles because there was error at small angles which could not be removed through
processing and at large angles the incidence angle is close to critical and linear equations
are no longer good approximations. We chose to use angles between 12.5 and 45 degrees
for these calculations. From the AVO gradient, one can tell that the likely symmetry axis
is either about 0 degrees or 90 degrees due to the minimum and maximum being at those
azimuths. However the gradient is made up of two terms and it is not clear whether 0 or
90 degrees is the symmetry axis. The curvature also has a minimum and maximum at 0
and 90 degrees. The difference, however, is that the gradient only consists of one term per
azimuth and so we know which direction has a larger change in the horizontal velocity and
which has the smaller. In this case, since the overburden is isotropic, it also tells us the fast
and slow direction for the underlying layer.

Figure 5 shows a best fit of equation 8 to the measured curvature. A16 and A26 were
set to zero, which assumes orthorhombic symmetry. Also, the data was only for azimuths
of 0 to 90 degrees and the rest of the azimuths were filled in to make the figure easier to
understand. Shifting the data by any amount and finding the angle that gives the largest
difference between ∆A11 and ∆A22 shows that this is the case at 0 and 90 degrees exactly.
Since there is only one term affecting the curvature, however, it is able to find that the sym-
metry axis is 0 degrees. This won’t always be the case of course; data will often be noisier
than the dataset we used, the overburden may not be isotropic, one can’t necessarily assume
the underlying layer is orthorhombic, and one can change the range of incidence angles to
include. Regardless, the curvature seems like a reasonable way to constrain anisotropic
measurements geophysicists make using the gradient, especially when there is a 90 degree
ambiguity in the fracture direction.

NONLINEARITY IN THE REFLECTION COEFFICIENT

It is well known that the precritical region of reflection coefficients is increasingly more
nonlinear with larger incidence angles (see Castagna and Backus, 1993). Since the AVO
curvature is more sensitive to larger incidence angles than the other AVO terms, it is most
affected by this nonlinearity. In Figure 4 we showed that the curvature was larger at 90
degrees azimuth, but the estimated magnitude is off by a factor of almost 3 (0.4176 esti-
mated vs 0.1465 substituting the stiffnesses into ∆A′

11

4α2 ). The difference between using the
linearization from Vavryčuk and Pšenčík (1998) (eq. 4 in this paper) for the model we’re
using from Mahmoudian (2013) and the exact plane-wave equation is shown in Figure 6.
The exact plane-wave equation is shown in blue, eq. 4 using all 3 angle terms in green, and
eq. 4 using just the AVO intercept and AVO curvature terms in red. The solid lines are for
an azimuth of 90◦ which is the fast direction of the lower medium, representing the direc-
tion parallel to a fractured medium. The dotted lines are for an azimuth of 0◦ which is the
slow direction of the lower medium, representing the direction perpendicular to a fractured
medium. Using the all 3 terms, including the AVO curvature, more closely approximates
the exact plane-wave reflection coefficient than just using 2 terms and in the fast direction
in which there is a larger contrast in velocities, the 3 term linearization diverges around
30 degrees rather than at 20 degrees. For the fast direction, in which the contrast of elas-
tic parameters across the layer is greater, the linearizations do not approximate the exact

CREWES Research Report — Volume 26 (2014) 9



Kolb et al.

0 10 20 30 40 50 60 70 80 90
0.16

0.18

0.2

0.22
AVOhIntercept

0 10 20 30 40 50 60 70 80 90
−0.4

−0.2

0
AVOhGradient

0 10 20 30 40 50 60 70 80 90
0

0.2

0.4

AVOhCurvature

Azimuthh(degrees)

FIG. 4. Azimuthal variations in the AVO intercept, gradient and curvature. These were calculated
from azimuthal reflection data shown in Figure 3.

0 50 100 150 200 250 300 350
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Azimuth (degrees)

A
V

O
 C

ur
va

tu
re

Measured Curvature
Best Fit

FIG. 5. Best fit of equation 8 to the curvature obtained from the data. For this particular dataset,
the curvature determines the fracture symmetry axis direction exactly. For lower quality data, this
analysis should still provide a constraint on anisotropy.
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FIG. 6. Comparison of anisotropic reflection coefficient linearization to exact plane-wave coefficient.
In blue are the exact plane-wave anisotropic reflection coefficients. In green are the linearizations
from Vavryčuk and Pšenčík (1998) (eq. 4 in this paper), and in red are the linearizations using
only the first two angle terms in eq. 4. The solid lines are for an azimuth of 90◦ which is the fast
direction of the lower medium, representing the direction parallel to a fractured medium. The dotted
lines are for an azimuth of 0◦ which is the slow direction of the lower medium, representing the
direction perpendicular to a fractured medium. Using the all 3 terms, including the AVO curvature,
more closely approximates the exact plane-wave reflection coefficient than just using 2 terms and
in the fast direction in which there is a larger contrast in velocities, the 3 term linearization diverges
around 30 degrees rather than at 20 degrees. For the fast direction, in which the contrast of elastic
parameters across the layer is greater, the linearizations do not approximate the exact plane-wave
equation well at large angles in the precritical region.

plane-wave equation well at large angles in the precritical region. We attribute this to the
nonlinearity that occurs in the precritical region and the fact that increasingly higher order
terms which can describe increasingly larger contrasts and angles are truncated in the lin-
earization. In another CREWES report in this volume (Kolb et al., 2014) we create a series
expansion of the exact plane-wave anisotropic reflection coefficient in order to analyze the
nonlinearity present.

MARKOV CHAIN MONTE CARLO ANALYSIS

Because of the nonlinearity in the reflection coefficients and the inaccuracy it causes in
the estimated stiffnesses, we decided to perform an inversion using exact reflection coeffi-
cients. We used a Markov chain Monte Carlo (MCMC) algorithm to analyze data from the
slow and fast directions of the physical model. As input values to the algorithm we used the
stiffnesses estimated from group velocities by Mahmoudian (2013) for the top layer (Table
2), and averaged the estimated stiffnesses for the lower layer (Table 1) to create an isotropic
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starting model for the bottom layer as well. Priors were set as normally distributed with
standard deviations of 10% of the stiffnesses for the top layer and standard deviations of
20% of the stiffnesses for the bottom layer. Densities were fixed to their known values for
the tests in this report and we inverted for A′11, A′13, A′33, and A′55 for each layer, resulting
in 8 estimated parameters.

Figure 7 shows histograms of estimated horizontal P-wave velocities, VPH , and S-wave
velocities, VS , for the slow and fast directions of the physical model, which are propor-
tional to the posterior distributions (Metropolis et al., 1953). Using just the AVO gradient
for anisotropy analysis results in a 90-degree ambiguity in the fracture direction, and using
the AVO curvature gives a first order approximation to the velocities, but using the exact re-
flection coefficients for forward modeling, as done here, results in more accurate velocities,
especially the horizontal P-velocity. Also, it can be seen that the S-velocity distribution is
broader, meaning that there is more uncertainty on its estimate, likely due to the fact that it
is coupled to a larger number of other elastic parameters in the AVO gradient.

Figure 8 shows histograms of the differences in vertical and horizontal P-velocities
across the interface for the slow and fast directions. Since the P-impedance is well con-
strained and we fixed the density values, the difference in vertical P-velocity is also well
constrained (see the x-axis). The reason there is error between the MCMC result and the
group velocity estimate is likely because synthetics using the group velocity estimate don’t
fit the data due to: noise, an anomaly at small incidence angles, and possibly model error.
Figure 9 shows the synthetic PP reflection coefficients using elastic parameters estimated
from group velocities for the slow and fast directions of the physical model. Given that
there is some misfit between the synthetics and the data, it makes sense that our estimated
elastic parameters will have some misfit with the ones estimated from group velocities.
Because at higher order there is nonlinear coupling between the horizontal velocity and
other elastic parameters, the distribution for the change in horizontal P-velocity across the
interface is broader than that for the change in vertical P-velocity; it cannot be completely
constrained because other parameters can be varied along with it, resulting in similar re-
flection curves.

In Figures 10 & 11, we repeated our MCMC algorithm, but used equation 4, the lin-
earization from Vavryčuk and Pšenčík (1998), as the forward model. The main difference
in the results when using the linearized equation is that there is a larger error in both the hor-
izontal P-velocity as well as the difference in horizontal P-velocities in the fast direction
when compared to results using the exact reflection coefficient. This demonstrates once
again the error in the estimation of the horizontal P-velocities when using a linearization of
the PP reflection coefficient for a large contrast.

CONCLUSIONS

Formulating azimuthal AVO as a series of AVO inversions along different azimuths al-
lows for an alternative representation of the theory. Typical inversion schemes assume sym-
metry of some sort and use it to provide a relation between the AVO gradient terms along
different azimuths in order to simplify the problem. By allowing for arbitrary anisotropy,
the media may be more realistic in some areas. Although it is not possible to invert for
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FIG. 7. Histograms showing posterior probability densities of velocities in the slow and fast direc-
tions of the physical model, using an exact forward model for the inversion. Red lines indicate the
medians of the Markov chain values and magenta lines indicate the values estimated from group
velocities by Mahmoudian (2013). (top) horizontal P-velocities. (bottom) S-velocities. (left) Slow
direction. (right) Fast direction.
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interface in the slow and fast directions of the physical model, using an exact forward model for the
inversion. Red lines indicate the medians of the Markov chain values and magenta lines indicate
the values estimated from group velocities by Mahmoudian (2013). (top) Change in vertical P-
velocities. (bottom) Change in horizontal P-velocities. (left) Slow direction. (right) Fast direction.
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estimated from group velocities by Mahmoudian (2013). (left) Slow direction. (right) Fast direction.
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FIG. 10. Histograms showing posterior probability densities of velocities using the linearized forward
model from Vavryčuk and Pšenčík (1998) (equation 4 in this paper). Red lines indicate the medians
of the Markov chain values and magenta lines indicate the values estimated from group velocities
by Mahmoudian (2013). (top) horizontal P-velocities. (bottom) S-velocities. (left) Slow direction.
(right) Fast direction.
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FIG. 11. Histograms showing posterior probability densities of the change in velocities across the
interface using the linearized forward model from Vavryčuk and Pšenčík (1998) (equation 4 in this
paper). Red lines indicate the medians of the Markov chain values and magenta lines indicate the
values estimated from group velocities by Mahmoudian (2013). (top) Change in vertical P-velocities.
(bottom) Change in horizontal P-velocities. (left) Slow direction. (right) Fast direction.
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all the stiffness coefficients of a triclinic medium using PP reflection data, it is possible
that allowing for arbitrary anisotropy and calculating stiffnesses along different azimuths
may tell us which directions are more or less stiff, which could be useful information.
Additionally, the AVO curvature is only dependent on one elastic stiffness, normalized by
the background velocity, and this simplicity allows for it to estimate a change in stiffness
uniquely, which could be useful on its own if the data quality is good, or as a constraint to
alternative anisotropic methods such as using the AVO gradient. Furthermore, we showed
that the curvature cannot accurately estimate horizontal P-velocities for a large contrast
and is more useful as a constraint in these situations. Nonlinear inversion methods, such as
the MCMC algorithm presented here, can be used if the horizontal P-velocities need to be
estimated more accurately.
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