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ABSTRACT

Wave simulation in borehole environment is crucial for characterization of the wave-
forms traveling through the borehole, recorded by the receivers, leaking away outside bore
hole and reflecting from geological structures outside borehole. One of the flaws of the
omni-directional monopole acoustic prototype is it only measures the acoustic pressure
and is therefore insensitive to determine the reflector azimuth. In order to mitigate this
directional ambiguity, a dipole acoustic reflection imaging is developed. In this paper, a
3D elastic staggered-grid finite difference method for both isotropic and anisotropic me-
dia is discussed for the borehole acoustic wave simulation. Based on the convolutional
perfectly matched layer and the multi-axial perfectly matched layer scheme, a hybrid per-
fectly matched layer is proposed which removes the artificial reflections from the compu-
tational regions. A numerical simulation of radiation, reflection and multipole reception
of the elastic waves in the presence of a dipole source is proposed, for azimuthal detec-
tion, to characterize the relationship between S wave polarization and the offset between
the source and receivers as well as the angle of the source and reflector. The results show
the amplitude change of S-S reflection is related to the incident angle to the reflector. Its
maximum amplitude occurs as the incident angle reaches to a critical angle, which can then
be used to calculate the total propagation distance of the S-S wave. As a result, the critical
angle as well as the SH wave velocity of the second layer outside the borehole can thus be
determined.

INTRODUCTION

Acoustic reflection imaging logging, dating back to 1989 when Hornby (1989) pre-
sented data processing and imaging methods for sonic tool BARS (borehole acoustic re-
flection survey) developed by Schlumberger, uses the leaky energy as incident waves, and
probes reflections from near bore hole fractures and micro-structures. By analyzing re-
ceived waveform signals, we can obtain structural information concerning nearby forma-
tions and evaluate small subtle and fractured reservoirs. In further research involving acous-
tic reflection imaging, monopole acoustic imaging has produced positive results in delineat-
ing near borehole structures (Fortin et al., 1991; Coates et al., 2000; Li et al., 2002). One of
the flaws of the omni-directional monopole acoustic prototype however, is it only measures
the acoustic pressure without determining the reflector azimuth. In order to mitigate this
directional ambiguity, dipole acoustic reflection imaging is developed (Tang et al., 2003;
Tang, 2004; Tang and Patterson, 2009; Bolshakov et al., 2011). In dipole methods, disper-
sive flexure waves, whose velocity at the cutoff frequency equals the S-wave velocity, are
analyzed. These data, given the deviation angle of the well bore and the tool azimuthal an-
gle, can determine the azimuth of the structures outside the borehole after migration (Tang
et al., 2003).

Key to this technology is accurate elastic wave simulation. For wavefield simulation
in fluid-filled borehole environments, the finite difference (FD) method is widely used.
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The staggered-grid FD was first proposed by Madariaga (1976), and further developed by
Virieux (1986) who focused on the P-SV wave case by using staggered-grid FD method
and Berenger (1994) proposed a fourth-order staggered-grid FD method. Because the
staggered-grid schemes have advantages over non-staggered grid ones, such as competence
in the presence of liquid-solid interfaces, it has gained popularity in seismic wave modeling
and bore hole acoustic well logging modeling. One of the issues that the FD method has
to face is how to effectively mitigate artificial reflections from the computation boundaries.
During last decades, scholars have proposed a variety of methods for this purpose, such
as sponge zones (Cerjan et al., 1985; Sochacki et al., 1987), optimized conditions (Peng
and Toksöz, 1995), the eigenvalue decomposition method (Dong et al., 2005), continued
fraction absorbing conditions (Guddati and Lim, 2006), exacting absorbing conditions on
a spherical contour (Grote, 2000), or asymptotic local or nonlocal operators (Givoli, 1991;
Hagstrom and Hariharan, 1998). No complete solution to the problem of boundary re-
flections at grazing incidence is yet available, however. Furthermore, all of these methods
introduce significant computational expense into the processing flow. So, a need remains
to develop efficient high fidelity simulation tools for the borehole dipole imaging problem.

In this paper, we discuss use of the 3D staggered-grid FD method as a tool for borehole
acoustic well logging. The perfectly matched layer (Berenger, 1994), the convolutional
perfectly matched layer (Kuzuoglu and Mittra, 1996) and the multiaxial perfectly matched
layer (Meza-Fajardo and Papageorgiou, 2008) are then introduced and discussed as meth-
ods to suppress artificial reflections. Based on the convolutional perfectly matched layer
and the multiaxial perfectly matched layer scheme, a hybrid perfectly matched layer is pro-
posed in this paper. A numerical simulation of radiation, reflection and multipole reception
of the elastic waves for a dipole source is proposed to permit azimuthal detection for a
dipole source, and the relationship between S wave polarization and the offset between the
source and receivers as well as the angle of the source and reflector.

THEORY AND PRINCIPLES

Finite difference method

As one of the most widely used methods, finite difference method in its early applica-
tions was mainly based on the displacement formulation of wave equation (Alterman and
Karal, 1968; Kelly et al., 1976), in which the second order wave equations are discretized
on grids, that is, the computational domain is covered by a space-time grid.

After the first proposal of the staggered grid scheme (Madariaga, 1976), it gained an
increasing number of scholars’ favor to apply in wave field simulation (Virieux, 1986;
Levander, 1988). Yoon and McMechan (1992) applied the 3D finite difference forward
simulations for wave propagation in borehole environments. Wave propagation in an elastic
medium can be expressed by equation of motion as:

ρ∂2
i ui = σij,j (1)

where ρ is density, ui is the displacement vector and σij is stress tensor, σij,j means the
spatial derivatives of stress tensor. The summation convention for repeated subscripts is
also applied. According to Hook’s law, the relationship between stress and strain tensor
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can be described as,
σij,j = cijklεkl (2)

where cijkl are the elastic constants, and the strain tensor εkl is defined as,

εkl =
1

2
(uk,l + ul,k) (3)

In isotropic medium, the elastic constant tensor can be described as,

cijkl = λδijδkl + µ(δikδjl + δilδjk) (4)

where, δij is the Kronecker delta, which equals to 1 when i = j, otherwise equals to zero.
λ and µ are the Lamé constants, by which, the P and S wave velocity α and β are given as√

(λ+ 2µ)/ρ and
√
µ/ρ. And the stress tensor in equation (2) can be described as,

σij = λ(∇ · u)δij + 2µεij (5)

The matrix form of equation (2) can be described as,
σ11

σ22

σ33

σ23

σ23

σ12

 =


c11 c12 c13 c14 c15 c16

c21 c22 c23 c24 c25 c26

c31 c32 c33 c34 c35 c36

c41 c42 c43 c44 c45 c46

c51 c52 c53 c54 c55 c16

c61 c62 c63 c64 c65 c66




ε11

ε22

ε33

2ε23

2ε13

2ε12

 (6)

In the above equation, the elastic constant tensor in a vertical transverse isotropic medium
(VTI) can be described as,

c
V TI

=


c11 c11 − 2c66 c13 0 0 0

c11 − 2c66 c11 c13 0 0 0
c13 c13 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c66

 (7)

And, the elastic constant tensor in a horizontal transverse isotropic medium (HTI) can be
described as,

c
HTI

=


c11 c13 c13 0 0 0
c13 c11 c33 − 2c44 0 0 0
c13 c33 − 2c44 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c66 0
0 0 0 0 0 c66

 (8)

Without loss of generality, take VTI case in equation (7) as an example, and based on
equation (1) , the first order velocity and stress equations can be described as,

∂σxx
∂x

+ ∂σxy
∂y

+ ∂σxz
∂z

= ρ∂Vx
∂t

∂σyx
∂x

+ ∂σyy
∂y

+ ∂σyz
∂z

= ρ∂Vy
∂t

∂σzx
∂x

+ ∂σzy
∂y

+ ∂σzz
∂z

= ρ∂Vz
∂t

(9)
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and,
∂σxx
∂t

= c11
∂Vx
∂x

+ (c11 − 2c66)∂Vy
∂y

+ c13
∂Vz
∂z

∂σyy
∂t

= (c11 − 2c66)∂Vx
∂x

+ c11
∂Vy
∂y

+ c13
∂Vz
∂z

∂σzz
∂t

= c13
∂Vx
∂x

+ c13
∂Vy
∂y

+ c33
∂Vz
∂z

∂σyz
∂t

= c44(∂Vy
∂z

+ ∂Vz
∂y

)

∂σxz
∂t

= c44(∂Vx
∂z

+ ∂Vz
∂x

)

∂σxy
∂t

= c66(∂Vx
∂y

+ ∂Vy
∂x

)

(10)

where (Vx, Vy, Vz) is the velocity vector.

Staggered-grid finite difference approximation

For simplicity, let’s consider a univariate function f(x), then the 2N th staggered-grid
FD formulation is,

δ2Nf =
1

∆x

N−1∑
m=0

am[f(x+
2m+ 1

2
∆x)− f(x− 2m− 1

2
∆x)] (11)

where, am is the coefficient of the fourth-order FD approximation to the first-order deriva-
tive. Now consider a 3-D grid in Cartesian coordinates (lx∆x, ly∆y, lz∆z) at time n∆t,
where ∆x,∆y,∆z are the grid size in X, Y and Z directions and ∆t is time step. Figure
1 shows the schematic of staggered-grid discretization for different parameters. The shear
stress component, take σnxy as an example, is sampled as σnxy(lx+ 1

2
, ly+ 1

2
, lz). The velocity

component, take Vx as an example, is sampled as V
n+ 1

2
x (lx + 1

2
, ly + 1

2
, lz) , where n denotes

time. Therefore, equation (9) can be discretized as,

V
n+ 1

2
x = V

n− 1
2

x + ∆t
ρ

(δxσ
n
xx + δyσ

n
xy + δzσ

n
xz)

V
n+ 1

2
y = V

n− 1
2

y + ∆t
ρ

(δxσ
n
xy + δyσ

n
yy + δzσ

n
yz)

V
n+ 1

2
z = V

n− 1
2

z + ∆t
ρ

(δxσ
n
xz + δyσ

n
yz + δzσ

n
zz)

(12)

and, we take δxσnxx as an example,

δxσ
n
xx(lx +

1

2
, ly, lz) =

1

∆x

N−1∑
m=0

am[σnxx(lx +m+ 1, ly, lz)− σnxx(lx +m, ly, lz)] (13)
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FIG. 1. Schematic of staggered-grid discretization for different parameters.

Likewise, equation (10) can be discretized as,

σn+1
xx = σnxx + ∆t[c11δxV

n+1/2
x + (c11 − 2c66)δyV

n+1/2
y + c13δzV

n+1/2
z ]

σn+1
yy = σnyy + ∆t[(c11 − 2c66)δxV

n+1/2
x + c11δyV

n+1/2
y + c13δzV

n+1/2
z ]

σn+1
zz = σnzz + ∆t[c13δxV

n+1/2
x + c13δyV

n+1/2
y + c33δzV

n+1/2
z ]

σn+1
yz = σnyz + ∆tc44[δyV

n+1/2
z + δzV

n+1/2
y ]

σn+1
xz = σnxz + ∆tc44[δxV

n+1/2
z + δzV

n+1/2
x ]

σn+1
xy = σnxy + ∆tc66[δxV

n+1/2
y + δyV

n+1/2
x ]

(14)

The hybrid perfectly matched layer

As a simulation is performed at local, regional scale, energy at artificial boundaries
should be absorbed. During last decades, scholars have proposed a variety of methods
for this purpose. The perfectly matched layer (PML) is first proposed by Berenger (1994)
based on Maxwell’s equations. This method has been proven to be much more efficient
compared with previously developed absorbing methods (Collino and Tsogka, 2001; Ko-
matitsch and Tromp, 2003; Festa and Vilotte, 2005). As can be seen in Figure 2, the main
idea of PML is to split velocity and stress fields into two parts (Chew and Weedon, 1994;
Collino and Monk, 1998; Collino and Tsogka, 2001) and add a damping profile dx(x)
(dx(x) equals to 0 in the physical domain whereas is greater than 0 when in PML layer
(take x direction as an example)) into the splitting wave equation so as to suppress the arti-

CREWES Research Report — Volume 27 (2015) 5



Li et. al

FIG. 2. PML layers outside the physical domain.

ficial reflections coming from the boundaries. Therefore, a new operator ∇x̃ = [ ∂
∂x̃
, ∂
∂y
, ∂
∂z

]

can be derived, where ∂
∂x̃

= 1
sx

∂
∂x

, sx = 1 + dx
iω

. However, the split field PML has two main
imperfections: 1) the velocity and stress field are required to be split into two subfields
respectively; 2) its efficiency becomes poor at grazing incidence after discretization, which
is because the damping coefficient is inversely proportional to the angular frequency and
thus depends on the direction of propagation of the wave.

In order to improve the behavior of the discrete PML at grazing incidence, the con-
volutional PML(C-PML) (Kuzuoglu and Mittra, 1996) or complex frequency shifted-PML
(CFS-PML) (Bérenger, 2002), which introduces a frequency-dependent term is proposed.
This technique is based on the writing of PML model in the form of a convolution in time
and on the introduction of memory variables so as to calculate this convolution in a recur-
sive way. This scheme doesn’t need to split the velocity-stress equation into separate terms
in the FD method. The main idea of C-PML is to propose a much more general formula of
compared with that in PML scheme by means of adding not only the damping profile but
two other real variables and such that:

sx = κx + dx
αx+iω (15)

And it is obvious that when κx = 1 and αx = 0, the C-PML degenerates into classic
PML scheme. Figure 3 (the upper three pictures) shows snapshots of the monopole source
wavefield propagation in isotropic media with C-PML absorbing layers. The boundary
artificial reflections are effectively suppressed at different time and incidences. Easy as
the C-PML is to be implemented, in some cases however, compared with the split PML
scheme, it suffers some degree of instability either because of its frequency-dependent term
or the convolution operations. As a result, it was later found (Abarbanel et al., 2002) that
C-PML for Maxwell’s equations were still susceptible to manifest slowly growing spu-
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rious solutions that eventually spread and pollute the physical domain. And Komatitsch
and Martin (2007) observed that the C-PML encountered severe instability issues in elastic
anisotropic media. Figure 3 (the lower three pictures) shows snapshots of the monopole
source wavefield propagation in VTI media with C-PML absorbing layers. As we can see
when the wavefield is traveling at above 1.2 ms, a bunch of artificial reflections emerge
at the edges of the snapshots. The multiaxial perfectly matched layer, known as M-PML,
which is believed to be very stable for even extremely anisotropic media, is therefore devel-
oped (Meza-Fajardo and Papageorgiou, 2008). Differing from equation (15), sx in M-PML
is,

sx = κx +
dx +mx/zdz

iω
(16)

wheremx/z is a weighting factor. Figure 4 (the upper three pictures) shows snapshots of the
monopole source wavefield propagation in isotropic media with M-PML absorbing layers.
Most of the boundary artificial reflections are effectively suppressed. However, compared
with Figure 3 (the upper three pictures), there are still feeble boundary reflections in some
incidences. However, Figure 4 (the lower three pictures) shows snapshots of the monopole
source wavefield propagation in VTI media with M-PML absorbing layers. Compared
with Figure 3 (the lower three pictures), the M-PML in anisotropic media reveals a better
performance, though some minor artificial reflections still exist in some incidences, which
can be reduced with increasing PML layers at a price of higher computational cost.

To achieve both accuracy and stability in the modeling, we introduce a hybrid PML that
integrates the advantages of both the C-PML and the M-PML through the optimization of
the damping profile. Because the C- PML and M-PML are independent on each other, we
can combine the two to form a hybrid one as

sx = κx +
dx+mx/zdz

αx+iω
(17)

In order to transform the above equation to the time domain, convolution or auxiliary
variables are required. This procedure can be completed easily by an integration of the
C-PML and the M-PML. Compared to the traditional PML and the C-PML, though the
optimized αx and κx can greatly improve the absorbing efficiency without losing accu-
racy, it is still not stable enough in the modeling of TTI media. We therefore let m, the
M-PML parameter, be optimized between 0.005 and 0.02. In this way, we achieve abso-
lute stability while losing little accuracy. Figure 4 shows snapshots of a monopole source
wavefield propagation in both isotropic and anisotropic medium with hybrid-PML absorb-
ing layers. The boundary artificial reflections are effectively suppressed at different time
and incidences for both isotropic and anisotropic medium.

Since we have discussed the staggered-grid finite difference method and the absorbing
layer in 3D medium, Figure 6 shows the wavefield propagation in an isotropic 3D medium,
the parameters of the model are shown in Table 1. As can be seen in Figure 6 from (a) to
(d) the wavefield propagates from the borehole to the outside formation, when encountering
the interface in (c), a part of the energy transmit into the second layer and the other part of
it’s energy reflects back.

CREWES Research Report — Volume 27 (2015) 7



Li et. al

FIG. 3. Snapshots of the monopole source wavefield propagation in both isotropic media (upper
three) and inosotropic meida (lower three) with C-PML absorbing layers.

FIG. 4. Snapshots of the monopole source wavefield propagation in both isotropic media (upper
three) and inosotropic meida (lower three) with M-PML absorbing layers.
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FIG. 5. Snapshots of the monopole source wavefield propagation in both isotropic media (upper
three) and inosotropic meida (lower three) with H-PML absorbing layers.

Numerical simulation for dipole source

For wavefield propagation with a monopole source, when it propagates in slow forma-
tion (S wave velocity in the formation is smaller than the acoustic wave velocity in the
borehole), the receivers in the borehole cann’t receive the S wave signals. This flaw urges
the development of dipole or even multipole acoustic well logging. Dipole transmitters are
effectively pistons that create a pressure increase on one side of the borehole and a decrease
on the other (Close et al., 2009).

Table 1. The parameters for 3D modeling of wavefield propogation.

Vf(m/s) VP (m/s) VS(m/s) ρ(k/cm3)

Borehole 1500 - - 1.0
Near Borehole formation - 3000 1200 2.5

Second layer - 4000 2300 2.5

For sonic waveforms with a dipole source, the wavefield inside the borehole and in the
formation outside the borehole are

u = ∇ϕf
u = ∇ϕ+∇× Ψ (18)

where vector u is the wavefield displacement, ϕf denotes its potential in borehole fluid, ϕ
is the compressional wave potential in formation, shear wvae potential Ψ can be described
as,

Ψ = χẑ +∇× (ηẑ); (19)
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FIG. 6. Snaopshots of wave propagation in 3D medium.

where χ and η are the SH- and SV- wave displacement potential, respectively, which satisfy
the wave equation with a shear wave velocity. They can be described (Tang and Patterson,
2009) as,

χ(ω; r, z) = S(ω) cos(φ)
4π

∫ +∞
−∞ D(ω, k)K1(sr)eikzdk

η(ω; r, z) = S(ω) sin(φ)
4π

∫ +∞
−∞ F (ω, k)K1(sr)eikzdk

(20)

where S(ω) is the source spectrum; φ is the angle between the direction of particle po-
larization of the wave and the source orientation; D(ω, k) and F (ω, k) are undetermined
functions dependent on the boundary conditions; K1(sr) is modified Bessel function with
s of radial wave number.
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The far field solution for the SH- and SV-wave displacement components can then be
described (Tang et al., 2014) as,

uφ ∼ [iρβωD(ω, k0) sin θ cosφ] e
iωR/β
4πµR

S(ω)

uθ ∼ [ρω2F (ω, k0) sin θ sinφ] e
iωR/β
4πµR

S(ω)

(21)

where ρ and µ are formation density and shear modulus.

The received waveforms recorded by the receivers are affected by multiple effects in-
cluding the source radiation from borehole to formation, transmitted wave reflection de-
rived from the reflectors in the formation and responses of the borehole to the reflected
waves, as well as the wavefield amplitude attenuation during wave propagation along the
wave path, which can be described as a convolution model in frequency domain (Tang and
Patterson, 2009),

RWV (ω) = S(ω) ∗RD(ω) ∗RF (ω) ∗RC(ω)
eiωD/β

D
e
− ωD

2Qββ (22)

in which RWV denotes the received reflections; S(ω) is the source spectrum;RD(ω) stands
for the borehole radiation (Meredith, 1990); RC(ω) is related to borehole reception re-
sponse (Peng et al., 1993); and RF (ω) is the acoustic reflectivity at the reflector. D is the
total distance of a wave traveling from a source to the receiver; Qβ denotes the shear wave
attenuation. According to Tang (Tang et al., 2014) , the far-field radiation for SH− and
SV− waves (RDSH and RDSV ) can be described as

RDSH = iρβωD(ω, k0) sin θ cosφ,

RDSV = ρβωF (ω, k0) sin θ sinφ,
(23)

According to elastic reciprocity (Achenbach, 2003), Tang (Tang et al., 2014) points out that
the radiation and reception patterns both for SH- and SV- waves are equal,

RC(ω, θ) = RD(ω, θ); (24)

For simplicity, the wave field attenuation factor e
− ωD

2Qββ in equation (22) will not be
discussed here and only the SH component will be discussed in the following section. The
SH reflection coefficient in isotropic meidium is,

R(SH) = ρ1β1 cosϕ1−ρ2β2 cosϕ2

ρ1β1 cosϕ1+ρ2β2 cosϕ2
(25)

In combination of equations from equation (23) to equation (25), the received SH reflection
signal according to equation (22), RWVSH(ω) is

RWVSH(ω) = S(ω) ∗RDSH ∗R(SH) ∗RDSH
eiωD/β

D
(26)
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FIG. 7. The 3D profile of the isotropic model with dipole
source and quadrupole receivers.

FIG. 8. Displacement of receivers
around tool.

Based on the low frequency used in dipole acoustic logging, wider lateral detection
depth is available. In this discussion, simulation of dipole acoustic wave propagation is
conducted in isotropic media. As we can see in Figure 7, a dipole source is oriented along
the x-axis of the coordinate system on the tool and makes an angle of φ, where φ changes
from 0 degree to 90 degrees with each change of 15 degrees. The reflector, being 3 m away
from the borehole, is parallel to the borehole, which means the dip angle θ in equation (21)
equals to 90◦.

The borehole is water filled with a diameter of the borehole of 0.21 m. The dipole
source is located in the fluid-filled borehole. The distance of the first receiver to the source
is 0.15 m, with altogether 30 receiver stations along the axis of the tool whose spacing from
each other is 0.15 m. And each receiver station is populated by four azimuthal receivers
evenly spaced around the tool. As a matter of simplicity, we denote the two sub-receivers
parallel to the dipole source as receiver 1 and 3 and denote the other two which are perpen-
dicular to the dipole source as receiver 2 and receiver 4, as can be seen in Figure 8. The
dominant frequency is 3 kHz.

Therefore, when the source orientation is along the reflector strike, according to equa-
tion (21), a pure SH wave and its corresponding SH reflection are generated, shown in
Figure 9. Figure 9 (a) shows the received reflections of receiver 1 (red) and receiver 3
(blue). Because of the radiation direction, SH signals received by receiver 1 and receiver
3 are supposed to have a phase difference resulting from different arrival time of SH re-
flections to receiver 1 and receiver 3, which coincides with Figure 9 (a). Theoretically, the
energy received by receivers 2 and 4 will be canceled out due to the property of the dipole
source, which is proved by Figure 9 (b).
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FIG. 9. (a) Received reflections of receiver 1 (red) and receiver 3 (blue); and (b) Received reflec-
tions of receiver 1 (red) and receiver 3 (blue).

For situations when 90◦ > φ > 0◦ , the reflection SH, SV and P are supposed to be
received by the four receivers around the tool. Figure 10 shows the results when φ is 30◦

and 60◦. Take Figure 10 (a) as an example, the reflections recorded by receiver 1 and
3 are leaky P wave reflection, leaky P-SV reflection and S-S reflection. When dominant
frequency increases, the leaky P wave will be triggered by a dipole source (Tang and Cheng,
2004). Apparently, the P-P and P-SV reflections received by receiver 1 and 3 or by receiver
2 and 4 are identical in Figure 10. Whereas, for the S-S reflections, for both receiver pairs
1-3 and 2-4, the reflection signals show a distinctive phase difference when the offsets are
relatively small. With the increasing of the offset, they begin to merge with each other.
This means the recorded signals are dominant by SH wave when the offset is small, and the
SV wave plays a dominant role when the receiver is comparatively further away from the
source. Compared with the received reflections when φ = 30◦ (Figure 10 (a) and (b)), when
φ increases, the S-S reflections begin to merge at a closer offset, that is, the SH reflection
changes into SV reflections with the increase of φ.

When the reflector azimuth is perpendicular to the orientation of the dipole source ( φ
is 90◦), a pure SV wave and its corresponding SV reflection are generated, shown in Figure
11. Figure 11 (a) shows the received reflections of receiver 1 (red) and receiver 3(blue).
The reflections recorded by receiver 1 and 3 are leaky P wave reflection, P-SV reflection
and pure SV-SV reflection. Figure 11 (b) shows the received reflections of receiver 2 (red)
and receiver 4 (blue), which shows a perfect match of both received signals compared with
those of receiver 1 and 3. This is because receiver 2 and 4 have the same distance with the
reflector.

It is not difficult to find out from the above results that the P-P reflected wave ampli-
tude as well as the P-SV wave amplitudes vary with the azimuth angle of the reflector: the
amplitudes increase with the azimuth angle of the reflector. Whereas, the P-SV wave am-
plitude variation trend versus the offset from near to far is opposite to that of the P-P wave.
For the S-S reflection, more detailed analysis will be presented in the following discussion.

Figure 12 shows the received full wave signals of receiver 1 from φ = 0◦ to φ = 90◦

with an offset ranging from of 1.5 m to 3.75 m. From Figure 12, when the offset is 1.5
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FIG. 10. (a) and (b) Received reflections when φ is 30◦; (b) and (d) Received reflections when φ is
60◦ .
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FIG. 11. (a) Received reflections of receiver 1 (red) and receiver 3 (blue); (b) and (d) Received
reflections of receiver 2 (red) and receiver 4 (blue) .

m, we can see P- and S- head wave, P-P reflection, P-SV converted wave and the S-S
wave respectively. With the increase of an azimuth angle between the source and reflector,
the SV wave energy increases while the SH wave energy decreases due to the relationship
between the source to reflector angle and the S wave polarization in equation (23), shown in
the rectangle area in Figure 12. Results received by receiver 3 show quite similar property,
which we won’t present here.

Figure 13 shows the correspondent extracted normalized reflection signals of receiver
1 from φ = 0◦ to φ = 90◦ with an offset ranging from of 1.5 m to 3.75 m. It is clear that
the P-P reflection amplitude (in the dashed red rectangle) increases with the azimuth angle
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FIG. 12. Full waveforms of R1 with an offset of (a) 1.5 m, (b) 2.25 m, (c) 3.0 m and (d) 3.75 m.

of the reflector while decreases with the offset being from near to far. Whereas for the S-S
reflection signals in the dashed black rectangle , because of the transformation between
SH- to SV- wave signals, there’s no such trend in terms of the azimuth angle and the offset,
which differs from the result from (Wei and Tang, 2012). This is because not only is the
amplitude of S-S reflection related to the azimuth angle, but also it is related to the offset
from the source to the receiver.

Figure 14 shows received full wave signals of receiver 2 from φ = 0◦ to φ = 90◦ with
an offset ranging from of 1.5 m to 3.75 m. It is apparent to see that from Figure 14 (a)-(d),
there is no P- and S- head wave and only P-P reflection, P-SV converted wave and the S-S
wave are presented, which is because the P- and S- direct waves have been canceled out
regarding of the relationship of the location between the x-directional dipole source and
the receiver 2 in y- direction. With the increase of an azimuth angle between the source
and reflector, the SV wave energy increases, shown in the black dashed rectangle area in
Figure 14. Results received by receiver 4 show quite similar property, which we won’t
present here. Figure 15 shows the correspondent extracted normalized reflection signals
of receiver 2 from φ = 0◦ to φ = 90◦ with an offset ranging from of 1.5 m to 3.75 m.
The reflected signal received by receiver 2 is the same as the full waveforms received by
receiver 2. Therefore, the receivers which have an orthogonal relation with the radiation
direction of a dipole source, in theory, record signal of pure reflections.

We have discussed the relationship between the offset and the S wave polarization in
the above section with a variation of different azimuth angles of the reflector. In order to
take a deep look into the relationship between S-S reflections amplitude and the offset, the
S-S reflection from different reflector azimuth angles are extracted. Figure 16 shows the
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FIG. 13. (a) Reflected waves of R1 with an offset of 1.5 m; (b) Reflected waves received by R1 with
an offset of 2.25 m; (c) Reflected waves received by R1 with an offset of 3.0 m; (d) Reflected waves
received by R1 with an offset of 3.75 m.

normalized S-S reflected amplitude with different reflector azimuth angles versus receiver
offset.

From Figure 9 to Figure 11, the SH reflection will change into SV reflection with the
increase of the offset. When the azimuth angle of the reflector is small, the occurrence of
this change will be in a relatively far offset (e.g. φ = 15◦) or even will not happen (φ = 0◦).
It is obvious that the amplitude of SV reflection is larger than that of the SH reflection,
which can be proved from Figure 16 (b), (c) and (d) where the maximum normalized S-S
reflected amplitude happens to be in the far offset. And it is easy to detect that it occurs in
a fixed offset (when the offset equals to 4.125 m). However, is doesn’t happen in Figure
16 (a) when φ = 15◦. This is because the change of SH reflection to SV reflection hasn’t
finished and there is no pure SV reflection recorded even by the receiver with a largest
offset. Now let’s discuss the reason why the maximum normalized S-S reflected amplitude
occurs at an offset of 4.125 m with different azimuth angles of the reflector and receivers.

Recall equation 26, let,

H(ω) = S(ω) ∗RDSH ∗R(SH) ∗RDSH (27)

According to Fourier transformation,

H(ω) =

∫ +∞

−∞
h(t)e(iωt)dt (28)
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FIG. 14. (a) Full waveforms of R2 with an offset of 1.5 m; (b) Full waveforms received by R2 with
an offset of 2.25 m; (c) Full waveforms received by R2 with an offset of 3.0 m; (d) Full waveforms
received by R2 with an offset of 3.75 m.
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FIG. 15. (a) Reflected waves of R2 with an offset of 1.5 m; (b) Reflected waves received by R2 with
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received by R2 with an offset of 3.75 m.
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FIG. 16. Cross-plots of maximum amplitude versus receiver offset.

By multiplying eiωD/β

D
into the above equation, we get

H(ω)
eiωD/β

D
=

1

D

∫ +∞

−∞
h(t)eiω(t−D/β)dt = RWV (ω) (29)

where, h(t) is the Fourier transform of H(ω) in time domain and

h(t) = s(t)rd2
(SH)r(SH) (30)

Based on equation (22), (23) and (24) , we denote the time domain form of S(ω) as s(t),
time domain form of RD(ω) or RC(ω) is

rd(SH) =
1

2π

∫ +∞

−∞
(iρβωD(ω, k0) cosφ)e(iωt)dω (31)

We get SH reflection response from equation (29) as,

RWV (ω) = r(SH)

− 1
4π
ρ2β2 cos2 φ

D

∫ +∞

−∞
s(t)dt

∫ +∞

−∞
ω2D2(ω, k0)eiw(3t−D/β)dω (32)

Take the first order derivative of the above equation in terms of D and let the result
equal to 0, the extrame value of this equation can be found, which is equal to determine the
extreme value of,

f(D) =
1

D
eiw(3t−D/β)r(SH) (33)

Combine with equation (25) and take its derivative in terms of D, we have

∂f(D)

∂D
=
∂( 1

D
eiw(3t−D/β)r(SH))

∂D
= 0 (34)
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FIG. 17. S wave emission, reflection and transmission.

According to Figure 17, we have,

cosϕ1 = 6
D

;

cosϕ2 =
√

1− β2
2

β2
1
(1− 36

D2 );
(35)

Substitute the above equation into equation (34), we find a maximum value of equation (32)
when cos(ϕ2) = 0, which means the maximum value of the reflected S wave amplitude
occurs when total reflection happens, which is theoretically reasonable. And we change
the reflection angles from 0◦ to 60◦ with a sample rate of 0.5◦ in equation (26) to get the
amplitude difference versus different reflection angles, which is shown in Figure 18. As
we can see, the normalized amplitude of S wave reflection reaches to its maximum value
when the reflection angle equals to 36◦. According to the model parameters, which equals
to the critical angle between the two layers for S wave. And when incident angle is 36◦,
the calculated offset according to Figure 17 is about 4.125 m, which equals to that with a
maximum amplitude shown in Figure 16.

That’s to say, based on the cross-plot of maximum amplitude versus receiver offsets, the
offset with a maximum amplitude can be found and thus used to determine the total travel
distance of D (see in Figure 17). Both the distance between the borehole and the reflector
and the critical angle can therefore be calculated. As a result, the shear wave velocity of
the second layer outside a borehole can be obtained according to Snell’s law.

DISCUSSION

The simulation for a dipole directional source is also performed in an anisotropic medium,
the model that we are using is similar from Figure 7, except the size of the model is 5∗5∗8
(m3). The source to the first receiver distance is 1 m and the distance between receivers
is 0.16 m, with altogether 30 receivers ranging from 1 m to 5.64 m. The layer close to
the borehole (the interface between the first layer and the second layer is 2 m) is a VTI
medium, whose elastic parameters are,
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FIG. 19. Displacement of 8 re-
ceivers around tool.

c
V TI

=


23.87 15.33 9.79 0 0 0
15.33 23.87 9.79 0 0 0
9.79 9.79 15.33 0 0 0

0 0 0 2.77 0 0
0 0 0 0 2.77 0
0 0 0 0 0 4.27

 (36)

While the parameters in the borehole and of the second layer are identical to that of
the isotropic medium, which are shown in Table 1. And for each receiver, we have 8 sub-
receivers evenly spaced around the borehole, as shown in Figure 19.

Therefore, when the source orientation is along the reflector strike, the received reflec-
tions by 8 evenly spaced receivers from an offset of 1 m to 5.64 m are then shown in Figure
20, in which there is a pure SH reflection generated (from Figure 20 (a), (c) and (d)). Be-
cause of the geometrical difference of the receivers in terms of the directional dipole source
and reflector, the received SH reflections by receiver pair 4 and 8 as well as by receiver pair
2 and 6 are not exactly in an opposite phase relation compared with the receiver pair 1 and
5. Receiver pair 3 and 7 can not receive reflections because of their locations in terms of
the directional source.

When the angle between source orientation and the reflector strike is 30◦, the qP-P,
qP-qSV reflections as well as the SH reflection are observed from each receiver, shown in
Figure 21. And it is clear that the SH reflection amplitude reaches to its peak at the near
offset, whereas the qSV reflection is hardly detected in the near offset, which coincides with
the results that there is a transition between SH and SV reflections from the near offset to far
offset. It’s also worthy to notice that the amplitude of qP-qP reflection turns out to increase
with the offset, which is quite the opposite compared with that in the isotropic medium.

Figure 22 and Figure 23 show the received reflections for the 8 receivers both from
φ = 60◦ and φ = 90◦. With the increase of the angle between source orientation and the
reflector strike, the amplitude of qP-P, qP-qSV reflections as well as the qSV-qSV reflection
are increasing. However the amplitude of SH-SH reflection is decreasing and it reaches to
its minimum value when φ = 90◦. The SH-SH reflection from different reflector azimuth
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FIG. 20. Received reflections for 8 evenly spaced receivers when the strike of reflector is parallel
to the radiation of the directional source.

0 2000 4000 6000 8000
0

10

20

30
Reflections from receiver 4(blue) and 8(red)

Time (ms)
0 2000 4000 6000 8000

0

10

20

30
Reflections from receiver 3(blue) and 7(red)

Time (ms)

0 2000 4000 6000 8000
0

10

20

30
Reflections from receiver 2(blue) and 6(red)

Time (ms)
0 2000 4000 6000 8000

0

10

20

30
Reflections from receiver 1(blue) and 5(red)

Time (ms)

(a)

(c)

(b)

(d)

SH−SH

qSV−qSVqP−qP

FIG. 21. Received reflections for 8 evenly spaced receivers when there is a 30◦ angle difference
between the strike of reflector and the radiation of the directional source.

angles is then extracted and the normalized SH-SH reflected amplitude with different re-
flector azimuth angles versus receiver offset are shown in Figure 24. The SH-SH amplitude
of receiver 1 reaches to its peak at an offset of 2.67 m. In VTI medium, the received wave-
forms recorded by the receivers will be different from equation (26), the S(ω), RC(ω),
RD(ω) together with the RF (ω) in equation (26) no longer be suitable for the received
waveforms in VTI medium. However, in theory, the maximum value of the received SH
amplitude will occur when the wave propagates to the interface with a critical angle. And
from Figure 24, the relationship between the maximum amplitude and the receiver offset
is not related to the azimuth angle of the reflector. In fact, the RF (ω) term plays a domi-
nant role in the change of the SH reflection amplitude. We will introduce the SH reflection
coefficient in VTI medium in the following discussion.

CREWES Research Report — Volume 27 (2015) 21



Li et. al

0 2000 4000 6000 8000
0

10

20

30
Reflections from receiver 4(blue) and 8(red)

Time (ms)
0 2000 4000 6000 8000

0

10

20

30
Reflections from receiver 3(blue) and 7(red)

Time (ms)

0 2000 4000 6000 8000
0

10

20

30
Reflections from receiver 2(blue) and 6(red)

Time (ms)
0 2000 4000 6000 8000

0

10

20

30
Reflections from receiver 1(blue) and 5(red)

Time (ms)

(a)

(c)

(b)

(d)

qSV−qSV

qP−qP

qP−qSV

SH−SH

FIG. 22. Received reflections for 8 evenly spaced receivers when there is a 60◦ angle difference
between the strike of reflector and the radiation of the directional source.
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FIG. 23. Received reflections for 8 evenly spaced receivers when there is a 90◦ angle difference
between the strike of reflector and the radiation of the directional source.

The SH reflection coefficient RSH , according to Slawinski (2003), can be described as,

RSH =

√
ρ1cI44 cosϕ1√

cI66 sinϕ1
2+cI44 cosϕ1

2
−

√
ρ2cII44 cosϕ2√

cII66 sin2 ϕ2+cII44 cos2 ϕ2
√
ρ1cI44 cosϕ1√

cI66 sin2 ϕ1+cI44 cos2 ϕ1

+
√
ρ2cII44 cosϕ2√

cII66 sin2 ϕ2+cII44 cos2 ϕ2

(37)

where cI44, c
I
66 and cII44, c

II
66 are the elastic constants of the incident and the refracted media;

ϕ1, ϕ2 are the incident angle and transmitted angle. ρ1 and ρ1 denote the density of incident
and transmitted layers. In this examining procedure, we wish to state the above equation in
terms of incident angle only, herein, we have,

sinϕ1√
cI66 sin2 ϕ1+cI44 cos2 ϕ1

ρ1

=
sinϕ2√

cII66 sin2 ϕ2+cII44 cos2 ϕ2

ρ2

(38)
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FIG. 24. Cross-plot of normalized amplitude versus different receiver offsets in VTI medium.

Solving equation (38), we have,

ϕ2 = arcsin

√
ρ1cII44 sin2

ϕ1

[ρ2(cI66 − cI44)− ρ1(cII66 − cII44)] sin2
ϕ1

+ρ2cI44

(39)

Then we change the incident angle from 0◦ to 90◦ with a sample rate of 0.5◦ in equation
(37) to get the amplitude difference versus different reflection angles, which is shown in
Figure 25. As we can see, the normalized amplitude of SH reflection reaches to its max-
imum value when the reflection angle equals to 50.5◦. And when incident angle is 50.5◦,
the calculated offset according to Figure 24 is about 2.76 m, which equals to that with a
maximum amplitude shown in Figure 25.

CONCLUSIONS

The 3D elastic medium staggered-grid finite difference method is discussed for the
borehole acoustic wave simulation. As for the boundary artificial reflections suppression,
the popular PML, C-PML and M-PML are discussed. The main idea of C-PML is to
propose a much more general formula so as to improve the behavior in tackling with the
grazing incidence. However, in some cases, it suffers some degree of instability either
because of its frequency-dependent term or the convolution operations. The M-PML, being
higher efficiency especially in grazing incidence, often suffers spurious reflections if the
damping parameter is not optimized and the thickness of the PML is not large enough. A
hybrid PML based on the C-PML and M-PML is proposed in this paper. The snapshots of
waveforms show that the hybrid PML is well behaved in grazing incidence.

We then apply a 3D elastic staggered-grid finite difference method to the wavefield
simulation for a directional dipole source with a parallel reflector rotating around it in
isotropic medium. The received reflections by the four evenly spaced receivers around the
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FIG. 25. Cross-plot of normalized amplitude versus different reflection angles in VTI medium.

borehole show an angular dependence on the reflector. And a transition is detected between
the SH-SH reflection and SV-SV reflection with the increase of the offset. Futher analysis
on the relationships between the borehole wavefield reception, radiation and reflection of
S-S reflected signals show that the maximum S-S reflected amplitude occurs when the
incident angle of S wave reaches to its critical value (when total reflection happens). Based
on the cross-plot of maximum amplitude versus receiver offsets, the offset with a maximum
amplitude can be found and thus used to determine the total travel distance of D. Both
the distance between the borehole and the reflector and the critical angle can therefore be
calculated. As a result, the shear wave velocity of the second layer outside a borehole can
be obtained according to Snell’s law.

For a further discussion, the forward simulation for a directional dipole source with a
parallel reflector rotating around it in the VTI medium is also discussed. Although, the
received waveforms recorded by the receivers is different from the isotropic medium. In
theory, the maximum value of the received SH amplitude will occur when the wave prop-
agates to the interface with a critical angle. The SH-SH reflection coefficient in the VTI
medium is introduced and used to calculate the relationship between the incident angle and
reflected amplitude. As a result, our suspicion is then approved by the simulation results of
the relationship between offset and the reflected amplitude in conjunction of the calculated
change of the SH-SH reflection coefficient with the incident angle.
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