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ABSTRACT

We present a brief review of the concept of instantaneous frequency, obtained by differen-

tiating the instantaneous phase, computed using the Hilbert Transform. This computation

is recast as a Tikhonov regularized linear inverse problem and is compared with the al-

ternative Fomel smoothing regularization. Both smoothing methods, and an equivalent

frequency measure obtained via the normalized first moment of the spectrum of the Gabor

Transform are applied to synthetic data, an earthquake and a quarry blast.

INTRODUCTION

As introduced by Nobel Laureate, Dennis Gabor (Gabor, 1946)the instantaneous fre-

quency has been used as one of number of exploration seismology attributes, beginning in

1979 (Taner et al., 1979) and extended by Barnes (1992, 1993). The classical instantaneous

frequency computation will be reviewed in the continuous domain and will be compared to

the presentation of an alternate measure based on the first frequency moment of the Gabor

transform spectrum as developed by Margrave (Margrave et al., 2005, 2011).

As the classic computation suffers form an instability, it will be reformulated as a

Tikhonov-regularized inverse problem and compared with the smoothing method of Fomel

(Fomel, 2007b) and the first frequency moment of the Gabor specturm. All three methods

will be applied to synthetic data, an earthquake and a quarry blast.

THEORY

Classical Instantaneous Phase

The classical instantaneous phase originates with phase modulation concepts (Boashash,

1992a,b), with the underlying assumption that the signal is basically a complex exponen-

tial, with a small deviation about a carrier frequency, ω0. This concept can be generalized

to a general complex signal, known as the analytic signal, given by

A(t) = f(t) + iH[f(t)] = f(t) + ig(t) (1)

where g(t) is obtained by the Hilbert transform, a convolution operation defined by

g(t) =

∞
∫

−∞

f(τ)
1

π(t− τ)
dτ. (2)
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Basically the Hilbert transform maps cosines into sines and sines into negative cosines, re-

sulting in positive frequency Fourier transform components phase-delayed by
π

2
and nega-

tive frequency components phase-advanced by
π

2
.

From (1), A(t) can be written in polar form with magnitude Env(t) and phase, Φ(t)
given by

A(t) = f(t) + ig(t) = Env(t) exp [iΦ(t)], where (3)

Env(t) =
√

f(t)2 + g(t)2, and (4)

Φ(t) = tan−1

[

g(t)

f(t)

]

(5)

with

f(t) = Env(t) cos[Φ(t)], and (6)

g(t) = Env(t) sin[Φ(t)]. (7)

We can differentiate (5) with respect to time by simple application of the chain rule to

obtain the instantaneous angular frequency (IAF), Ω(t), given by

Ω(t) =
dΦ(t)

dt
=

n(t)

d(t)
=

f(t)
d

dt
g(t)− g(t)

d

dt
f(t)

f(t)2 + g(t)2
. (8)

This estimate is divided by 2π to obtain the instantaneous frequency. There is a clear

instability in (8) due to the denominator becoming very small. This instability is amplified

by the fact that we have differentiated and subtracted the product of two time series. At the

heart of the foregoing issues is the elementary, but paradoxical fact: there is no such thing

as instantaneous frequency and we definitely need a time-interval to estimate frequency. As

such we need to focus on local, or localized frequency, which we denote byfloc.

Computation of the local Frequency, floc, via a First Frequency Moment

An alternative to the direct computation of the local frequency which avoids differ-

entiation is provided in the book by Cohen (Cohen, 1995). He presents an estimate of

the local frequency by taking the frequency moment of employing the spectrum of the

time-frequency transform. Thus the local frequency, floc, which we will use in the section

Applications, is given in continuous time, by

floc =
1

∫

|S(t, f)|2 df

∫

|f | |S(t, f)|2 df. (9)

In (9), the time-frequency transform, S(t, f), can be computed using either the Gabor trans-

form or other time-frequency transforms such as the Stockwell transform. The Gabor trans-

form, SGabor(t, f), used in this study is given by

SGabor(t, f) =

∫

∞

−∞

g(τ) win(τ − t)e−i 2πfτdτ (10)
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where g(t) is our seismic trace, and in (10), win(t) is chosen to be a fixed-width Gaus-

sian window. For the moment computation, the integrals are performed over the signal

bandwidth.

Local Frequency via Tikhonov Regularization

The problem of the instability of the calculation of the instantaneous frequency can be

addressed by rewriting it in classical linear form,

Afinst =
1

2π
d = d̃ (11)

In (11), d is the discrete vector of the numerator of the right hand side of (8), finst is the

vector of estimated instantaneous frequency and A is a diagonal matrix whose elements

are the discrete values of the envelope squared. The instability problem is clearly evident

and requires the abandonment of the classical concept of instantaneous frequency in favor

of the smoother version, which we defined previously as floc.

Fomel (2007a,b), has addressed this issue by solving a smoothed problem in which a

constrained least squares technique is used, based on previous work by Claerbout (Fomel

and Claerbout, 2003). Fomel regularizes the formulation in (11) by relating the regulariza-

tion operator R in terms of a smoothing operator S, as

S =
(

I+ ǫ2R
)

−1
. (12)

He then computes the local frequency, floc, as

floc =
[

λ2
I+ S

(

A− λ2
I
)]

−1
Sd̃, (13)

where λ is a scaling factor.

As an alternative of Fomel’s development for floc, we use the explicit Tikhonov regu-

larization employed in linear inverse theory to recast (11) as the least squares problem,

minimize
floc

∥

∥

∥
Afloc − d̃

∥

∥

∥

2

+ λ2‖Wfloc‖
2
. (14)

In (14), λ is the Tikhonov regularization parameter and W is a matrix operator that deter-

mines the type of model that we choose. In this analysis, for the numerical examples, we

will, choose W to be a bidiagonal matrix that represents the first derivative, yielding the

smoothest model, floc, for a particular choice of λ.

EXAMPLES

We now consider the computation of the localized frequency, floc for three data sets:

1. A synthetic trace;

2. An earthquake in the Gulf of Suez;
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3. A quarry blast in Jordan.

In all cases the localized frequency floc will be presented in units of Hz and will be com-

puted using the Tikhonov regularized solution to the minimization of (14), the Fomel

method as given by (13) and the first moment calculation given by (9).

Synthetic trace

We begin our examples by considering the synthetic trace

s(t) = e−.05tcos(2πt) + (1− e−.05t)cos(2π5t). (15)
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FIG. 1. Panel (a) Signal given by s(t) = e−.05tcos(2πt) + (1− e−.05t)cos(2π5t).
Panel (b) Classical instantaneous frequency with no regularization.

In Panel (a) of Fig. 1, we see the noisy interlaced sinusoids, with the instantaneous

frequency shown in Panel (b), which is the classical instantaneous frequency. It is highly

unstable, with a hint of the correct answer if we consider only the envelope. Confirmation

of this is shown in Fig. 2.
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FIG. 2. Comparison of the Tikhonov, Fomel and Gabor first moment algorithms for computing floc.

We note that all three techniques provide a very good description of the continual vari-

ation of the computation of floc from 1 to 5 Hz, with the Fomel and Gabor first moment

techniques yielding virtually the same result. What is surprising is that the result for the

Tikhonov-regularized algorithm, based on the classical instantaneous frequency calclula-

tion in (8), is within 10 % of the Gabor and Fomel results over the entire signal duration.

The regularization parameter was initially estimated using the l-curve method (Hansen and

O’Leary, 1993; Wu, 2003) and then was manaully adjusted.

Gulf of Suez Earthquake

We begin our analysis of real data by considering a local earthquake located in the Gulf

of Suez ( 29.24◦N, 32.76◦E). The earthquake was recorded on 2014/09/10 at the station

EIL( 29.67◦N, 34.95◦E) and had a local magnitude of 2.2, as computed by the Geophysical

Institute of Israel’s duration-based local magnitude scale. We will sequentially present

all three components of the recording, E(East), N(North) and Z beginning with the east

component.
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FIG. 3. Gulf of Suez Earthquake. (a) East component recording. (b) Classical instantaneous
frequency
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FIG. 4. Gulf of Suez Earthquake. (a) North component recording. (b) Classical instantaneous
frequency

In Fig. 3, Fig. 4, and Fig. 5 panel (a) is the recorded signal and panel (b) is the in-
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stantaneous frequency as computed using (8). It is clear that the classical instantaneous

frequency exhibits a catastrophic failure for the E, N and Z components. In panel (a) of all

the figures, we can see the onset of the P-wave at 100 sec. and the onset of the S-wave at

125 sec.
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FIG. 5. Gulf of Suez Earthquake. (a) Z component recording. (b) Classical instantaneous frequency

For each of the three foregoing components, we will now present the calculation of floc
using the Tikhonov regularized formulation, Fomel smoothing and the first frequency mo-

ment of the Gabor power spectrum. In all the following figures, Fig. 6,Fig. 7, and Fig. 8,the

onset of both the P and S waves is much clearer. What is amazing is the consistency of the

floc traces for each component!
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FIG. 6. E component floc results. (a) Tikhonov regularization. (b) Fomel smoothing. (c) Gabor
spectrum frequency moment.
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FIG. 7. N component floc results. (a) Tikhonov regularization. (b) Fomel smoothing. (c) Gabor
spectrum frequency moment.
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FIG. 8. Z component floc results. (a) Tikhonov regularization. (b) Fomel smoothing. (c) Gabor
spectrum frequency moment.

Jordanian Quarry Blast

We continue our analysis of real data by considering a local quarry blast located in

Jordan ( 36.18◦N, 31.05◦E). The blast was recorded on 2014/09/09 at the station EIL (

29.67◦N, 34.95◦E) and had a crude local magnitude of 1.8, as estimated using the maxi-

mum distance to the recording stations. We will sequentially present all three components

of the recording, E(East), N(North) and Z, beginning with the east component.
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FIG. 9. Jordanian quarry blast. (a) East component recording. (b) Classical instantaneous fre-
quency
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FIG. 10. Jordanian quarry blast. (a) North component recording. (b) Classical instantaneous
frequency

In Fig. 9, Fig. 10, and Fig. 11 panel (a) is the recorded signal and panel (b) is the instan-
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taneous frequency as computed using (8). It is clear again that the classical instantaneous

frequency exhibits a catastrophic failure for the E, N and Z components. In panel (a) of all

the raw data figures, we can see that it is difficult to pick the onset of the P and S waves.
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FIG. 11. Jordanian quarry blast. (a) Z component recording. (b) Classical instantaneous frequency

For each of the three foregoing components, we will now present the calculation of

the local frequency using the Tikhonov regularized formulation, Fomel smoothing and the

first frequency moment of the Gabor power spectrum. In all the following figures, Fig. 12,

Fig. 13, and Fig. 14, the onset of both the P and S waves is much clearer than in the raw

data, with the P wave onset at 80 sec. and the S wave onset at 110 sec. As before, for each

component, all three methods provide a similar time-evolution of the local frequency.
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FIG. 12. E component floc results. (a) Tikhonov regularization. (b) Fomel smoothing. (c) Gabor
spectrum frequency moment.
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FIG. 13. N component floc results. (a) Tikhonov regularization. (b) Fomel smoothing. (c) Gabor
spectrum frequency moment.
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FIG. 14. Z component floc results. (a) Tikhonov regularization. (b) Fomel smoothing. (c) Gabor
spectrum frequency moment.

CONCLUSIONS

An earthquake of local magnitude 2.2, located in the Gulf of Suez and a Jordanian

quarry blast of local magnitude 1.8, recorded at the Israeli National Data Center location

EIL, have been used to test the computation of a new attribute, floc, the local frequency.

Three methods were used:

1. A Tikhonov regularized version of the classical instantaneous frequency attribute;

2. A smoothed version of the classical method based on a regularization technique de-

vised by Fomel (Fomel, 2007b);

3. A frequency-moment method based on integration of the time-frequency spectrum

obtained using the first frequency moment of the Gabor transform.

For all component of both datasets, the foregoing three methods all yielded very com-

parable results, even thoug the computational algorithms were vastly different. The fastest

algorithm was the novel Tikhonov-regularized algorithm, which involved one FFT cycle,

algebraic manipulation of the signal and its Hilbert transform, and the inversion of a tridi-

agonal matrix.

Future work will focus on on choosing the optimal regularization parameter of the

Tikhonov method. In particular we will focus on the frequency-smoothing aspects of these
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methods and their relation to other seismic data processing techniques, such as, for exam-

ple, cepstral analysis.
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