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ABSTRACT 
Gabor nonstationary deconvolution was developed in the field of Seismology to 

compensate for attenuation loss, correct phase dispersion, and produce images with high 
resolution. Compared to seismic waves, a stronger attenuation and dispersion effect is 
observed in microwave frequency electromagnetic (EM) waves, especially with the 
propagating medium that has high loss and high dispersion, such as human body tissues. 
In the microwave image, it is displayed as a characteristic blurriness or lack of resolution 
that increases with time/distance. To produce microwave images with high resolution, there 
is a strong need for a technique that is able to compensate for the energy loss and correct 
for the wavelet distortion. Therefore, the Gabor algorithm is proposed to deal with the 
nonstationarity in EM wave propagation and attenuation. Gabor deconvolution is 
essentially based on the assumption that the anelastic attenuation of seismic waves can be 
described by a constant Q theory. Our study reveals that the same definition of Q as in 
seismic can also be used to characterize EM wave propagation and attenuation. Even 
though the Q for EM waves is not constant over the microwave frequency of interest; 
however, a parameter Q*, which is closely related to Q, can be approximated as constant 
for highly lossy dispersive human body tissues. Q and Q* might be different in the order 
of magnitude; however, these quantities describe the attenuation and dispersion in the same 
manner. Our test results indicate that Gabor nonstationary deconvolution is able to 
sufficiently compensate for attenuation loss and correct phase dispersion for EM waves 
that propagate through high lossy dispersive media. It can work effectively where a 
constant Q* approximation is achieved. 

INTRODUCTION 
Various inverse Q filtering techniques have been developed in the field of Seismology 

to compensate for energy loss, to correct for wavelet distortion in terms of shape and 
timing, and to produce an image with high resolution. Among these, the Gabor 
deconvolution method developed by (Margrave et al., 2011) has been successfully tested 
with industrial seismic data (Margrave et al., 2003, and Perz et al., 2005). The results 
indicate that, compared to the industry standard approach, Gabor deconvolution provides 
improved amplitude and phase content of certain seismic events. It is the purpose of this 
study to extend these findings to radar data, which necessitates a good understanding of 
the differences in the application conditions between the seismic waves and the EM waves, 
as well as the media being studied. 

In particular, our study focuses on the tissue sensing adaptive radar (TSAR) system 
developed by (Fear et al., 2013) at the University of Calgary. The TSAR system uses low 
power microwave frequency electromagnetic (EM) waves to image the breast interior for 
tumor detection. Encouraging results have been obtained with simulation and phantom 
data, as well as some preliminary clinical exams. Those results indicate that TSAR images 
are able to detect the dielectric property changes in breast tissues. However, limited success 
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has been reported in imaging complicated model structures, i.e., targets within attenuating 
and dispersive heterogeneous media. The attenuation of EM waves in many biological 
materials is strongly dependent upon frequency in the microwave frequency range; higher 
frequencies are attenuated much more quickly than lower ones during propagation. As a 
result, the microwave wavelet often undergoes a significant change in shape as it travels 
through the media, and reflections received at later times are noticeably broader than those 
received at earlier times. In the microwave image, it is displayed as a characteristic 
blurriness or lack of resolution that increases with time/distance. There is a need for higher 
resolution and more sensitive microwave images in clinical applications. This triggered our 
interest in adapting Gabor nonstationary deconvolution to handle the nonstationarity in EM 
wave propagation and attenuation. 

In essence, Gabor deconvolution is a natural extension of the standard Wiener 
deconvolution algorithm. It is based on the key assumption that, over the seismic 
frequencies of interest, the anelastic attenuation of seismic waves can be described by a 
constant Q theory (Kjartansson, 1979). Issues with this technique arise in light of the fact 
that, in our study, EM waves operate at the Gigahertz frequencies that are much higher than 
the frequencies of seismic waves. Secondly, human body tissues contain higher water 
content than geological materials. Thus, the wavelet attenuation and dispersion in EM wave 
propagation through the human body is more severe than that in seismic wave propagation 
through the earth subsurface. Moreover, extensive theoretical studies and experimental 
observations have provided evidence that constant Q is a reasonable approximation for 
seismic waves. A few researches have also been done on Q and Q* characterization of 
attenuation in ground penetrating radar (GPR) pulse for geophysical applications (Turner 
and Siggins, 1994, Bano, 1996, Irving and Knight, 2003, and Bradford, 2007). However, 
our literature studies reveal that no such work has been published for EM wave attenuation 
in highly lossy and dispersive biological tissues. The aim of this study is to investigate the 
Q characterization of EM wave propagation and attenuation in tissues, understand the 
frequency characteristics of Q in this context, and assess the ability of Gabor nonstationary 
deconvolution to deal with the attenuation and wavelet dispersion that are much more 
severe than those observed in seismic waves. Our theoretical derivations and experimental 
results demonstrate that (1) the same definition of Q can be found for seismic waves and 
EM waves; (2) the Q for EM waves varies with frequency; however, a parameter Q* can 
be found by taking the first order derivative of Q over frequency, which can be 
approximated as a constant over the microwave frequencies of interest; and (3) Gabor 
nonstationary deconvolution is able to remove the wavelet dispersion in the presence of 
high attenuation and dispersion. 

The rest of this report is organized as follows. We start with a brief review of the 
concepts associated with EM wave propagation; then, explain the nonstationarity in the 
propagating wavelet due to the frequency-dependent attenuation. In Q Attenuation of EM 
Wave Propagation, the Q for EM waves is introduced and compared with the Q for seismic 
waves. We next apply Gabor nonstationary deconvolution to radar data that contains large 
attenuation and distortion. Selected results obtained with analytic, simulated, and measured 
data are demonstrated and discussed. At the end, conclusions are drawn based on those 
results and discussions. 
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ELECTROMAGNETIC WAVE PROPAGATION 
Propagation Constants  

We consider the simple case of uniform plane wave propagation in lossy and dispersive 
dielectric materials. The uniform plane wave solution for an electric field at a single 
frequency ω in one-dimension can be written in phasor form (Taflove and Hagness, 2000, 
and Pozar, 2005) as 

 𝐸𝐸(𝑡𝑡, 𝑥𝑥) = 𝐸𝐸0𝑒𝑒𝑖𝑖(𝜔𝜔𝜔𝜔−𝑘𝑘𝑘𝑘), (1) 

where 𝑡𝑡 is the travel time, 𝑥𝑥 is the travel distance, 𝜔𝜔 is the angular frequency, 𝑘𝑘 is the 
complex wavenumber, and 𝐸𝐸0 is the amplitude of the electric field at 𝑥𝑥 = 0 an  d 𝑡𝑡 = 0. 
The complex wavenumber 𝑘𝑘 is given by  

 𝑘𝑘 = 𝛽𝛽 − 𝑖𝑖𝑖𝑖. (2) 

Parameters 𝑖𝑖 and 𝛽𝛽 are the attenuation and the phase terms, respectively, which are given 
by 

 𝑖𝑖(𝜔𝜔) = 𝜔𝜔�𝜇𝜇0𝜀𝜀𝑒𝑒𝑒𝑒𝑒𝑒(𝜔𝜔)

2
��1 + � 𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒(𝜔𝜔)

𝜔𝜔𝜀𝜀𝑒𝑒𝑒𝑒𝑒𝑒(𝜔𝜔)�
2
− 1� (3) 

   

 𝛽𝛽(𝜔𝜔) = 𝜔𝜔�𝜇𝜇0𝜀𝜀𝑒𝑒𝑒𝑒𝑒𝑒(𝜔𝜔)

2
��1 + � 𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒(𝜔𝜔)

𝜔𝜔𝜀𝜀𝑒𝑒𝑒𝑒𝑒𝑒(𝜔𝜔)�
2

+ 1�. (4) 

The phase constant 𝛽𝛽(𝜔𝜔) is related to the phase velocity 𝑣𝑣(𝜔𝜔) by  

 𝑣𝑣(𝜔𝜔) = 𝜔𝜔
𝛽𝛽(𝜔𝜔)

. (5) 

In (3) and (4), the constitutive parameter 𝜇𝜇0 is equal to the permeability of free space 
for most of the biological tissues. The frequency dependency of 𝑖𝑖 and 𝛽𝛽 is further 
complicated by the frequency dependency of the constitutive parameters 𝜀𝜀𝑒𝑒𝑒𝑒𝑒𝑒 (effective 
permittivity) and 𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒 (effective conductivity).  

Dielectric properties 
The EM wave propagation in biological tissues is governed by the complex relative 

dielectric permittivity, 𝜀𝜀∗, given by  

 𝜀𝜀∗(𝜔𝜔) = 𝜀𝜀′(𝜔𝜔) − 𝑖𝑖𝜀𝜀"(𝜔𝜔), (6) 

where 𝜀𝜀′ is the frequency-dependent dielectric constant which can be converted into the 
effective permittivity 𝜀𝜀𝑒𝑒𝑒𝑒𝑒𝑒(𝜔𝜔) = 𝜀𝜀0𝜀𝜀′(𝜔𝜔), and 𝜀𝜀" is the frequency-dependent dielectric loss 
which can be converted into the effective conductivity 𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒(𝜔𝜔) = 𝜔𝜔𝜀𝜀0𝜀𝜀"(𝜔𝜔). The  
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Fig. 1. Attenuation coefficient and phase velocity calculated for a selected human body tissue 

constitutive parameter 𝜀𝜀0 is equal to the permittivity of free space. 
 

The complex relative dielectric permittivity of tissues is often represented by the Cole-
Cole model (Gabriel et al., 1996, and Lazebnik et al., 2007): 

 𝜀𝜀∗(𝜔𝜔) = 𝜀𝜀∞ + ∑ 𝜀𝜀𝑆𝑆,𝑗𝑗−𝜀𝜀∞
1+(𝑖𝑖𝜔𝜔𝜏𝜏𝑗𝑗)1−𝛼𝛼𝑗𝑗

+𝑛𝑛
𝑗𝑗=1

𝜎𝜎𝑆𝑆
𝑖𝑖𝜔𝜔𝜀𝜀0

 (7) 

in which n is the number of poles, 𝜏𝜏𝑗𝑗, 𝜀𝜀∞, 𝜀𝜀𝑆𝑆,𝑗𝑗, 𝑖𝑖𝑗𝑗, and 𝜎𝜎𝑆𝑆 are the Cole-Cole model 
parameters that are estimated from the experimental data. 𝜏𝜏𝑗𝑗  is a generalized relaxation 
time to characterize the polarization mechanism in each of the relaxation regions. 𝜀𝜀∞ is the 
permittivity at the field frequencies where 𝜔𝜔𝜏𝜏𝑗𝑗 ≫ 1, and 𝜀𝜀𝑆𝑆,𝑗𝑗   is the permittivity at 𝜔𝜔𝜏𝜏𝑗𝑗 ≪
1. 𝜎𝜎𝑆𝑆 is the static ionic conductivity. The distribution parameter 𝑖𝑖𝑗𝑗 is a measure of the 
broadening of the dispersion and can assume values between 0 and 1. These parameters are 
estimated by fitting models to measurements of frequency dependent behavior obtained in 
laboratory tests and are used to determine attenuation rate and phase velocity. 

Nonstationarity in EM wave propagation 
Equations (3) and (5) indicate that, due to the frequency dependency of effective 

permittivity and conductivity, the attenuation constant and the phase velocity are also 
frequency-dependent. In Figure 1, using a human body tissue selected from (Gabriel et al., 
1996) as an example, we plot the attenuation coefficient and the phase velocity as a function 
of frequency. In this example, the number of poles for the Cole-Cole formula in (7) is 
defined as n=4. It can be seen that the attenuation displays a high level of frequency 
dependency over the frequency range of interest. The plot shows an almost linear 
relationship between attenuation and frequency. On the other hand, the slow increase in 
velocity indicates that the change in shape of an EM pulse due to velocity dispersion alone 
will be minimal in this substance. These observations are consistent with those made from 
the propagation of subsurface radar pulse in geological materials (Irving and Knight, 2003). 

From Fig. 1, the high-frequency components of the spectra travel with a higher velocity 
and are more quickly attenuated than the low frequency ones. The dissipative and 
dispersive effects caused by this frequency dependency introduce continuous changes in  
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Fig. 2. A minimum phase wavelet traveling through the human body tissue shown in Figure 1. (a) 
Time domain signals. (b) Amplitude spectra. The color indicates the wavelet travel time: red is 0.5 
ns, green is 2.5 ns, and blue is 4.5 ns. 

both amplitude and phase spectra of the EM wavelet. As a result, the EM wavelet often 
undergoes a significant distortion in shape as it travels through the media, and the received 
signals at later times are noticeably broader than those received at earlier times. This 
phenomenon is illustrated by an analytical example shown in Figure 2, in which a minimum 
phase wavelet travels through the body tissue shown in Figure 1. For the time domain 
signals, the amplitude of the propagating wavelet at the two later travel locations has been 
amplified by 10 in order to make the waveform distortion more visible. It can be seen that, 
as the time delay increases, the wavelet broadens and its amplitude decreases; as well, there 
is a downshift in the peak frequency of the amplitude spectra.  

The changes in the shape and bandwidth of the source wavelet due to the time-dependent 
frequency response is so called nonstationarity (Margrave et al., 2011). Therefore, of 
importance in this study are accounting for those significant distortions in the waveform, 
compensating for the energy attenuation to strengthen the response from the object of 
interest, deconvolving the propagating wavelet to improve the signal resolution, and 
achieving a high-resolution well-focused radar image for interpretation (i.e., diagnostic) 
purposes. 

Q ATTENUATION OF EM WAVE PROPAGATION 
Seismic attenuation is commonly characterized by the quality parameter Q. A variety of 

methods have been developed to estimate the earth Q function and reverse the earth Q 
effect on seismic waves. A good summary in this regard can be found in (Wang, 2008). 
Gabor nonstationary deconvolution (Margrave et al., 2011) is essentially based on the 
assumption that the effect of anelasticity on the wave propagation can be described by a 
constant Q theory (Kjartansson, 1979). To our knowledge, the Q characterization of EM 
wave attenuation in dielectric media has not yet been extensively studied and commonly 
applied. Therefore, in this section, we start with a brief review on Gabor nonstationary 
deconvolution; then, demonstrate that a similar parameter to the seismic Q does exist to 
describe the EM wave attenuation in the dielectric. Next, the mathematical definition of Q 
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for EM waves is derived. At the end, we compare the Q between the seismic wave and the 
EM wave in terms of the dissipation and dispersion scale and frequency-dependency. This 
comparison leads to a discussion on the potential challenges of applying Gabor 
nonstationary deconvolution to the media that are highly lossy and dispersive. 

Gabor nonstationary deconvolution 
Stationary deconvolution is fundamentally based on a stationary convolutional model. 

In its simplest form, this model is often stated as 

 𝑠𝑠(𝑡𝑡) = 𝑤𝑤(𝑡𝑡) ∗ 𝑟𝑟(𝑡𝑡), (8) 

where 𝑠𝑠(𝑡𝑡) is the reflection measurement, 𝑤𝑤(𝑡𝑡) is the source wavelet, and 𝑟𝑟(𝑡𝑡) is the time 
domain reflectivity of the object under test. The stationary convolutional model assumes 
that the source wavelet propagates through a time-invariant system that has no distinction 
between the source wavelet and the propagating wavelet. Therefore, it is not able to account 
for nonstationarity in wave propagation.   

In order to address this shortcoming in the stationary convolutional model, Gabor 
deconvolution is based on a nonstationary convolutional model, given by 

 𝑠𝑠(𝑡𝑡) = 𝑤𝑤(𝑡𝑡) ∗ 𝑏𝑏(𝑡𝑡, 𝜏𝜏) ∗ 𝑟𝑟(𝑡𝑡), (9) 

in which 𝜏𝜏 is the travel time and 𝑏𝑏(𝑡𝑡, 𝜏𝜏) is the attenuation function describing the impulse 
response of the attenuation process for any travel time 𝜏𝜏. The nonstationary convolutional 
model treats the source wavelet and the attenuation as separate effects. By estimating the 
attenuation function, we can remove it from the recorded signal; thus, the rest can be treated 
effectively by the stationary convolutional model. Therefore, nonstationary convolution is 
essentially a generalization of stationary convolution. 

In Gabor deconvolution, the attenuation function is estimated in the Gabor domain 
based on the time-frequency decomposition of the recorded signal. For the nonstationary 
convolutional model defined in (9), the Gabor transform is given as 

 �̂�𝑆(𝑓𝑓, 𝜏𝜏) ≈ 𝑊𝑊(𝑓𝑓)𝐵𝐵(𝑓𝑓, 𝜏𝜏)𝑅𝑅(𝑓𝑓, 𝜏𝜏), (10) 

where �̂�𝑆(𝑓𝑓, 𝜏𝜏) is the Gabor transform of recorded signal, 𝑊𝑊(𝑓𝑓) is the Fourier transform of 
source wavelet, 𝐵𝐵(𝑓𝑓, 𝜏𝜏) is the Fourier transform of attenuation function, and 𝑅𝑅(𝑓𝑓, 𝜏𝜏) is the 
Gabor transform of reflectivity. There are various ways to estimate the attenuation function 
in the Gabor domain. In particular, Margrave et al. (2002 and 2011) reported that the 
hyperbolic smoothing approach is robust and able to yield a more consistent estimate of 
the Gabor magnitude spectrum of the propagating wavelet. Hyperbolic smoothing is 
essentially based on the assumption that the nonstationary effects of attenuation are 
minimum phase and their Gabor magnitude spectra can be described by a constant Q as 

 |𝐵𝐵(𝑓𝑓, 𝜏𝜏)| = 𝑒𝑒(−𝜋𝜋|𝑒𝑒|𝜏𝜏
𝑄𝑄 ). (11) 

For seismic waves, Q has been found to be largely frequency independent over a wide 
frequency range (Stacey et al., 1975, and Kjartansson, 1979). In the following sections, we 
will discuss Q in the context of EM wave propagation. 
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Q characterization of EM wave propagation  
In EM applications, an important parameter to quantify the energy loss is the loss 

tangent, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡. In particular, the loss tangent of the dielectric medium is defined as 

 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝜀𝜀"

𝜀𝜀′
, (12) 

where 𝜀𝜀′ and 𝜀𝜀" correspond to the real and the imaginary parts of the complex relative 
permittivity defined in (6), respectively. As early as 1954, Von Hippel (1954) has 
associated the quality factor Q with the loss tangent to quantify the energy loss as EM 
waves propagate in the dielectric. He defined the Q as the inverse of the loss tangent, given 
by 

 𝑄𝑄 = 1
𝜔𝜔𝑡𝑡𝑛𝑛𝑡𝑡

. (13) 

Substituting (12) to (13), we get 

 𝑄𝑄 = 𝜀𝜀′

𝜀𝜀". (14) 

For an electric field of amplitude 𝐸𝐸0, (14) can be rewritten as 

 𝑄𝑄 =
1
2𝜔𝜔𝜀𝜀0𝜀𝜀

′𝐸𝐸02

1
2𝜔𝜔𝜀𝜀0𝜀𝜀

"𝐸𝐸02
. (15) 

Given 𝜔𝜔 = 2𝜋𝜋𝑓𝑓, 𝜀𝜀𝑒𝑒𝑒𝑒𝑒𝑒 = 𝜀𝜀0𝜀𝜀′, and 𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒 = 𝜔𝜔𝜀𝜀0𝜀𝜀", (15) can be rewritten as 

 𝑄𝑄 = 2𝜋𝜋𝑓𝑓
1
2𝜀𝜀𝑒𝑒𝑒𝑒𝑒𝑒𝐸𝐸0

2

1
2𝜔𝜔𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒𝐸𝐸0

2. (16)  

Define 𝑇𝑇 as the duration of one wave cycle; thus, using 𝑇𝑇 to replace the frequency, 𝑓𝑓, we 
have  

 𝑄𝑄 = 2𝜋𝜋
1
2𝜀𝜀𝑒𝑒𝑒𝑒𝑒𝑒𝐸𝐸0

2 𝑇𝑇⁄
1
2𝜔𝜔𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒𝐸𝐸0

2 , (17)  

which is equivalent to 

 𝑄𝑄 = 2𝜋𝜋 𝐴𝐴𝐴𝐴𝑒𝑒𝐴𝐴𝑡𝑡𝐴𝐴𝑒𝑒 𝑒𝑒𝑛𝑛𝑒𝑒𝐴𝐴𝐴𝐴𝑒𝑒 𝑠𝑠𝜔𝜔𝑠𝑠𝐴𝐴𝑒𝑒𝑠𝑠 𝑝𝑝𝑒𝑒𝐴𝐴 ℎ𝑡𝑡𝑎𝑎𝑒𝑒 𝑐𝑐𝑒𝑒𝑐𝑐𝑎𝑎𝑒𝑒
𝐸𝐸𝑛𝑛𝑒𝑒𝐴𝐴𝐴𝐴𝑒𝑒 𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑝𝑝𝑡𝑡𝜔𝜔𝑒𝑒𝑠𝑠 𝑝𝑝𝑒𝑒𝐴𝐴 ℎ𝑡𝑡𝑎𝑎𝑒𝑒 𝑐𝑐𝑒𝑒𝑐𝑐𝑎𝑎𝑒𝑒

 . (18) 

This definition of Q is consistent with the one in (Kjartansson, 1979, Sheriff, 1984, and 
Aki and Richards, 2002) for characterizing the seismic attenuation, given as 

 𝑄𝑄 = 2𝜋𝜋 𝑃𝑃𝑒𝑒𝑡𝑡𝑘𝑘 𝑠𝑠𝜔𝜔𝐴𝐴𝑡𝑡𝑖𝑖𝑛𝑛 𝑒𝑒𝑛𝑛𝑒𝑒𝐴𝐴𝐴𝐴𝑒𝑒 𝑠𝑠𝜔𝜔𝑠𝑠𝐴𝐴𝑒𝑒𝑠𝑠 𝑖𝑖𝑛𝑛 𝐴𝐴𝑠𝑠𝑎𝑎𝑣𝑣𝑣𝑣𝑒𝑒
𝐸𝐸𝑛𝑛𝑒𝑒𝐴𝐴𝐴𝐴𝑒𝑒 𝑎𝑎𝑠𝑠𝑠𝑠𝜔𝜔 𝑖𝑖𝑛𝑛 𝑒𝑒𝑡𝑡𝑐𝑐ℎ 𝑐𝑐𝑒𝑒𝑐𝑐𝑎𝑎𝑒𝑒

 . (19) 

 
Mathematical definition of Q 

Denote 𝑊𝑊 as energy stored per cycle or per half cycle, and −∆𝑊𝑊 as energy lost per 
cycle or per half cycle; thus, (18) and (19) can be simplified as 
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 𝑄𝑄 = −2𝜋𝜋 𝑊𝑊
∆𝑊𝑊

. (20)  

Reorganizing (20), we get 

 2𝜋𝜋
𝑄𝑄

= −∆𝑊𝑊
𝑊𝑊

. (21)  

The above definitions indicate that Q is inversely proportional to the attenuation. The 
smaller the value of Q, the greater the attenuation. However, these definitions are rarely of 
direct use since only in special experiments is it possible to measure the stored energy and 
the dissipated energy in each wave cycle or half wave cycle (Aki and Richards, 2002). 
Moreover, Stacey et al. (1975) pointed out that equation (21) refers to the situation in which 
the dissipated energy ∆𝑊𝑊 is much smaller than the stored energy 𝑊𝑊, i.e., ∆𝑊𝑊 𝑊𝑊 ≪ 1⁄ . 
However, as EM waves propagate in body tissues, the condition of ∆𝑊𝑊 𝑊𝑊 ≪ 1⁄  is not 
always achieved. In order to deal with small Q values, we follow the same approach as in 
(Stacey et al., 1975) and convert (21) to the following differential form as 

 −2𝜋𝜋
𝑄𝑄

= �𝑠𝑠𝑊𝑊
𝑊𝑊
� � 𝑇𝑇

𝑠𝑠𝜔𝜔
� = �𝑇𝑇

𝑊𝑊
� �𝑠𝑠𝑊𝑊

𝑠𝑠𝜔𝜔
�. (22) 

Equation (22) implies that, for a propagating wave, we can follow the wave along and 
watch the energy diminish at a particular wave crest. In practice, this should also account 
for geometric spreading of wave on to a wider wave front. However, here we are dealing 
only with plane waves so that there is no diminution in amplitude or energy density due to 
geometrical spreading and the progressive decrease in energy density is due only to 
dielectric losses presented by (22). 

For comparison with respect to observations, reference to wave amplitude ‘𝐸𝐸’ rather 
than energy ‘𝑊𝑊’ is generally preferred. It is widely accepted that  

 𝑊𝑊 ∝ 𝐸𝐸2,𝑑𝑑𝑊𝑊 ∝ 2𝐸𝐸𝑑𝑑𝐸𝐸, (23) 

so that 

 𝑠𝑠𝑊𝑊
𝑊𝑊

= 2 𝑠𝑠𝐸𝐸
𝐸𝐸

. (24) 

Substituting (24) to (22), we get 

  − 𝜋𝜋
𝑄𝑄

= �𝑇𝑇
𝐸𝐸
� �𝑠𝑠𝐸𝐸

𝑠𝑠𝜔𝜔
�. (25) 

Integration of equation (25) gives 

 𝐸𝐸(𝑡𝑡) = 𝐸𝐸0 exp �−𝜋𝜋𝜔𝜔
𝑄𝑄𝑇𝑇
�. (26) 

Alternatively, given λ as wavelength and 𝑣𝑣 as wave velocity, we have 𝑇𝑇 = 𝜆𝜆/𝑣𝑣 and 𝑥𝑥 =
𝑣𝑣𝑡𝑡. Thus, (26) can be written as 

 𝐸𝐸(𝑥𝑥) = 𝐸𝐸0 exp �−𝜋𝜋
𝑄𝑄𝑄𝑄
𝑥𝑥� = 𝐸𝐸0 exp(−𝑖𝑖𝑥𝑥), (27) 

where 𝑖𝑖 is the attenuation coefficient. Therefore, Q and 𝑖𝑖 can be associated by  
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 𝑄𝑄 = 𝜔𝜔
2𝐴𝐴𝑣𝑣

. (28) 

This relation is same as the one defined in (Aki and Richards, 2002) for seismic waves. 

Comparison of Q for seismic waves and EM waves 
Seismic imaging is based on the contrast in the viscoelastic properties of the earth 

subsurface materials. For most of the seismic applications, the frequency range of interest 
is between 5 Hz and 250 Hz. On the other hand, microwave imaging is based on the contrast 
in the dielectric properties of the materials, i.e., permittivity and conductivity. The 
associated EM wave propagates at a much higher frequency band than the seismic wave 
does. In particular, for the existing microwave breast imaging systems, the frequency of 
interest is normally between 500 MHz and 15 GHz. Because of these differences, the Q 
response to the propagating waves is also different. In particular, we are interested in: (1) 
the attenuation and dispersion of EM wave propagation in lossy dispersive body tissues 
relative to that of seismic wave propagation in geological materials; and (2) whether or not 
the constant Q model is an accurate description of EM wave attenuation over the 
microwave frequencies. 

The definition of Q in (18) and (19) indicates that the value of Q is inversely 
proportional to the dissipated energy – the higher the attenuation, the smaller the value of 
Q. By (Sheriff, 1984), with geological materials, the values of Q are normally in the range 
of [50, 300] over the seismic frequencies. In order to quantify the range of Q for body 
tissues over microwave frequencies, we use the Cole-Cole formula defined in (7) to 
estimate the attenuation coefficient and phase velocity for a variety of human body tissues; 
then calculate the Q values based on (28). In the example shown in Figure 3, tissues 
(Gabriel et al., 1996) are selected based on their levels of water content. Higher water 
content indicates more attenuation. Among the demonstrated tissues, muscle has the 
highest water content, then followed by bone and fat. Our results reveal that, over the 
frequencies of microwave breast imaging, the Q lies somewhere between 1.5 and 8. This 
is more than an order of magnitude lower than the range of values typically given for 
seismic Q, which indicates that wavelet dissipation and dispersion is far more pronounced 
in radar data than in seismic data. Therefore, of importance in this study is the performance 
of Gabor nonstationary deconvolution in the presence of severe attenuation and dispersion. 

On the other hand, the key to Gabor deconvolution is estimating the attenuation 
function, which is done via a hyperbolic smoothing approach. The fundamental assumption 
behind hyperbolic smoothing is that the nonstationary effects of attenuation can be depicted 
by the constant Q. For seismic waves, Q has been found to be largely frequency 
independent over a wide frequency range. For EM waves, the literature on GPR 
applications (Turner and Siggins, 1994, and Irving and Knight, 2003) has revealed that Q 
is not frequency independent over the bandwidth of a GPR wavelet. Consistent 
observations are also obtained from our calculations of Q for a variety of biological tissues 
and immersion media over the frequency range of existing microwave breast imaging 
systems. One of the examples is shown in Figure 3(c). In those conditions, even though Q 
is not constant over the examined frequency range, a useful observation is made that a 
region where Q is approximately linear with frequency can be found in a sub- band of 
frequency. This observation leads to the introduction of a new parameter Q* (Turner and  
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Fig. 3. Attenuation (a), velocity (b), Q (c), and Q* (d) calculated as a function of frequency for 
selected body tissues whose dielectric properties were fitted using the Cole-Cole formula: muscle 
is in red, bone is in green, and fat is in blue. 

Siggins, 1994), defined as 

 𝑄𝑄∗ = 1
2𝐴𝐴

(𝑠𝑠𝑣𝑣
𝑠𝑠𝜔𝜔

)−1, (29) 

in which the phase velocity 𝑣𝑣 is approximated as a constant value over the frequency band 
of radar pulse, and 𝑑𝑑𝑖𝑖/𝑑𝑑𝜔𝜔 is the first order derivative of the attenuation coefficient with 
respect to the frequency. Equation (29) implies that, in the region where Q is approximately 
linear with frequency, a constant Q* can be approximated (shown in Figure 3(d)). Q and 
Q* might be different in the total amplitude; however, these quantities describe the same 
changes in wavelet shape that occur during propagation. 

For hyperbolic smoothing, the importance of the frequency-dependency of Q is that it 
governs the shape of the hyperbolic contours for the attenuation function estimation. In 
Figure 4, using fatty tissue as an example, we compare the hyperbolas constructed with the 
constant Q and the frequency-dependent Q (i.e., the actual Q calculated using Cole-Cole 
model). The results indicate that the hyperbolic paths constructed with the constant Q 
model might result in under-compensation in certain areas on the time-frequency plane. In  
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Fig. 4. Hyperbolic contours constructed in time-frequency domain with the constant Q model (left) 
and the frequency-dependent Q model (right). 

this study, our interest is in the effect of this shape difference on the accuracy of the Gabor 
estimates. On the other hand, this study provides us with evidence in regard to the potential 
of applying Gabor deconvolution to the condition where a constant Q* is approximated. 

DATA GENERATING AND PROCESSING 
In this section, we describe the simulations and the experiments conducted to assess the 

performance of Gabor nonstationary deconvolution in the scenarios where EM waves 
propagate in highly lossy and dispersive dielectric materials. 

Uniform plane wave propagation in lossy dispersive media 
We first consider the simple case of uniform plane wave propagation in lossy and 

dispersive dielectric media. Our intention is to examine the ability of Gabor nonstationary 
deconvolution to compensate for attenuation loss and correct the phase dispersion. With 
uniform plane wave propagation, we can concentrate on the effects of attenuation and 
dispersion due to the dielectric properties, but eliminate the effects from other undesired 
factors (e.g., the attenuation due to geometric spreading in cylindrical or spherical wave 
propagation). 

Given the uniform plane wave solution for an electric field in (1), we substitute the 
complex wave number in (2) to get 

 𝐸𝐸(𝑡𝑡, 𝑥𝑥) = 𝐸𝐸0𝑒𝑒−𝑣𝑣𝑘𝑘𝑒𝑒𝑖𝑖(𝜔𝜔𝜔𝜔−𝛽𝛽𝑘𝑘). (30) 

Equation (30) indicates that, given a propagation location 𝑥𝑥, the wave attenuation at a 
single frequency 𝜔𝜔 can be written as 

 𝑏𝑏(𝑡𝑡, 𝑥𝑥) = 𝑒𝑒−𝑣𝑣𝑘𝑘𝑒𝑒𝑖𝑖(𝜔𝜔𝜔𝜔−𝛽𝛽𝑘𝑘). (31) 

Therefore, the impulse response of the attenuation process over a broad frequency range is 
given by 
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Table 1. Steps to generate synthetic signal 

1) In frequency domain, use the Cole-Cole model to compute the attenuation coefficient 
and the phase velocity for the given medium at defined sampling frequencies. 

2) Define a time sequence 𝑡𝑡 = {𝑡𝑡[𝑖𝑖]} = {𝑖𝑖∆𝑡𝑡}, 𝑖𝑖 = 0, 1, . . ,𝑁𝑁 − 1, which includes N 
temporal sample points with a sample time interval of ∆𝑡𝑡. 

3) Choose an arbitrary reference frequency 𝜔𝜔0. Use its phase velocity, 𝑣𝑣0, to calculate 
the sequence of travel distance 𝑥𝑥 = {𝑥𝑥[𝑖𝑖]} = {𝑖𝑖∆𝑡𝑡𝑣𝑣0}, 𝑖𝑖 = 0, 1, . . ,𝑁𝑁 − 1. 

4) Starting with 𝑥𝑥[0], calculate the spectrum of attenuation function based on (34). 

5) Multiply the spectrum of the source wavelet with the attenuation function to get the 
propagating wavelet at 𝑥𝑥[0]. 

6) Inverse Fourier transform the spectrum of the propagating wavelet to time domain. 

7) Repeat the steps 4 to 6 for each element in 𝑥𝑥 to construct a matrix. The column vector 
of the matrix describes the waveform of the propagating wavelet at individual 
locations. 

8) Generate a pseudo reflectivity series by either a random data generator or arbitrarily 
choosing location and amplitude for reflectivity. 

9) Multiply the matrix constructed in step 7 with the pseudo reflectivity series to get the 
synthesized attenuated signal. 

 

 ∫ 𝑏𝑏(𝑡𝑡, 𝑥𝑥)𝑑𝑑𝜔𝜔 = ∫(𝑒𝑒−𝑣𝑣𝑘𝑘𝑒𝑒−𝑖𝑖𝛽𝛽𝑘𝑘)𝑒𝑒𝑖𝑖𝜔𝜔𝜔𝜔𝑑𝑑𝜔𝜔, (32) 

which gives the Fourier transform of the impulse response as 

 𝐵𝐵(𝜔𝜔, 𝑥𝑥) = 𝑒𝑒−𝑣𝑣𝑘𝑘𝑒𝑒−𝑖𝑖𝛽𝛽𝑘𝑘. (33) 

This definition relates to the attenuation function described in (Margrave et al., 2011). 
Replacing 𝛽𝛽 in (33) with the phase velocity, we have 

 𝐵𝐵(𝜔𝜔, 𝑥𝑥) = 𝑒𝑒−𝑣𝑣𝑘𝑘𝑒𝑒−𝑖𝑖
𝜔𝜔
𝑣𝑣𝑘𝑘. (34) 

Given the above derivations, the steps to generate the synthetic signal are described in 
Table 1. 

In particular, frequency domain modeling practice is followed in order to generate the 
propagating wavelet at each travel distance. Firstly, the propagating wavelet is calculated 
in the frequency domain by multiplying the attenuation function with the source wavelet; 
then, the time domain signal is obtained via inverse Fourier transform. This is noted 
because, given the high loss and dispersion of biological tissues in the Gigahertz frequency 
range, artifacts can be introduced to the time domain representation of the attenuation 
function due to insufficient coverage of the low frequency components in the inverse  
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Fig. 5 Setup up of plane wave guide simulation. From left to right, the layers are numbered from 1 
to 4. Interface 1 is between the layers 1 and 2, Interface 2 is between the layers 2 and 3, and 
Interface 3 is between the layers 3 and 4. 

Fourier transform. By multiplying the spectra of the source wavelet and the attenuation 
function, the high magnitude at the low frequencies of attenuation function can be 
effectively filtered by the source wavelet, so that the artifacts existing in the inverse Fourier 
Transform of the attenuation function can be avoided. 

Parallel plate waveguide simulations 
A waveguide is a structure that confines and conveys EM waves or sounds waves. They 

enable a signal to propagate with minimal loss of energy. A variety of waveguide structures 
have been developed in microwave engineering. In particular, we use the parallel plane 
waveguide to simulate the plane wave propagation in the dielectrics. A series of 
simulations are conducted to explore the ability of Gabor nonstationary deconvolution to 
handle small valued and frequency-dependent Q. Unless specified, all the simulations in 
this paper are performed using SEMCAD X (SPEAG, Zürich, Switzerland), which utilizes 
the finite-difference-time-domain (FDTD) technique.  

Figure 5 illustrates the setup of the parallel plate waveguide simulation. The object has 
a layered structure, including four homogeneous media. The plane wave source is placed 
in Layer 1 to generate wave propagation along the +x direction. In SEMCAD, the plane 
wave source has to be placed in a lossless and nondispersive medium in order to yield 
stabilized plane wave propagation. As well, a nondispersive medium is required on the 
boundary of the simulation space in order to achieve an absorption boundary condition. 
Therefore, in this paper, unless specified, layers 1 and 4 have dielectric properties of 
lossless nondispersive media with the effective permittivity equal to 2.5 and 1, respectively. 
The layers 2 and 3 are lossy and dispersive. Different dielectric properties are assigned to 
these layers in order to create different attenuation and dispersion effects. Figure 6 
describes the dissipative and dispersive behavior of these layers in two different scenarios, 
one with mild loss and dispersion and the other with high loss and dispersion. As revealed 
by Figure 6(c), in either case, a low contrast is observed at the interface between these two 
layers. A point sensor is placed inside of Layer 1 between the plane wave source and the 
first interface. Our intension is to capture the primary reflections from the interfaces 1, 2, 
and 3. Therefore, the dimension of each layer along the x axis is calculated based on the  
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Fig. 6. The frequency dependent behavior of the lossy dispersive layers: (a) the attenuation 
coefficients, (b) the Q, and (c) the reflection coefficients at Interface 2. 

given dielectric properties in order to exclude the multiples in the simulated data. 

Two variations of source wavelets are tested. The first one is the minimum phase 
equivalent of the differentiated Gaussian pulse defined as 

 𝑤𝑤(𝑡𝑡) = (𝑡𝑡 − 𝑡𝑡0)𝑒𝑒−
(𝑡𝑡−𝑡𝑡0)2

𝜏𝜏2 , (34) 

in which 𝑡𝑡0 = 0.25 𝑡𝑡𝑠𝑠 and 𝜏𝜏 = 0.0625 𝑡𝑡𝑠𝑠. The minimum phase wavelet is estimated by 
the use of cepstral method. The second one is a Ricker wavelet obtained by taking the 
differential of 𝑤𝑤(𝑡𝑡). 

Breast phantom reflection measurements 
Reflection measurements are acquired with a breast phantom in order to assess the 

performance of Gabor nonstationary deconvolution in a more realistic application. The data 
are collected using the TSAR breast imaging system (Fear et al., 2013), which 
incorporates an ultra-wideband (UWB) sensor, namely the BAVA-D antenna (Bourqui, 
2008). The BAVA-D sensor is developed for near-field microwave imaging and sensing. 



Gabor decon in dispersive media 

 CREWES Research Report — Volume 27 (2015) 15 

It is designed to operate in a specific background medium, i.e., canola oil, in which the 
BAVA-D sensor  

  

Fig. 7. The structure of the breast phantom (a) and the acquisition geometry (b).  The red dots 
represent the antenna, and the black cylinder represents the tumor. 

is able to produce a narrow beamwidth and generally high fidelity while keeping the return 
loss below -10 dB between 2.4 to 18 GHz. 

Figure 7(a) shows the structure of the breast phantom. It is a dispersive homogeneous 
medium with effective permittivity 𝜀𝜀𝑒𝑒𝑒𝑒𝑒𝑒(𝜔𝜔) = 15 and effective conductivity 𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒(𝜔𝜔) =
0.01 𝑆𝑆/𝑚𝑚, and contains a lossless cylindrical inclusion with 𝜀𝜀𝑒𝑒𝑒𝑒𝑒𝑒(𝜔𝜔) = 2.08. In order to 
effectively couple the microwave signal into the imaged object, the antenna and the 
phantom were placed in a tank filled with the canola oil. The dielectric properties of canola 
oil are 𝜀𝜀𝑒𝑒𝑒𝑒𝑒𝑒(𝜔𝜔) = 2.5 and 𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒(𝜔𝜔) = 0.04 𝑆𝑆/𝑚𝑚. The antenna position relative to the tumor 
inclusion is illustrated in Figure 7(b). During the phantom scan, the antenna behaved as 
both transmitter and receiver, i.e., monostatic radar. The antenna is repositioned over a 
cylindrical surface (in gray). Along the z direction, the antenna scanned through seven 
vertical positions from the nipple to the chest wall. At each vertical location, the antenna 
rotated around the breast phantom and collected data from 20 different locations. In total, 
140 measurements were collected. The current TSAR processing flow (Fear et al., 2013) 
is utilized for data analysis and image reconstruction. The steps are described in Table 2. 

RESULTS AND DISCUSSIONS 
Of importance in this paper is to examine the ability of Gabor nonstationary 

deconvolution to handle the frequency-dependent attenuation and dispersion in EM wave 
propagation over microwave frequencies. The results presented in this section are to 
demonstrate the algorithm effectiveness in this regard. 

Uniform plane wave propagation in lossy dispersive media 
Following the steps described in Table 1, we generate the synthetic data to simulate the 

uniform plane wave propagation in various lossy dispersive body tissues. In the example 
shown in Figure 8, the tissue has the same dielectric properties as the one illustrated in 
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Figure 1. The model structure is described by the top signal in Figure 8. With this model, 
our intention is to test the ability of the Gabor algorithm to 1) separate the superposed 
wavelets and 2) recover the weak response later in time that contain a great amount of  

Table 2. Steps of data processing and image reconstruction 

1) Remove the antenna response from recorded data. Two sets of data are recorded, 
one with and one without the presence of an object. The object reflections are 
calibrated by subtracting the antenna only response from the data recorded with the 
presence of object. 

2) Convert frequency recordings to time signals. Given a pulse specified in time 
domain, a chirp z-transform (Ulriksson, 1986) is used to find its frequency 
representation at the measured frequencies. The frequency measurements are 
weighted with the frequency spectrum of the given pulse. Finally, the inverse chirp 
z-Transform is used to convert the weighted frequency recordings from frequency 
domain to time domain. 

3) Correct time zero to the antenna aperture location. Estimate the antenna aperture 
location in the signal by following the approach described in (Liu et al., 2015). Clip 
off the signal prior to the estimated antenna aperture. 

4) Deconvolve the signals. Apply Gabor nonstationary deconvolution to the signals. 

5) Reconstruct images. Image reconstruction is performed using the confocal imaging 
approach (i.e., Kirchhoff migration) described in (Fear et al., 2013). 

 

attenuation and dispersion. The synthesized attenuated signal is shown at the bottom of 
Figure 8. We process the synthetic signal with Gabor nonstationary deconvolution and 
Wiener stationary deconvolution. There are two variations with the Gabor deconvolution 
depending on the construction of the hyperbolic contours for attenuation function 
estimation. In one case, the hyperbolic contours are constructed using the constant Q 
model; in the other case, they are constructed using the frequency-dependent Q model. 

The results indicate that Gabor deconvolution gives a more accurate estimation of the 
true reflectivity than the stationary deconvolution. First of all, the Gabor estimates are able 
to separate the superposed wavelets and place the associated reflectivity in the proper 
locations. Secondly, the Gabor algorithm is able to detect the small reflectivity at late time 
and compensate for its energy dissipation. Moreover, the relative strengths of individual 
reflectivities are recovered with reasonably good accuracy. On the other hand, similar 
results are observed between the estimates obtained from the constant Q model and the 
frequency-dependent Q model. This indicates that the difference in the shape of hyperbolas 
constructed with different Q models does not significantly affect the overall accuracy of 
the Gabor estimate. With practical applications, it is impossible to construct the hyperbolas 
using frequency-dependent Q model since each medium has its own characteristics of 
frequency-dependency. Given the tested tissue (i.e., fat), the Q* is shown in Figure 3(d), 
which exhibits a good consistency over the frequencies of interest. This result provides us 
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with evidence that Gabor nonstationary deconvolution is feasible for the condition where 
a constant Q* model can be approximated. 

 

Fig. 8. The performance of Gabor nonstationary deconvolution with the synthetic signal to simulate 
the uniform plane wave propagation in a lossy dispersive body tissue. From top to bottom, the 
signals represent the true reflectivity, the output of the Gabor algorithm with the constant Q model, 
the output of the Gabor algorithm with the frequency-dependent Q model, the output of the Wiener 
deconvolution, and the attenuated signal, respectively. 

Plane wave propagation in layered media 
With the parallel plate wave guide simulations, Figure 9 shows the results obtained from 

the media that exhibit low and high levels of attenuation and dispersion. In each case, the 
middle two layers are assigned with the dielectric properties illustrated in Figure 6. The 
attenuated signals are shown in Figure 9(a), and the Gabor recovery of the reflectivity series 
are shown in Figure 9(b). In each figure, the signals with recording time less than 8 ns are 
obtained from the media with low loss and low dispersion, and the signals with recording 
time more than 8 ns are obtained from the media with high loss and high dispersion. The 
blue ‘*’ indicates the expected locations of interfaces on signals. The obtained results 
reveal great promise of applying Gabor nonstationary deconvolution in the condition that 
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includes a large amount of attenuation and dispersion. In all cases, three reflections are 
supposed to be observed in the signal. However, before Gabor deconvolution, only the first 
reflection is visible in the attenuated signal, while the second and the third reflections have  

  

Fig. 9. Applying the Gabor deconvolution to the plane wave simulations. In each figure, the signals 
1 and 2 are generated with low loss and low dispersion media using minimum phase source pulse 
and Ricker source pulse, respectively; the signals 3 and 4 are generated with high loss and high 
dispersion media using minimum phase source pulse and Ricker source pulse, respectively. 

been greatly reduced to a level that is not noticeable. On the other hand, after Gabor 
deconvolution, the energy attenuation in the signal is sufficiently compensated, so that the 
responses at the second and the third interfaces can be clearly observed. These results 
indicate that the Gabor algorithm is able to detect the reflectivity from largely attenuated 
and distorted signals and place the reflectivity at the right location. 

However, the under / over compensation is also observed in the Gabor estimates. We 
calculate the reflectivity at the each interface based on the given dielectric properties and 
the model geometrical structure and compare them with the Gabor estimates. There are 
differences observed between the Gabor estimates and the analytical calculations. Based 
on our observations, the under / over compensation often relates to (1) the size of the 
Gaussian partition window in terms of the time interval from the centre point to the 1/𝑒𝑒 
amplitude point; and (2) the length of the boxcar filter in time and frequency dimensions 
for smoothing the Gabor amplitude spectrum. With a small-sized Gaussian window, the 
second reflection might be overly compensated and noise might be introduced at a later 
time, which in turn will overwhelm the actual response of the third interface. Given the 
tested datasets, the size of Gaussian partition window is chosen as at least one and half 
times the length of the source pulse. On the other hand, increasing the length of the boxcar 
filter in the time dimension might cause under compensation of the second reflection, 
without significantly affecting the recovery of the last reflection. Increasing the length of 
the boxcar filter in frequency dimension might cause over compensation of the third 
reflection in the signal, without significantly affecting the recovery of the second reflection. 
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Given the tested dataset, the optimal definitions for the time smoother and the frequency 
smoother are 1 ns and 1 GHz, respectively.  

Despite these estimation errors, the Gabor recovered reflectivity series still provides  

much more information with respect to the object geometrical structure and physical 
properties than the unprocessed signal does. On the other hand, none of these lossy 
dispersive media has a constant Q over the simulation frequency band (1 – 15 GHz); 
however, they all have a relative constant Q*. In this regard, these results provide us with 
evidence that Gabor nonstationary deconvolution can work with the constant Q* model. 

Gabor nonstationary deconvolution as preconditioning for image 
With the breast phantom shown in Figure 7, the reflection measurements are collected 

to reconstruct the 3D breast image. Following the steps provided in Table 2, we apply  
Gabor nonstationary deconvolution and Wiener stationary deconvolution to the signals 
prior to image formation. We compared the reconstructed images with and without 
deconvolution as preconditioning. The results are shown in Figure 10. 

All three images can detect the existence of the object of interest (i.e., tumor) at the 
accurate location. The image with Gabor deconvolution as preconditioning shows the best 
localization effect (i.e., the sharpness of the imaged object), while the image reconstructed 
with the data without deconvolution shows the least localization effect, and the image with 
the stationary deconvolution is in between. A slightly higher background noise may be 
observed in the image with Gabor deconvolution. This is because the Gabor algorithm is 
not able to differentiate the noise from the data. When compensating for the wave 
attenuation, the Gabor algorithm may also boost up the noise mixed together with the data. 
This noise might be reduced by applying a low pass filter to the post Gabor signal; however, 
there is always a tradeoff between improving the image resolution and decreasing the noise 
level.  

Overall, modest improvement in the image resolution is observed in the result obtained 
with using Gabor nonstationary deconvolution as preconditioning for an image. Given this 
set of test data, several factors can limit the impact of Gabor nonstationary deconvolution 
on the final results. First, with this breast phantom, the tumor is embedded in the medium 
that has low loss and low dispersion. As the wave propagates in this medium, the distortion 
in the propagating wavelet is not significant. In other words, the propagating wavelet is 
similar to the source wavelet. Therefore, a stationary wave propagation can be 
approximated. This explains why stationary deconvolution also works in this case. 
Secondly, using the current flow of data processing and image reconstruction, after 
removing the skin response, only the tumor response is left in the signal. The basic idea of 
Gabor deconvolution is to use the strong response recorded at the early travel time as a 
reference to boost up the weak response recorded at the late travel time based on the Q 
characterization of wave attenuation. If there is only one response in the signal, no 
reference response is available to compensate for the attenuation. Moreover, the signal with 
only one response can be sufficiently handled by stationary deconvolution. In this regard, 
we have tested a simulation model by applying Gabor nonstationary deconvolution before 
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removing the strong skin response so that it can be used as a reference to compensate for 
the tumor response. The results will be presented in the future publications. 

CONCLUSION 
In this report, we extended the application of Gabor nonstationary deconvolution from 

seismic imaging to microwave imaging. The latter involves the microwave frequency EM 

 

 

 

Fig. 10. Time focusing at the location of the maximum response in the image. From left to right, the 
images are reconstructed using Gabor nonstationary deconvolution as preconditioning, using 
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stationary deconvolution as preconditioning, and without deconvolution. From top to bottom, the 
images are sliced through the xy plane, the yz plane, and the xz plane, respectively. 

wave propagation in biological media that have high attenuation and dispersion. We 
provided evidence that the same definition of Q as in the seismic can also be derived for 
EM waves. We calculated the Q for a variety of biological tissues over the microwave 
frequencies. The results indicate that the Q is in the range of [1.5, 8], more than one order 
of magnitude smaller than the Q observed in seismic. However, the results also indicate 
that the Q varies with frequency and a constant Q approximation might not be valid in this 
case. Fortunately, a new parameter Q* can be derived from Q, which shows more 
consistency over the microwave frequencies than the Q does. Even though Q and Q* might 
be different in the total magnitude, they describe the wave attenuation and dispersion in 
the same manner.  

We tested Gabor deconvolution with analytical data, simulated data, and phantom 
measurements collected with EM propagation in highly attenuating and dispersive media. 
The results imply that Gabor deconvolution is able to deal with a Q that is much smaller 
than the seismic Q. With the analytic data, we compared the Gabor recovery of the object 
reflectivity obtained from the constant Q model and the frequency-dependent Q model. 
The results indicate that the difference in the hyperbolic contours constructed with different 
Q models does not significantly affect the Gabor estimate. With the simulation of plane 
wave propagation through layered media, the Gabor deconvolution is able to boost up the 
reflectivity from a weak response at its correct location even though the relative amplitude 
is slightly off from the analytical calculation given the dielectric properties. With the 
phantom measurements, the image with Gabor deconvolution as preconditioning shows 
better target localization than the images obtained from stationary deconvolution and 
unprocessed data. However, since the tested phantom includes a single target and is made 
from a material of low loss and low dispersion, the difference in the images with and 
without Gabor deconvolution as preconditioning is not significantly large. Moreover, since 
Gabor deconvolution is not designed to distinguish between noise and data, the algorithm 
may unintentionally boost up the noise when compensating for attenuation. Thus, noise 
attenuation should be performed prior to the Gabor deconvolution.  

Several priorities of our future work are defining (1) the proper phantom models to be 
able to best test the Gabor algorithm and (2) the necessary steps to integrate the Gabor 
algorithm into the current workflow of microwave imaging.  
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