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ABSTRACT

In this paper, a closed formulas of reflected and transmitted wave for incident compressional
wave are carried out to analyse the AVO response to nonwelded interface. Based on the
boundary conditions for the combined displacement and velocity discontinuity, the reflection
coefficients of PP wave and PS wave are both complex function of frequency w ,elastic
parameters « , 3, p across interface and fracture parameters C, ,C. describing the interface. The
closed formulas are function of elastic parameters contrasts across interface (r, = Aa/a ,r, = Ap/ B
and r, =Ap/p ), average velocity ratio B and B, of two layer respectively and new complex
frequency dependent fracture parameters H,_ and H.. Different from welded interface, the
reflection coefficients is not zero when the elastic parameters contrasts are zero. It shows that
incident P wave propagating through a nonwelded interface in a single homogeneous medium
(e.g., a crack, joint, or fracture) produces both frequency dependent reflected and transmitted P
and S wave. The third order truncation approximation in series of fracture parameters and elastic
parameter contrasts capture the exact reflected and transmitted coefficient at small incident angle
at different frequency. The new closed formulas are convenient to analysis the effect of elastic
parameters and fracture parameters on reflected and transmitted coefficients, and can be used to
invert the elastic parameter contrasts and fracture parameters by use of linear inversion or series
reversion method.

INTRODUCTION

The interface between two half spaces with elastic media is either in perfect well welded
contacted or in non-welded contacted. When a compressional wave arrives at an interface
between two layers, some of the energy reflects back to the surface and some is transmitted.
AVO techniques that figures out The reflections and transmissions coefficient of a seismic wave
propagating through a welded contact interface of the two half spaces at oblique angle have been
used extensively in the industry with different approximation. Aki and Richards (1980)
simplified the Zoeppritz equations to linear equation that describes the variation of seismic
reflected and transmitted amplitudes as a function of incident angle and contrast of elastic
parameters across interface. For different purpose, some varieties of linear AVO equation are
derived. However observations from the borehole images, cores and outcrops show that there are
not perfect welded contact interface underground, such as faults, joints and fractures.
Picotti(2012) interpreted the abnormal amplitude reflected from ice layer across which there isn't
appreciable vertical velocity variation as imperfect welded contact interface.

A suitable imperfect welded contact interface is necessary for forward modeling to describe
its dynamic response. For perfect welded contact interface, the displacements and stresses are
continuous across the interface of two half space with either isotropic or anisotropic media.
Theories that consider imperfect welded contact interface were mainly based on the displacement
discontinuity and stresses continuity model. The discontinuous displacement are a linear function
of the stresses multiplied by compliance. (Schoenberg 1980) proposed a linear slip model for an
imperfectly bonded interface between two elastic media. Reflection and transmission coefficients
for harmonic plane wave incident at arbitrary angle upon a plane linear slip interface are
computed in terms of the interface compliances. Those coefficients are frequency dependent.
(Pyraknolte et al., 1990) presented a non-welded interface model based on the discontinuity of
displacement and the particle velocity across the interface. Chaisri and Krebes (2000) expressed
the exact formulas in terms of which is similar in form to the coefficient for the welded contract
case plus a series of imaginary terms thoroughly due to nonwelded contrast. But the parameters
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in nonwelded terms are not consistent with those in welded terms which only include
compressional wave contrast, shear wave contrast and density contrast. Cui (2013) deduced
general closed approximation that can be used to invert not only the subsurface elastic
parameters contrasts, but also eight parameters related to the fractured media. In this paper, we
present a high order AVO approximation expressions and AVO series reversion solution.

BASIC THEORY

1. Theory of a Displacement Discontinuity

To theoretically model the effect of the fracture on propagation of plane seismic wave, the
fracture is represented as a displacement discontinuity at the boundary between two elastic half
spaces. It is assumed that the stress across the displacement discontinuity is continuous. The
magnitude of the discontinuity in displacement is inversely proportional to the specific stiffness
of the fracture. If the boundary between two elastic half spaces lies in the x-y plane, the
boundary conditions for a compressional wave (P) and shear wave (SV) incident on the
displacement discontinuity are (Pyraknolte et al., 1990)

1

[ux]:uxl_uJ(Z :_sz (1)
Kx

[uz] = uzl _uzz = LG:z (2)
KZ

O-z:] = G:zZ (3)

0., =0, 4

where «.'=7, and «x]'=2,. Z, and Z are normal and tangential compliance of fracture
respectlvely, whose dimension is 1/ stress (Hsu and Schoenberg 1993). The number 1 and 2
denotes upper and lower layer respectively.

For an incident shear wave with polarization in the x-y plane (SH wave) the boundary
conditions are

[uy] = uyl _uyZ = K_Uzy (5)

v

O,y =0, (6)

The presence of liquid under saturated condition in joint or fracture will increase the specific
stiffness of the displacement discontinuity for compressional waves and possibly for shear wave.
Paullson (1983) observed an increase in shear wave transmission when quartz monzonite
specimens, which contained micro-cracks, were saturated with water. The liquid may also
introduce viscous coupling between the two surfaces of the fracture. Schoenberg(Johnson and
Schoenberg 1980) derived a solution for an elastic wave propagated across a viscous interface
for pure viscous slip in shear i.e., Z, =-in/w ,Z, =0 ,and neglecting the stiffness of the interface.
To investigate the increase in shear wave transmission theoretically, the fluid filled fractures
(nonwelded interface) are represented as a discontinuity in particle displacement across the
fracture which depend on the specific stiffness of the fracture as well as a discontinuity in
particle velocity which depend on a specific viscosity.

Pyraknolte et al. (1988) combined the effects of specific stiffness and specific viscosity in
shear on wave propagation across a fracture to yield discontinuities in both displacement and
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velocity while the stress across the discontinuity remained constant. For an incident P wave and
SV wave, the boundary conditions for the combined displacement and velocity discontinuity are

K ful+nlv]=0., (7)
x[ul=0o, (8)
01 = 0. )
Oy =0 (10)

For an incident SH wave the boundary conditions are

K&, [u,J+nlv,]1=0, (11)
(o}

zyl = JzyZ (12)
Where the parameter 7, is the viscosity of fluid.[v,] (/=x,y ) is the velocity difference across
the nonwelded interface.

Carcione (1998) extended the velocity discontinuity in shear developed by Pyraknolte (1988)
to both shear and vertical on wave propagation across a fracture to yield discontinuities in both
displacement and velocity while the stress across the discontinuity remained constant.

xlul+nlv]=0, (13)
K lu]+n.[v.]=0. (14)
0.1 =0 (15)
0.1 =02 (16)

When either « and » tend to infinity, the solution reverts to a welded interface solution.
When x tends to zero the solution gives the displacement discontinuity When 7 tend to zero the
solution gives the particle velocity discontinuity model. When both « and » tend to zero, the
coefficients revert to those for free surface.

The non-welded interface is modelled by the discontinuity of the displacement and the
particle velocity across the interface. The stress components are proportional the displacement
and velocity discontinuity through the specific stiffness and specific viscosity, respectively.
Displacement discontinuities conserve energy and yield frequency dependant reflection and
transmission coefficient. On the other hand, velocity discontinuities imply an energy loss at the
interface and frequency independent reflection and transmission coefficients. The specific
viscosity accounts for the presence of a liquid under saturation conditions. The liquid introduces
a viscous coupling between two surfaces of the fracture and enhances energy transmission, but at
the same time this is reduced by viscous losses.

The imperfect bonding is described by four parameters: the normal and tangential specific
stiffness, viscosities lame and shear constant of background medium. The stiffness account for
frequency dependent and phase change effects, and the viscosity allows for damping in the
interface response. In order to model a crack embed in a finely laminated background,
Carcione(J. Carcione 1998) described the model by a transversely isotropic medium whose
symmetry axis is perpendicular to the crack surface.

Assuming an incident compressional harmonic plane wave of the form

U= uoe—i((ur—kxx—k;,z) (1 7)

The particle velocity v is the derivation of the displacement with time
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Y= % = —ia)uoef"(wtfk“xszz) (18)

Substituting equation (17) and (18) into discontinuity equation (13) and (14), the follow
equations are obtained(J. M. Carcione 1996)

(x, +ion, ) ]=Ci[ux] —o, (19)
(k. +ion. )] =Ci[u21 0. (20)

2. Reflection and Transmission coefficients of Nonwelded interface for isotropic medium

Chaisri and Krebes (2000) present new and exact mathmatic formulas for P-SV particle
displacement reflection and transmission coefficients for elastic plane waves incident upon a
nonwelded contact interface separating two solid half-spaces. Consider a plane horizontal
interface between two solids in nonwelded contact. The boundary conditions at the interface are
such that the stress is continuous across the boundary but the displacement is not. The
displacement discontinuity is proportional to the traction through specific fracture compliance. If
the incident plane P-SV wave propagating in the x-z plane, with the interface being the plane z=0,
then in consistent with equation (15), (16),(19) and (20) the boundary conditions at the interface
are

[ux] = ux2 _uxl = Cxo-zx (2 1)
[w.]=u,-u,=Co, (22)
O-;'zl = O-zz2 (23)
O-le = UZXZ (24)
For isotropic medium, the normal and tangent stress are
Ou, Ou

= | — 25

Lo 2y (25)
Ou Ou
=1 2ul—= 2

o.=41 . +[A+2u] . (26)

Subscripts 1 and 2 denote the upper and lower media, respectively;o. and o are the
component of stress tensor parallel and normal to the interface; «, and ». are the component of
displacement parallel and normal to the interface; 2 and x are Lame’s constant of background
medium; C, and C. are the specific fracture compliance parallel and normal to the interface
respectively; C, =1/(x, +iwn,) and C. =1/(x, +ion,) . Specially, C, =1/x,=Z, and C, =1/x, =Z, for
fracture model without water saturation. In equation (21) and (22), the stress component on the
right hand sides can be evaluated in either medium 1 or 2, as the stress is continuous across the
interface. Either choice leads to same solutions. Choosing medium 2, however, results in simpler
equations to solve if the wave are incident from medium 1 and vice versa.

In applying the above boundary condition to the incident and scattered plane waves, Chaisri
and Krebes (2000) used the conventions of Aki and Richards; that is the z axis points downward
and x component of each unit polarization vector is positive (figure 1). Substitution of the usual
mathmatic expressions u =ue " for the displacement components of the incident and scatter
single frequency plane waves in medium 1 and 2 into boundary conditions results in four
equations for the four scattered wave amplitudes, which can be expressed in matrix form as
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M[ps;ps;| =N[P'sipst ] (27)
Where the column vector on the left and right contain the amplitudes of the scattered and
incident waves denoted by superscript S and 7 respectively.

X
Y
z

Figure 1. Scheme of incident and scatter wave for nonwelded interface

where
—sing, —cosg, siné, —iwC y,cosb, cos @, —iwC_p,y,
_| cos6  —cosg cosd, —iwC.a,y,  —cos@, +iwC. y, cosd, (28)
xcos6 By X, co0s6, By,
-, X Cosg, a7, —X,cos ¢,
sin g, cos g, —sinb, —iwC y,cos6, —cos¢, —iwC B,7,
_| cosé, —cos g, cosd, +iwC. a,y, —cos ¢, —iwC_ y, cos g, (29)
X, cos6, B %, cos0, B,
oy, —Xi cos ¢, —0,7, X, COs b,
and
X =2P1ﬁ12]7 Vi zpz(l_zﬂzzpz)

Where p is ray parameter and / =1 or 2. In these equation, o is density,« is the P wave
velocity, g is S wave velocity, 8 and ¢ are angle of P and S wave respectively. The first column
in N is used for the case of incident P wave in medium 1, the second column is used for the case
of incident S wave in medium 1, the third column is used for the case of incident P wave in
medium 2, the fourth column is used for the case of incident S wave in medium 2.

Equation (27) is identical to the Zoeppritz equation of isotropic medium for welded contact
boundary conditions, expect for the additional frequency dependent terms in the matrix due to
the presence of nonwelded contact. Equation (27) can be solved analytically to obtain closed
form formulas for the reflection and transmission coefficients. Defining the variables of a,b ,c ,
d,E ,F ,G and H in the same way as Aki and Richards. That is

a=y,=n b=y,+xnr c=n+xnp d:2(p2ﬂ22—p],3]2)
_ cos0, , =c0s¢1

) /
Q B

E=be +ce, F=bn+cn, G=a—den,

2 2 2 2
H=a-de;n K, =y +y/en L=y —yen

D=EF +GHp’ -&’C.C.K\K,
—ioC, (peK, + p,e,K ) —ioC. (pnK, + p,n,K,)
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The closed form formulas for the reflection and transmission coefficients are obtained as
follows.

For PP wave

R, = [(be1 —cez)F—(a+delnz)Hp2JD’l
+[a)2CxCZK2L1 +iwC, (p,e,L, — pie K, ) +ioC, (pn K, + pyn,L, )] D!
For PS wave

(30)

R, =—elp(051 /@)(ab+cde2n2)D'] 31)
2ey, 1 (a1 B )[a)ZCXCZK2 +iwp, (C.e, +C.n, )J D!
The first term in equation (30) an (31) is the reflection coefficient of PP and PS for welded

interface in accordance with Aki and Richard equation. The second term represents the effects
resulted from nonwelded contact.

3. High accuracy of the AVO series formula

If we consider a plane P wave obliquely incident upon a nonwelded interface, the equation
(27) 1s simplified as following

]R;pp
M TT,; =N (32)
s
-X -(1 —BZXZ)% CX +0l ~(1-p’x? )5 +02
1 1
—_y2)2 _ 2 y2)a
Where of = (1-x2) BX (1 cx)ugs1 DX + 04

2B2X(1—X2)% B(1—32X2) 2AD2X(1—C2X2)5 —AD(1—2D2X2)

_—(1—232)(2) 232)((1—32)(2)% AC(1—2D2X2) 2AD2(1—D2X2)%

X
1
1-X° )2
| -
28X (1-X7 )2
1-2B°X?
Ol =-ioC, y, cosb, =iwC 2p,B; pcosb, =—ioC 2p,p, &g sin g, cos 6,
1 1

=-2H B, %){(1—(?2)(2 )%

1

02 =—iaC, 7, =-iaC, fyp, (1-22p*) = -iaC, p, [1 - 2@] [ﬁj sin 65}

1 al
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=_H, 1—2[&j B2 X?
-4

2 2
03 =-iwC.a,y, =-ioC.p,a, (1 — 2,822p2) =-iwC._p,a, {1 - 2(%) [ﬁ] sin 493}

1 al
2
=-H, 1—2(&j Bl X?
b
Q4 =iwC.y, cosg, =iwC.2p,[3; pcosd, =iwC.2p,a, &ﬁgsin 6, cos ¢,
2 1 1

1
2 2
=2H_,BZBI&X 1—[&] B X?
B B
and where X =siné@ is sinusoidal function of incident angle ¢ and constant parameters 4
through D denote the elastic parameters ratios

A=&;Bl =ﬁ732 =&5C:&9D=&=Blé
£ a, , [ a, ﬂl

H, =ioC p,f, H. =ioC p,a, (33)

The complex parameter H#_ and H. is the function of frequency w, fracture parameter and
elastic parameters. H_ represents the effect of tangent fracture parameter C, and shear
impedance p,s, of lower medium. H_represents the effect of normal fracture parameter C. and
compressional impedance p,a, of lower medium.

In order to understand the response of the reflection coefficient R, and R, to contrasts in
elastic parameters across the interface, we rewrite elastic parameter ratios in terms of elastic

parameter contrasts.

o 1 , 1 4

7?:1+rp+5rp +er 4o (34)
ﬂ:1+ra+lraz+lra3+~-- (35)
o 2 4

&:1+rﬁ+lrﬁ2+lrﬁ3+--- (36)
B 2 4

where r, = Aa/a 1s the ratio of difference of P wave velocity to average of P wave velocity ,
r,=ApB/pB 1s the ratio of difference of S wave velocity to average of S wave velocity and
r,=Ap/p 1s the ratio of difference of density to average of density.

Because the parameter B, and B, are only the ratio of the incident medium parameter, we do
not expand it. The square root terms i is also expanded by making use of the expression

1

(1-x)2 =1—%x2—%x4+~- (37)
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Any one of the four displacement reflection coefficients can be solved from the equations
using Cramer’s rule. Forming two auxiliary matrixes Mp and Ms by replacing the first and
second columns of & with N , the solutions are obtained

_ det(Mp) R - det(Ms)

Poodet(M) T det(M)

When the all of the expand series from equation (34) through (37) are further substitute into

the coefficient matrix M and auxiliary matrixes Mp and Ms , all the elements are directly

expressed as series in powers of the elastic constants. The determinant of the matrix is a linear

combination of the elements of the matrix. Therefore, if the elements of the matrix are series in

third orders of the elastic contrasts, reflection coefficient of PP and PS wave in equation (38) can
be recast in terms of elastic contrast as following in same way

(38)

R — RW’ +RI1(]"W (39)
R"=R"+R’'+R/ (40)
Rnonw :R(;wnw+R[nanw+R2nonw+R§mnw (41)
R" =T, r,+T s +T 1, (42)
R = Fazra +F r +F r +merarﬁ +Fa1p1rarp +Fﬁ1p1 5, (43)
R = era +Fﬂ3rﬂ +Fp3rp +Fa2ﬂlra rﬁ +Fa2p1ra rp (44)
+1",HM1 ﬂr "‘szpl ﬂrp+1"p2alrpr +Fp2ﬂlrprﬂ+raw1plrarﬂrp
R(;wnw — Zngrzi H;H_,j (45)
i=0 j=0
M N ) ) M N . . M N i ) )
R“™ =Ty HH!r,+Y > T, H.H/r,+Y > T"/H Hr, (46)
i=0 j=0 ] i=0 j=0 I i=0 j=0 ]
RI™ = ZZF”’H H’r2+ZZF”’HH +ZZF”’H H!r}
l](‘)/[jo IOJO IO/O (47)
N
+> > T HHr,r, +ZZF;;IH Hirr +ZZF;;IH Hlr,
i=0 j=0 i=0 j=0 i=0 j=0
M N

Rnonu Zzl—‘ /H H/r3 +ZZFXZIH Hj 3+ZZFXZ/H Hj }

LO_/O IO/O 10/0

+ZZF;ZI,IH Hlrlr +ZZF” H.H!rlr +ZZFMHHJ 7, +ZZF” H.H!r;r, (48)

z 0 / 0 z 0 1 0 i=0 j=0

N
;;r CHH!rr, +;§FMH Hr ”+,Z(>:,Z(;F“‘“”H Hlrryr,

Where R* denotes the reflection coefficient of PP and PS wave for a welded interface as
expressed by Aki and Richard. R denotes the reflection coefficient of PP and PS wave with
respected to nonwelded interface R represents the ith order combination of elastic contrast
parameters r, ,r, and r, . R™ represents the i th order combination of H , H_, r, ,r, and
r, . The coefficients r, which generally are functions of incident angle, Velocrty ratio B, and B,,
within the current appr0x1mat10n are provided in Appendix.

i \

For welded interface, the coefficients of series don’t include zero order of elastic parameter
contrast. But for nonwelded interface, the coefficients of series include zero order of elastic
contrast. The coefficients of zero order just are the function of fracture parameter and frequency.
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It shows that incident P wave upon nonwelded interface in a single homogeneous medium (e.g.,
a crack, joint, or fracture) produces both reflected and transmitted P and S wave.

For isotropic single homogeneous medium, substitution of ¢, =a, =« and B =4, =4 into the

definition of variables r,,r, and r, produces

M N
R=R"™ =>>T,"H.H!
i=0 j=0

= H +T;H +TyH H +TVH T H +T H + 0 H P H + T2 H ' H + T H, + -

(49)

It means that in the case of welded contract,c_and c. are zero, leading to the results R , =0,

=0, 7,=0and 7, =1. In other words, the incident wave propagates through the interface
w1thout any changes In the case of nonwelded contract, ¢, and C, aren’t zero, leading to the
results of reflected and transmitted coefficient. It is conceivable that the results could help to
explain observations that are occasionally reported of anomalous seismic reflection in zones
where the impedance contract is zeros or small.

Experimental analysis

To take a glance at the influence of high order term and the accuracy of the series AVO
approximation, the comparison of each truncated term with the exact solution obtained from
equation (32) is demonstrated. In general, the normal compliance of fracture is range from 10"
to 10" m’/ N . In this example, the fluid in the fracture is pure fluid, i.e. the viscosity of the fluid
is zero.

Figure 1 and 2 show the comparison of approximation of absolute r,, at frequency 30Hz and
60Hz respectively with different order in fracture parameters C =5x10"" and C.=2.5x10""" m* /N
in the case of fracture embed in homogeneous medium. The exact solution for R ,» 18 calculated
from equation (32) in black line. Approximation in series of fracture parameters is denoted by
solid red line, solid green line, solid blue line, solid pure line, point dash green line and point
dash blue line respectively. For series order equation, the third order truncation appears to
capture the exact R curve. It means that the approximation in series of fracture parameters is
enough to characterize the reflection coefficients at third order truncation.

Figure 3 illustrates the comparison of approximation of absolute R, for nonwelded interface
at frequency 30Hz with different order in fracture parameters C,=5x101" and c =2.5x107'°
m’ /N .The model with parameters P wave velocity, S wave Ve1001ty and densng/ a, B, p] are
[3000m/s, 1500m/s,2.0g/cm?] for upper media and [36000m/s,1700m/s, 2.1g/cm®] for lower
media respectively. "The exact solution of R ,, for welded interface is calculated from Zoeppritz
equation in dash black line. The exact solution of R, for nonwelded interface is calculated from
equation (32) in black line. Approximation in series of fracture parameters is denoted by dash red
line, dash green line, dash blue line, dash pure line respectively. The order of elastic parameter
keep third order. For this model, the effect of discontinuity on reflection coefficient is larger. The
intercept increases from 0.12 for welded interface to 0.19 for nonwelded interface. It
demonstrates that the effect of discontinuity of nonwelded interface must be introduced to
interpret abnormal amplitude, especially in the case of difference between two layers across the
interface is close to zero. For series order equation, when the order of elastic parameters keep
third order, the reflection coefficient curve moves toward exact R, curve with increasing order
of fracture parameters. It approves again that the third order truncation approximation in series of
fracture parameters and elastic parameters is enough to characterize the reflection coefficients.
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Figure 4 shows comparison of approximation of absolute R, for nonwelded interface at
different frequency with third order in fracture parameters and elastic parameters (called 3E3C)
that is same as figure 3. The exact solution of R, for nonwelded interface in black line is
calculated from equation (32). Approximation is denoted by dash red line. The approximation

captures the exact R,

curve at low frequency of less than 60Hz for the model and deviates from

the exact curve. At small incident angle of less than 30 degrees, the approximation at third order
for welded interface is almost the same as the exact solution. So the deviation at high frequency
for nonwelded interface is resulted from the truncation of fracture parameters.

SERIES REVERSION

According to series reversion theory (e.g., Innanen 2013), we expand each instance ofr, ,r, and

r, in a new series:

T, =V, tF,th,+

+7,

o+,

ﬂ3+...

Ts =T

H =H +H,+H_ +-

(50)
(5D
(52)
(53)
(54)

Put those expansions into equation 23 through 28 and further into equation (39) and (48).

Consequently equating like orders, we solve for eachr, ,r, ,r

an STpn 2 pn >
fOI‘rl sTgi 9Ty (1<n

for first order:

x1 21
R I“mrm+l"mrm+l“p1 p1+rg H +I'JH,,
for second order
1 z1
-AR,=T"_ 7, +Fﬂ1r/,2 +l“p1 2 +IVH ,+T H,
AR FaZ al +F,BZ ﬂ] +Fp2 p] +ralﬂl al ﬂ] +ra1p] al pl +F
2
+A +Aa|”a1+Am”,m+Ap1”pl
for third order
x1 1
—-AR, =T, a3+rﬂ1rﬂ3+rm p3+l“‘ H +I'; H,
AR Fa} al +rﬂ3 Bl +rp3 pl +Fa2ﬁl al ﬂl +Fa2pl al pl
+Fﬂ2al Bl ral +rﬂ2pl ﬂl pl +Fp2al pl ral +Fp2ﬂl pl ﬂl
+L 21,1, +F 2}’/“ B2 +F 2rp1 02 +Fa1ﬁl Tpa T 107 /31)

+Fa1pl( al p2 +ra2 p1)+rﬂ1pl( ﬂl p2 ﬂZ p1)+ra1ﬂ1pl al ﬁl pl

+A2 AL

pl /)2
+A! +A!

3 2 1 2 1
+A +Aa1 al+Aa]ra2+Aﬂ1 /,1+A

pilp2
1 1
+Aa2 al +Aﬁ2 pl +Ap2 pl +Aa1ﬁ1 al ﬂ’l alpl al pl

11751751

Blpl ﬂl pl
Where the R represents PP wave or PS wave respectively. AL,

making use of all the results

(35)

(56)

(57)

(58)

(59)

is the combined L order

coefficient with respect to fracture parameters of X order elastic parameter M . In general, for
multi-angle and multi-frequency prestack seismic data, the AVO series reversion is carried out

with four steps (Chen,2015).
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Figure 1. Comparison of approximation of absolute Rpp at frequency 30Hz with different order in fracture
parameters Cx=5x10"'° and C,=2.5x10""" in the case of fracture embed in homogeneous medium. The
exact solution for Rpp is calculated from equation (32) in black line. Approximation in series of fracture
parameters is denoted by solid red line, solid green line, solid blue line, solid pure line, point dash green
line and point dash blue line respectively.
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Figure 2. Comparison of approximation of absolute Rpp at frequency 60Hz with different order in fracture
parameters Cx=5x10"'° and C.=2.5%x10"0 in the case of fracture embed in homogeneous medium. The
exact solution for Rpp is calculated from equation (32) in black line. Approximation in series of fracture
parameters is denoted by solid red line, solid green line, solid blue line, solid pure line, point dash green
line and point dash blue line respectively.
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Figure 3. Comparison of approximation of absolute Rpp for nonwelded interface at frequency 30Hz with
different order in fracture parameters Cx=5x10"" and C,=2.5x10-'°.The exact solution of Rpp for
nonwelded interface is calculated from equation (32) in black line. Approximation in series of fracture
parameters is denoted by dash red line, dash green line, dash blue line, dash pure line respectively. The
order of elastic parameter keep third order “3E”.
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Figure 4. Comparison of approximation of absolute Rpp for nonwelded interface at different frequency
with third order in fracture parameters Cx=5x10"? and C,=2.5x10-'° and elastic parameters (called 3E3C).
The exact solution of Rpp for nonwelded interface is calculated from equation (32) in black line.
Approximation is denoted by dash red line.
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CONCLUSION

In this paper, we present a high order AVO approximation expressions of reflection
coefficient and AVO series reversion solution for nonwelded interface. Based on the boundary
conditions for the combined displacement and velocity discontinuity, the reflection coefficients
of PP wave and PS wave are both complex function of frequency o ,elastic parameters « , 3, p
across interface and fracture parameters C ,C. describing the interface. For saturated fracture,
the fracture parameter are recast as function of inverse normal and tangential compliance of
fracture (x, and x, ) and viscosity 7 of fluid. When either x and 5 tend to infinity, the solution
reverts to a welded interface solution. When « tends to zero the solution gives the displacement
discontinuity. When 5 tend to zero the solution gives the particle velocity discontinuity model.
When both « and 5 tend to zero, the coefficients revert to those for free surface.

In order to understand the responses of the reflection coefficient R, and R to elastic
parameters contrasts across the interface and fracture parameters, we deduced new closed
approximation that can be expressed as the function of elastic parameters contrasts across
interface (r, =Aa/a ,r,=AB/B and r,=Ap/p), average velocity ratio B and B, of two layer
respectively and new complex frequency dependent fracture parameters A, and #H..The complex
parameter 7, and H_ is the function of frequency w, fracture parameter and elastic parameters.
H_ represents the effect of tangent fracture parameter C, and shear impedance p,5, of lower
medium. H_ represents the effect of normal fracture parameter C. and compressional impedance
p,a, of lower medium.

Different from welded interface, the reflection coefficients include zero order of elastic
contrast for nonwelded interface. The coefficients of zero order just are the function of fracture
parameter and frequency. It shows that incident P wave propagating through a nonwelded
interface in a single homogeneous medium (e.g., a crack, joint, or fracture) produces both
frequency dependent reflected and transmitted P and S wave.

Experimental analyses approve that the third order truncation approximation in series of
fracture parameters and elastic parameter contrasts is enough to characterize the reflection
coefficients and can be used to invert the elastic parameter contrasts and fracture parameters by
use of series reversion method.
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APPENDIX

The coefficients T' in the expansion for PP and PS wave in equation 42 through 48 are expressed
in detail as following.

For PP wave

[ =-2BI’X’

Tp=1/2+(-2B1 +1/4) X*

Iy =1/4+(BB2-2B1" +1/4) X
r?=-Br'x’

[ =1/4+(BI’B2-2BI’ +1/4) X’
P =-1/2Br X"

I, =1/2B1*(B1-B2) X’

Iy =1/2B1°(B1-B2) X’
r;’=-1/2BIX>

I =2BI'X’

r: =1/2x*

rF=0

r?=Brx?

T2 =—1/8+(BI’ +1/4) X*
> =1/2Br'X’

rit=o

I =1/2B1*(-B1+B2) X*

14 CREWES Research Report — Volume 27 (2015)



AVO theory for non-welded contacts

2y =—1/8+(~1/2BB2+3/2B1’ +1/16) X’

Iy, =-2BI’'X’

s =2B1*(-2+B2+B1) X*

Iy =1/2B1°(B1-B2)X*

Iy =-1/2B'X’

I =1/2B1*(-6+5B2) X*

I =0

=0

[ =1/2B1*(B1-B2) X’

I; =1/4B1°(-2B1+8B2-8) X*

I, =BI’(2B1-1) X’

%, =1/2B1(2B1* +2B1B2- Bl - B2) X*
% =1/4B1(4B1B2-Bl-B2) X’

I3 =1/2B (-1+3B1)X* T3 =-1/8+(1/2BI’B2+BI’~1/2B1B2-1/8) X’
I =1/8B1*(8B1-2) X”

I3 =1/16 BI(-4 BI’ +12B1B2-2 B1 -2 B2) X*

[ =1/8B1(-4BI’ +8 B1B2-2B2) X*
13B1°

Ffl =—l/8+(—1/4Bl3—1/4BlzBZ+ —3/8BlB2—3/16JX2

I, =-1/2BIX?
T2, =—1/8+(1/2B1° +3/16) X
I'%, =1/4B1’(-3B1+B2) X*

B_ISXZ

r?=-
7, =—-1/16+(-1/4BB2+1/2 B’ ~1/16) X’
s =-1/8BrXx?

%' =—1/16 BI* (6 B1-2 B2) X*

52 =—1/16 BI* (4 B1-2B2) X*

2, =(-1/4B1B2-1/8) X°

s, =Bl X*

%, = BI*(B1+3B2-4) X*
rs =0

2 =0
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I, =—1/2B1>(2B1-6B2+6) X’
Iy} =1/8BI’ X*

' =1/8B1° (-B1+B2) X’

I};? =-1/8B1*(-2B1+ B2) X*
I3, =-1/4B1° (5B1-9B2+8) X*

I, =1/8B1(4B1-1)X*

%, =-1/8+(-BI'+3/2B1" -~ B1/4-1/16) X”

I, =-1/16B1(16 BI’ =10 B1-2B2+2) X*

I, =1/16 B1(-8B1’ +8B1-1) X*

rﬁz:—i+ —31312/92+§Bl2—31313+lBle—iB1—L X?
72716\ 4 4 4 4 16~ 16

; 1
re = —531(201912 ~12B1+1) X*

[ =—1/16B1(8B1 +4B1B2—-6B1-2B2+1) X’
1

o= ——31(12312 +16BIB2—12BI—8B2+3)X2
32

I, =—1/8B1(2B1° +6B1 B2-3B1-3B2+1) X°

I, =2BIlX?

r: , =-2BI(B1-1)X*
XZ 1
alpl =EBI3X2
L1
o =EBI3X2
2, =-BI’(Bl+B2-3)X’
Ffwl =0
I =1/4B1 X’
o5 =—1/4B1° (B1-B2) X°
r2, =-1/4B1*(7B2-12) X’
F)t;lpl =-BI’' X’
T =—1/4+(—Bl3 +2B1? —1/23132—3/8))(2
v =—1/4B1(6B1° —2BIBZ—ZBI+32)X2
r, =-Brx?

alpl =

r2 o L Lps pepy Tppr lpip 1)y
8 2 4 4 2

alpl =

™ =-3/4B1°X"

alpl =

16 CREWES Research Report — Volume 27 (2015)



AVO theory for non-welded contacts

57 =—1/8 B1(6B1’ —2B1B2—2B1+ B2) X

alpl

5 =—1/8 BI(4B1’ +2B1B2—3B1+B2) X"

alpl

1—~z3

alpl

=—1/8(8BI’B2-3BI’ +3) X°

Iy, =1/2B1*(6B1-1)X*

T, =—1/4B1(6 B’ ~6 BIB2—~5 Bl + B2) X*

- 1
Iy = —2312 (-4B2+1) X*
r2 =3prx

Blpl — )
I, =—1/4B1(8BI’ ~11B1+B2) X*
I, =1/8B1° (4B1+1) X*

I}, ==1/16B1(2 B> —6 BI B2+ B1- B2) X*

Iy =-1/8B1*(4B1-8B2+1)X°

1—‘;31,01
I,=0
I, =0
1
s =—Brx’
4
=0
2 =1/32+(-1/4B1° -1/16) X’
ri=0
> =1/8BI'x°
I =1/8B1*(3B1-B2) X*

I =l/32+1/8(312B2—3312X2 _%sz

c_ 1
Ty =—2BIX

I3, =-1/2B1’(-B1-5B2+6) X*
Iy =0

ri=0

I, =-1/4B1’ (6 B1-10B2+9) X*
=0

=0

2 =1/8B1'X?

I, =-1/8B1’(13B1-15B2+12) X*

=—1/16Bl(18312+lSBle—47Bl+3B2)X2
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I, =-1/4B1° (2B1-1) X’
I, =~1/8B1(2B1’ +2B1 B2~ B1- B2) X’
% =-1/16B1(-4B1’ +4B1B2+3B1- B2-1) X’

re= —%31(8312 —1))(2

1

rfg:—+l 3BI +—BIB2—5BI’ + BI B2+ 2 Bl4~ | X?
7308 4 4

I =-1/32B1(4B1-1) X*
[ =1/16B1(6 B -2 B1 B2~ 4 B1+1) X’
I'*=1/32B1(16 B ~4 B1B2—-12 B1+3) X*

2
2 =1/32+4~| Bretpapr- T8 Lp 3 |y
. 2 P11 IR

1
L = —5313)(2
I, =-1/2B*(-Bl+B2-2)X*

%, =+1/8B1*(~7B1+B2) X’

3
1"222/31 = _ﬂXz
I, =+1/8B1*(8B1-5B2) X’
Ffzﬁl =0

= =_1/4 B’ X*?

a2fl
72 =—1/8BI* (4B1-B2) X
%, =1/8B1*(6 B1-B2-8) X

Iﬂx

a2pl

=+1/4B1* (-2B1+1) X*

Iﬂz

a2pl

(Lpralpe _Lpppy Lpip 1)y
4 8 4 8 2

alpl =

: %31(12312 —4B1B2+B1-B2) X’

I~x2

. :%Blz (-Bl+1)X°
=2 _l+(lgl3 BRGNS _131232+13132—1)X2
2 8 8 8 4

a2pl — 8

rs , =1/16B1° x*

I3, =1/32B1(18 B —6 B1 B2+ Bl - B2) X*

a2pl

I:52 =1/16 B1(20 BI* ~10B1 B2—~3 Bl + B2) X

a2pl

=3 l+%(6313 +10B1°B2-32B1> +3B1 B2 + 1))(2

a2pl ::8
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I, =BP X

I, =—BI*(3B1-2)X*
XZ 1

L, = E15'13)(2

., =0

Blal =

Lo, = %312 (-B1-3B2+6) X

s, =-1/8BI X?
i —1/8 B X?

Bal

I =0
I =1/4B(4B1-9B2+12) X*
I, =2BIlX?
2ol = —%Blz (6B1-2B2-3) X*
I, = —%131(—4/312 ~4B1B2+B1-B2) X’
Ly :%Blz (3B1+1) X°
Lo = —%Blz (20B1+5B2-22) X*

s =-1/16B1*(4B1-1) X*

p2pl —

Ty, =1/32B1(6 B —6 BI B2+ Bl + B2) X’

B2p1

2 :—1/16Bl(4312—6BlBZ+Bl—B2)X2

B2pl

s =—-1/8B1*(8B1+13B82-23) X°

B2pl

oo = —%31(8312 —4B1+1) X’
p2al =%(2Blz —431232+23132—31—1) X?
[ =i31(12312 ~8B1B2-2B1+4B2-1)X’
16
. 1
D == 1¢ BI(4B1 —4B1+1) X°

= —%+%(8Bl3—14Blz—2Blsz+4BlBZ+l)X2

pal —

T =1/32B1(4 BI* +4B1-1) X*

I =1/32B1(24 BI’ 12 B1B2—-6B1+6B2—1) X

plal

52 =1/1681(22 B1’ 10 B1B2-9 B1+5B2) X

plal

FZ3

plal

=1/8-|—(Bl3+3/4BZBlZ—5/ZBlz+3/83132+1/16Bl—|—15—6))(2
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. 1

p2f1 :_1312 (4B1-3)X*

g :—%31(18312 +6B1B2-17B1-B2+1) X’
Loop = —éBl(SBlZ +4B1B2-4B1-B2) X’

x2 1

[ = =5y B1(4B1° - 1281-1) X°
2, = —éBl (4B1’ +48B1B2-28B1-8B2+3) X’

re —1/3231(32312—231—1))(2

p2p1 —

5, =—1/32B1(6B1* +18 B B2-5B1- B2~1) X*

p2p1 T

[ =—1/16 B1(6 B’ +12B1B2 -5 Bl -2 B2) X’

p2p1

I, :1/3231(30312 —3419132-1531+9192-2)X2
r;lﬁlpl =-2BI'X?
wipipl = —%81(6312 +4B1B2-12B1+B2) X’

. 1
gl = _ZBlz (731—32—1)){2

T :—2813X2

| . :%31(14312 —16BIBZ+7BI—BZ)X2
Iy =—1/2BI X’

o, =—1/16 B1(10 B - B2) X°

T, =—1/4B1(3B1+B2-1)X°

2, =1/16B1* (40 B1-18 B2-23) X°

Bl=p/a, B2=5/a, X =sin’ 0
H, =ioC p,p, H, =ioC p,a,

For PS wave

Iy =-2BIX"

Ty =1/2+(-2B1 +1/4) X*

[y =1/4+(BB2-2B1" +1/4) X’
Iy =-Brx’

[ =1/4+(BI’B2-2BI’ +1/4) X’
I’ =-1/2BX"

I =1/2B1°(B1-B2) X’

Iy =1/2B1*(B1-B2) X*
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r’=-1/2BrX?

' =2B1X*
e =1/2X

r==0

' = BI’ x*

[ =—1/8+(BI’ +1/4) X’

s =1/2B’Xx?

r =0

? =1/2B1°(-B1+B2) X’

T2y =—1/8+(~1/2BIPB2+3/2B1* +1/16) X°

Iy, =-2B’X’

I3, =2B1*(-2+B2+B1) X’

Iy =1/2B1°(B1-B2)X*

) =-1/2B1X’

I =1/2B1*(-6+5B2) X*
;=0

=0

I} =1/2B1*(Bl1-B2) X’

I =1/4B1*(-2B1+8B2-8) X*

s, =B’ (2B1-1) X’

%, =1/2B1(2B1* +2B1 B2~ Bl - B2) X°
'Y =1/4B1(4 B1B2- Bl - B2) X’

I3 =1/2B1 (-1+3B1)X* T =-1/8+(1/2B1°B2+ B’ ~1/2B1B2-1/8) X’
I =1/8B1° (8B1-2) X’

7' =1/16 B1(~4 BI’ +12B1B2-2 B1 -2 B2) X*

[ =1/8B1(-4BI’ +8B1B2-2B2) X’
13B1°

r: :—1/8+(—1/4Bl3—1/4B12BZ+ —3/8BlBZ—3/16]X2

r =-1/2B1°X*
I, =—1/8+(1/2B1° +3/16) X

<, =1/4B1*(-3B1+ B2) X*

1—~x2 — _B_13X2
a 4
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7, =-1/16+(-1/4BB2+1/2 B’ -1/16) X’
ro=-1/8BI x>

I =-1/16 B1>(6 B1-2B2) X*

52 =—1/16 BI> (4 B1-2B2) X*

7, =(-1/4B1B2-1/8) X°

s, =Bl x>
I, = BI*(B1+3B2-4) X*
Xz __
=0
=0

I, =—1/2B1>(2B1-6B2+6) X’
Iy =1/8BI’ X?

2 =1/8BI*(-B1+ B2) X*

I};* =—1/8B1>(-2B1+B2) X*
I3, =-1/4B1° (5B1-9B2+8) X*

I, =1/8B1(4B1-1) X’

5, =-1/8+(-BI'+3/2B1" -~ B1/4-1/16) X’
%, =-1/16B1(16 B’ ~10B1-2B2+2) X’
I, =1/16B1(-8B1* +8B1-1) X’

rﬂz:—i+ SpeplprSprilpp ey
g 16 4 4 4 4 16 16

re = —éBl(ZOBlZ ~12B1+1) X’

5! =—1/16B1(8BI* +4B1B2-6B1-2B2+1) X’
e = _i/}n(lzBl2 +16B1B2-12B1-8B2+3) X°
32

I, =-1/8B1(2B1° + 6B1 B2—3B1-3B2+1) X’

I, =2BrX’

I, =-2B1*(B1-1)X*
1

Xz :_BISXZ

alpl )

P
L :5313)(2
r:, =-BI*(Bl+B2-3) X’
rflﬁl =0
s =1/4B1 X°
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2 =—1/4B1* (Bl-B2) X
I, =-1/4B1*(7B2-12) X*

alpl
Fj;lpl =-BI'X’
I, =—1/4+(-BI’+2BI’ ~1/2B1B2-3/8) X"
rs, = —1/481(6812 —ZBIBZ—2BI+BZ)X2
FZTﬂl :_BISXZ
1 1 1 1
Lo, ==+t e g I -Llpip-Llx
78 L2 4 4 2
I, =-3/4B’X*
Iy, =—1/8B1(6B1° —~2B1 B2—2B1+ B2) X°
I =—1/8B1(4BI° +2B1B2—3B1+B2) X*
T2, =—1/8(8B1I°B2-3BI’ +3) X’

Iy, =1/2B1*(6B1-1) X’
s =—1/4B1(6B1° ~6 B1 B2~5B1+ B2) X’
Xz 1
o =~ BU (4B2+1) X
r2 =2pry
Blpl — 2
I, =—1/4B1(8BI’ ~11B1+B2) X"
r5, =1/8B1° (4B1+1) X’
I, =—1/16B1(2 B’ —6 BI B2+ Bl - B2) X*

2 =—1/8B1* (4B1-8B2+1) X>

Blpl
rs ——1/16B1(18812+183182—47Bl+3B2)X2

Blpl —
r,=0
r,=0
r==Llpry
4
r2=0
T2 =1/32+(-1/4B1° -1/16) X°
ri=o
' =1/8B X
I =1/8B1°(3B1-B2) X’

I :1/32+1/8(31232—3BI2X2 _é)xz
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X 1 3 2
I',=—=B1"X
A3 2

I;, =-1/2B1*(-B1-5B2+6) X*
Iy =0

;=0

I =-1/4B1°(6 B1-10B2+9) X*
=0

=0

2 =1/8BIrX*

I, =-1/8B1I’(13B1-15B2+12) X*

I, =—1/4B1*(2B1-1) X*
I, =—1/8B1(2B1° +2B1 B2— Bl - B2) X°
I =—1/16B1(-4B1’ +4B1B2+3B1-B2-1) X’
x2 1 2 2
r :—3—281(881 -1 X
1

r2 -t Yapr s prpo-spir+miB2+ 214t | x?
7”732 8 40 g

I =-1/32B1(4B1-1)X*
[ =1/16B1(6 B -2 BI B2 -4 B1+1) X’
' =1/32B1(16 B’ ~4 B1B2—12B1+3) X*

2
FZ~§:1/32+l Bl +lpopr T8 1p 3 |y
g 2 2 4 4 32

1

| =—5313X2
I, =-1/2B*(-Bl+B2-2)X*
L%, =+1/8B1° (-7 B1+ B2) X*
. Bl
raZZ/fl = _?Xz

<, =+1/8B1*(8B1-5B2) X’
s, =0

21

2 =—1/4 B X?

a2pl
55 =—1/8B1°(4B1-B2) X*

r:, =1/8B1*(6 B1-B2-8) X’
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