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ABSTRACT 
Multiple attenuation is a key aspect of seismic data processing, with the completeness 

of multiple removal often significantly affecting final image results. In this paper, we 
analyze 1.5D internal multiple prediction on physical modeling data simulating a 2D 
marine seismic survey designed to generate significant internal multiples. We describe a 
processing flow appropriate for preparation of the data for input into multiple prediction. 
Then we examine a 1.5D (i.e., pre-stack data over a layered geology) implementation of 
the inverse scattering series internal multiple prediction. The results show good 
agreement of predictions compared against synthetic data and physical modeling data. 
We discuss the selection of the integral limit parameter ϵ and the influence of free-surface 
multiples. We also demonstrate that the beginning and ending integration points of 
frequencies, wavenumbers, and pseudo-depths in the code can be optimally chosen to 
reduce computational burden.  

INTRODUCTION 
There are two advantages of the inverse scattering series internal multiple prediction 

method. First, this algorithm does not require any subsurface information. Secondly, first-
order internal multiples are predicted with accurate times and approximate amplitudes. 
Internal multiple events are usually considered to be coherent noise in the seismic data. 
However, in many cases, internal multiples interfere with primary reflections, and 
removal of internal multiples without compromising primaries is very challenging in 
these cases. Reshef et al. (2003) pointed out that the prediction itself can be the final 
output, which is useful as an interpretation tool for identification only. Whether we 
decide to subtract them or not, the ability to identify internal multiples amongst primaries 
is still a technological necessity (Hernandez and Innanen, 2014). 

In this paper, we discuss the acquisition, processing and multiple prediction analysis 
of a 2D common-source marine seismic survey. The purpose of this paper is to examine 
the response of the 1.5D internal multiple prediction algorithm as implemented in 
MATLAB on physical modeling data, and seek out an approach which can reduce 
computational burden and support interpretation. The data we acquired is designed to be 
strongly contaminated with internal multiples. After applying a processing flow on 
ProMax, we carry out a 1.5D internal multiple prediction, investigating its use on 
physical modeling data. 

Seismic physical modeling provides scaled simulations of real world scenarios, the 
benefits of which are controlled acquisition geometry and physical model properties 
(Lawton et al., 1998). Physical modeling of seismic surveys has been conducted at the 
University of Calgary Seismic Physical Modeling Facility since 1985. Data are written 
into SEGY files, and gathers of seismograms can be read directly by processing packages 
such as ProMax (Wong et al., 2009a). Data are collected with a source transducer and a 
receiver transducer, each of which is moved independently by four linear motors 
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mounted on a gantry with digital position encoders and motor drives. Two of these 
motors are responsible for moving the gantry in the X direction, and the remaining two 
motors move the source or receiver transducer in the Y and Z direction. The eight motors 
on the two gantries are controlled through a desktop PC running the Windows XP system 
(Wong et al., 2009b). Additional details regarding the modeling systems are described by 
Lawton et al. (1989), and Wong et al. (2009a, 2009b). 

PHYSICAL MODELING EXPERIMENT 
The first step to build a physical model is the selection of materials. The materials 

used in this case were water, PVC, Plexiglas and aluminum; the choice introduces several 
large impedance contrasts which induce significant internal multiples. We illustrate the 
schematic diagram of the physical modeling experiment in Figure 1, along with its scaled 
length and elastic parameters. The physical models were immersed into a tank of water. 

 

FIG. 1. Schematic diagram of the physical modeling experiment. All lengths are in scaled units 
(i.e., physical modeling units multiplied by 10000). The transducers are set just below the water 
surface. 

We conducted a 2D common-source seismic survey over the model shown in Figure 1, 
with source fixed at a depth of 2mm below the water surface to avoid the source-ghost as 
much as possible. The source and receiver are 1.36mm-diameter piezoelectric CA-1136 
pin transducers, acting as vertical component geophones. The source and receiver move 
in the Y direction along lines that are separated by 10mm in the X direction. The standard 
model scale factor is 1: 104, so that 10mm in the model represents 100m in the real world, 
and 1µs represent 10ms. All measurement numbers in the report are scaled to represent 
field values and have approximate error of 5%. We move the receiver in the Y direction 
from left to right in increments of 25m, covering a total distance of 3.0km (Figure 2). A 
sample rate of 2ms was used during the acquisition. The scaled dominant frequencies of 
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the vibration pulse vary from 20 to 100Hz. In this study, we only consider the acoustic 
modeling. 

 

FIG. 2. Plan view of the physical modeling data acquisition. The source has been fixed, with the 
receiver moved from  𝑦𝑦0 to 𝑦𝑦1 direction in 25m increments and 121 traces were collected. All units 
are in field scale. 

SEISMIC DATA PROCESSING 
We initially viewed the physical modeling data in Seisee for quality control, and then 

processed them using ProMax seismic data processing software. After some 
experimentation, a work flow has been created which is shown in Table 1.  

Table 1. A processing flow applied to the physical modeling data. 
 

PROCESSING FLOW 
1 Trace Header Math 
2 Top Mute 
3 Spiking Deconvolution 
4 Bandpass Filter 

 

The survey geometry was loaded from trace headers. From these basic headers, Trace 
Header Math was used to recreate the source and receiver coordinates to ensure that the 
data was in sequential order (Wong et al., 2009a). Then Trace Mute was applied to mute 
the energy of the direct wave. The raw data after Trace Mute is shown in Figure 3. In this 
figure, we can see that reverberations between the first two primaries are quite strong and 
must be repressed. Spiking deconvolution appears to be an effective tool for internal 
multiple prediction pre-processing, which shortens the period of the embedded source 
wavelet, trying to create a spike (Geldart and Sheriff, 2004). The operator length was 
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80ms and the operator prediction distance was 35ms. Predictive deconvolution was also 
investigated, however it seemed to repress the reverberations in the much later multiples 
(about 2300~2600ms). Since we wish to retain the energy of multiples, we avoided using 
predictive deconvolution. After performing filter panel tests, a bandpass filter of 15-20-
70-90Hz was also applied. The deconvolved data is shown in Figure 4.  

 

FIG. 3. Raw data after applying Trace Mute. 

 

FIG. 4. The deconvolved data with decon operator length was 80ms and operator prediction 
distance was 35ms. A bandpass filter of 15-20-70-90Hz was also applied. 
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1.5D INTERNAL MULTIPLE PREDICTION 
Event identification 

After pre-processing, we then analyzed our input using multiple prediction. First we 
identified reflection events, which is helpful for us to verify our prediction results. We 
also created a numerical finite-difference acoustic model using the same parameters as 
our physical model. We set the boundary conditions to be absorbing for all sides, which 
means there are no free-surface multiples in the synthetic data. We calculated the two-
way travel times for primaries and multiples (1st order internal multiples and 1st order 
free-surface multiples). The expected time is approximate because of the measurement 
error associated with the thickness of each block, and the water depth. In Figure 5, the 
interpretations are illustrated. Events A, B, D, E are primaries and C, F, H, J are first-
order internal multiples. The two events G and I are first-order free-surface multiples. 
The approximate travel time of each event is listed in Table 2.  

We also compare the zero-offset trace from the synthetic data against the zero-offset 
trace from physical modeling data. Figure 6a is the zero-offset trace from the physical 
modeling data, alongside which in Figure 6b the synthetic data zero-offset trace is plotted. 
Note that the two traces are not exactly identical, as there are some phase, amplitude as 
well as travel time differences between the two traces. These are within the expected 
variability caused by non-welded contact between the various slabs (Mahmoudian, 2013), 
evaporation over time in the tank, and measurements of each slab’s thickness. Within this 
expected variability we conclude that the synthetic and physical modeling data match. 

The ray paths for the internal multiples labelled IM1 through IM4 are illustrated in 
Figure 7. Note that there are two superimposed events labelled peg-leg multiple IM2, 
which have different paths but the same arrival times.  

Internal multiple prediction 
The formula for 1.5D internal multiple prediction (Weglein et al., 1997; 2003) is  
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𝜔𝜔2  is the vertical wavenumber associated with 
the lateral wavenumber 𝑘𝑘𝑔𝑔, the reference velocity 𝑐𝑐0 and the temporal frequency 𝜔𝜔. The 
quantity 𝑏𝑏1 is the input to the prediction algorithm. 

The prediction process is applied to the physical modeling data. The SEGY file of 
physical modeling data was loaded into the prediction algorithm. The data are 
transformed from the space/time domain to the wavenumber/pseudo-depth domain to 
create the input 𝑏𝑏1�𝑘𝑘𝑔𝑔, 𝑧𝑧�. The quantity 𝑧𝑧 = 𝑐𝑐0 ∗ 𝑡𝑡/2 is the pseudo-depth defined in terms 
of reference P-wave velocity 𝑐𝑐0 and vertical travel time 𝑡𝑡. After the construction of the 
input, the 1.5D algorithm, which can be thought of as a sequence of 1D internal multiple 
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predictions, one per output 𝑘𝑘𝑔𝑔 value, is run. An ϵ value, whose practical importance was 
first pointed out by Coates and Weglein (1996) is chosen based on the width of the 
wavelet. Effects of various ϵ values have been described in Pan and Innanen (2014), 
which showed that a smaller ϵ value will result in far-offset artifacts at the arrival time of 
primaries. Meanwhile, a larger ϵ value will damage the prediction output at near offsets.  
Here we determine the optimal ϵ value to be 80 sample points.  

An important issue is raised by the notable absence in the prediction of internal 
multiples generated within the aluminum slab. The aluminum slab has a velocity of 
6000m/s and a thickness of 132m which means the two reflections generated by the 
aluminum slab are very close to each other. Our internal multiple prediction relies on 
events being separated in time by at least the ϵ value, which is 80ms in this case. The 
two-way travel time for the top of the aluminum slab is about 1.861s and about 1.905s for 
the bottom, which means they are separated by 44ms. Since this is within the time 
interval rejected by ϵ =80ms, these two events will not be considered subevents, and the 
associated internal multiple will be neglected in the prediction.  

The internal multiple algorithm is designed assuming free-surface multiples have been 
removed (Weglein et al., 1997). Thus, the free-surface multiple events in our data set 
should be expected to cause artifacts also, since the prediction algorithm will assume the 
free-surface multiple events to be primaries. In our case the free-surface multiples at 
sufficiently late times in the shot record, which means spurious predictions will not 
appear until times later than those we currently analyze. For this reason free-surface 
multiple removal, nominally a significant step in pre-processing, can be safely avoided in 
our study. 

 

FIG. 5. Event identification by calculating two-way travel times. Reflection events are labeled on 
the physical modeling data set. (a) Synthetic data using the same parameters as physical 
modeling data; (b) physical modeling data.  
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Table 2. Summary of approximate travel times of the identified events. 

 

FIG. 6. Zero-offset trace from physical modeling data vs. zero-offset trace from synthetic data. (a) 
The physical modeling trace; (b) the synthetic data trace. 
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LABEL EVENT APPROXIMATE TRAVEL TIME 
A Top of PVC slab 1.155s 
B Bottom of PVC slab 1.365s 
C Internal multiple 1 1.575s 
D Top of aluminum slab 1.861s 
E Bottom of aluminum slab 1.905s 
F Internal multiple 2 2.071s 
G Free-surface multiple 2.31s 
H Internal multiple 3 2.357s 
I Free-surface multiple 2.52s 
J Internal multiple 4 2.567s 
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FIG. 7. The ray paths of the four dominant internal multiples expected from the physical model. 
Note that M2 consist of two peg-leg paths, whose travel times are identical. 

 

FIG. 8. Comparison of prediction output with input. (a) Prediction output; (b) input data. The red 
lines indicate the positions of internal multiples in both input and output data.  

Figure 8a is the prediction output, with its events labeled in comparison to the physical 
modeling data in Figure 8b. The red lines indicate the positions of internal multiples in 
both input and output data. The labels on the internal multiples are consistent with Figure 
7. The prediction and the physical modeling data are in good agreement. Artifacts in the 
form of near-offset oscillations from missing lateral wavenumber combinations (with 
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some influence of the noise in the physical modeling data) are visible. The zero offset 
trace from this output is also examined in detail in Figure 9. The zero offset trace from 
the physical modeling data is plotted in Figure 9a, the prediction output in Figure 9b, and 
the zero offset trace from the synthetic data is plotted for comparison in Figure 9c. Even 
though there are some non-negligible artifacts below each predicted internal multiple, 
arrival times of the prediction and the synthetic data match well. 

 

FIG. 9. Detail of internal multiple prediction. (a) Input trace (zero offset trace from the physical 
modeling data); (b) prediction output (zero offset trace from the prediction output in Figure 8); (c) 
zero offset trace from synthetic data. 

Analysis of the three parameters chosen in the algorithm 
The 1.5D prediction algorithm contains three nested loops over lateral wavenumber, 

frequency, and pseudo depth. In this section, we perform an analysis of different chosen 
beginning and ending integration points. Beginning and ending integration points in the 
nested integrals can be chosen optimally to reduce computational burden (Innanen, 2012). 
Selecting frequencies properly not only affects computational cost but also quality of the 
final image. In Figure 10, we illustrate two prediction frequencies of 10-50Hz and 30-
80Hz respectively. We can see that in Figure 10a there is a lot of noise above and below 
each internal multiple event, while in Figure 10b the data is much cleaner. The 
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frequencies can be chosen optimally from a simple Fourier decibel spectrum (Figure 11) 
as the 30 to 80Hz range seems to contain the desired data. The rest of the data is buried in 
the noise.  

 

FIG. 10. Comparison of two internal multiple prediction outputs with different maximum and 
minimum frequencies chosen. (a) 10-50 Hz; (b) 30-80 Hz.  

 

FIG. 11. Fourier amplitude spectrum of the zero-offset trace using a decibel scale. 
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FIG. 12. The algorithm input 𝑏𝑏1(𝑘𝑘𝑔𝑔, 𝑧𝑧) is generated using the input data and the single reference 
velocity 𝑐𝑐0 . Note this is only one side of the data, later through conjugate symmetry the 
wavenumbers on the other side are filled. 

Table 3. Time costs with different parameters chosen. 

freBEG (Hz) freEND (Hz) zBEG zEND kxBEG kxEND Time (s) 

25 80 540 1020 513 1024 1256.96 

25 80 560 1015 513 1024 1189.85 

25 80 560 1015 513 900 856.57 

25 80 560 1015 513 800 636.24 

30 80 560 1015 513 800 588.51 

 

From Figure 12 we can determine that the shallowest contribution comes from depth 
index 540 and last contribution primary is roughly 1020. By the same principle we chose 
the smallest and largest contributing wavenumber indexes to be 513 and 1024. We can 
choose these parameters by an iterative procedure, in which depth and wavenumber index 
ranges are gradually narrowed down until it reaches the points that will not destroy the 
final image. In Table 3 we illustrate a series of experiments that shows considerable 
computational savings by manipulating the parameters. We compare the final result with 
the first experiment, which shows a time cost savings of 114%.  
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CONCLUSIONS 
We examine a MATLAB implementation of the 1.5D version of the inverse scattering 

series internal multiple prediction algorithm on marine physical modeling seismic data. 
We use ProMax to pre-process the data to suppress reverberations between the first two 
primaries. Deconvolution and deghosting are important steps in pre-processing. In the 
physical model experiment, the source and receiver transducers are very close to the 
water surface, so we do not expect strong source or receiver ghosts, and the deghosting 
step can be avoided. We also build a synthetic data set using a finite-difference program 
for comparison. Prediction results show good agreement with both synthetic data and 
physical modeling data. The effect on the algorithm of the choice of a single ϵ value is 
also discussed. Even if subtraction is problematic, prediction results can lead us to obtain 
an “internal multiple probability map”, useful for identifying both internal multiples and 
primaries whose amplitudes are likely to have experienced interference from them. 
However, it is also true that even a simple variable 𝜖𝜖(𝑘𝑘𝑔𝑔) may provide significantly 
improved prediction results permitting subtraction to proceed. Choosing the beginning 
and ending integration points in the nested integrals optimally leads to considerable 
computation savings. 
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