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ABSTRACT

Biot’s theory of poroelasticity predicts the presence of a slow P-wave in a fluid saturated
medium due to the relative movement of the pore fluid with respect to the rock matrix. The
slow P-wave, is highly diffusive in seismic frequencies and thus will not be observed in
seismic data. However, in the case of zero fluid viscosity, this wave is a non-diffusive mode
that travels through the medium. In this report both diffusive and non-diffusive modes
are modeled using a previously developed finite-difference algorithm. It seems that in a
uniform homogenous medium the amount of amplitude loss due to wave conversion in the
diffusive case is very close to the one in the non-diffusive case. This shows that although
the diffusive P-wave is not a traveling mode, it exists in the medium but dissipates quickly.
The slow P-wave is particularly important where gas exists in the form of separate patches
in the pore fluid. In those cases the wave conversions to the slow P-wave may dissipate
a considerable amount of energy. Modeling wave propagation in such media is useful in
monitoring studies for CO2 sequestration.

INTRODUCTION

The study of the seismic wave behaviour in fluid saturated media is important in many
geophysical applications. The reservoir rocks are known to be porous medium saturated
with viscous fluids. As the seismic methods are extensively used to image the structure
of the subsurface, understanding the wave phenomena has been always of interest for geo-
physicists.

Elastic wave propagation in a medium is governed by partial differential equations
which could be numerically solved to simulate the wave traveling in that medium. Seis-
mic wave modeling is a useful way of predicting the seismic data for a known geologic
model, and is required for monitoring and planning purposes. For simplicity and also sav-
ing costs, the earth is usually assumed to be acoustic or elastic media. However, in reality,
the reservoir rock are more complicated than a single elastic or acoustic phase. Maurice
Biot first established theory of poroelasticity to describe wave propagating in a fluid sat-
urated medium (Biot, 1962). Based on his theory, a poroelastic medium is composed of
two phases. One phase is the porous elastic solid frame, and the other is the compress-
ible viscous pore fluid. It is known that two compressional waves are generated in such
medium. A fast P-wave due to the acceleration of the solid rock frame, and a slow P-wave
due to the relative motion of the fluid with respect to the solid frame. In low frequencies
the effect of fluid viscosity becomes stronger than the internal effects leading to diffusion
of the slow mode. Therefore, the slow P-wave would not be observed as a traveling wave
in seismic frequency. However, when the mobility factor b (the ratio of the fluid viscosity
to the permeability) tends to zero, the slow mode starts to behave like a traveling wave. In
either cases, the wave conversion to the slow mode causes energy loss in the medium that
could be of interest in many geophysical applications.
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Finite-difference method is a popular approach among all numerical methods of seismic
modeling. There are several papers in the literature that have used finite-difference method
for modeling wave propagation in the poroelastic media (Zhu and McMechan, 1991; Car-
cione and Quiroga-Goode, 1995; Zhang, 1999). For example, Zhu and McMechan (1991)
used a standard finite-difference algorithm based on the displacements, and Dai et al. (1995)
employed a MacCormack finite-difference scheme. Others implemented staggered-grid
velocity-stress scheme for solving the wave equations (Zeng and Liu, 2001; Xiuming et al.,
2003; Aldridge et al., 2004; Sheen et al., 2006). Furthermore, Zhang (1999) developed a
quadrangle-grid velocity-stress finite-difference which was based on none-orthogonal grid.
His scheme aimed to better handle the curved interfaces and surface topography.

A staggered-grid velocity-stress finite-difference algorithm similar to the one used by
Sheen et al. (2006) was developed in an earlier work by the authors (Moradi et al., 2014).
In this report, we add the effect of fluid viscosity to our developed algorithm to investigate
the wave behaviour of the slow P-wave in the presence of the viscosity. It is expected that
due to diffusion, the slow mode would not be detected as a traveling mode. However, the
effect of diffusion should appear as a decrease in the amplitude of the fast P-wave due to
the wave mode conversion.

THEORY

Maurice Biot was the first to establish the theory of poroelasticity (Biot, 1962). He
made the following assumptions to derive the equations of motion in the porous media: (1)
the rock frame is assumed to be elastic and isotropic; (2) the pores are connected so that the
fluid could travel through the pore space; (3) the seismic wavelength is much larger than
the average pore size; and (4) the deformations are small enough that the mechanical pro-
cesses become linear Biot (1962); Dai et al. (1995). The low frequency partial differential
equations for isotropic poroelastic media can be written as first order equations in time:
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Where all symbols are defined in Table 1. In the 2D case, Equations 1 to 4 make a set
of 8 coupled equations that could be used for numerical modelling (Equations 5 to 12 in
Appendix). As previously mentioned, in an earlier work we developed a finite difference
program in MATLAB to simulate the wave propagation in poroelastic media. The algo-
rithm was based on a velocity-stress staggered grid method in the time domain. The PML
method was also employed in order to eliminate the artifacts caused by the computational
boundaries. For this purpose the grid was divided into two regions: the internal region,
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where Equations 5 to 12 were solved; and the PML region, where some damping factors
were added to the equations to dissipate outgoing waves efficiently. However in the previ-
ous work the algorithm was developed for the no-loss case, in which the viscosity of the
fluid was assumed to be zero. The fluid viscosity has a direct effect on the mobility constant
b which is the ratio of viscosity to permeability. In no-loss poroelastic medium the mobil-
ity factor b is zero and therefore the last terms in Equations 1 to 2 vanish. These terms
describe the effect of fluid in the poroelastic medium and the behaviour of the slow mode.
In seismic frequencies, the fluid effects become stronger than the internal effects, therefore
the slow P-wave is diffusive and dies quickly in the medium. On the contrary, in the case
where b = 0, the internal effects dominate over the fluid effect and the slow P-wave travels
through the medium without diffusion. Carcione and Quiroga-Goode (1995) were the first
who modeled the slow P-wave in low frequency range. They also showed that this mode
makes the finite difference algorithm unstable numerically. However in our examples in
this report the problem is stable and we do not focus on the stability issues.

NUMERICAL EXAMPLES AND DISCUSSION

The numerical model used here is based on the well log data from the Quest Carbon
Capture and storage project. The purpose of the Quest project is to store CO2 in the Basal
Cambrian Sandstone, which is a saline aquifer within the Western Canadian Sedimentary
Basin (WCSB). The log data and the numerical model generated based on this data were
explained in detail in the previous work by the authors (Moradi et al., 2014; Moradi and
Lawton, 2012). In this report we use a uniform homogenous model with the properties of
the target injection formation, BCS, after injecting CO2. The properties of this model are
listed in Table 2. The pore fluid is assumed to be a mixture of 40% CO2 and 60% brine, and
some of these properties were calculated using Gassmann’s fluid substitution modeling.

As previously mentioned a finite-difference staggered grid algorithm was developed in
MATLAB to model the wave propagation in poroelastic medium based on the Biot’s theory.
However in that study the effect of the fluid viscosity was ignored and the wave propagation
in a no-loss poroelastic medium was modeled. In this report we include the fluid viscosity
in the algorithm and show the changes caused by this term in the wave behaviour.

The unknowns in the partial differential equations are the particle velocities of the solid
and the fluid, the stresses and also the fluid pressure. Particle velocities of the solid and
the fluid were calculated for the model in Table 2. Three different values of the mobility
b were used in the calculations. These values were chosen so that the algorithm shows the
effect of the mobility constant on the slow wave mode. One of the values of b was the
estimated value for the target formation (BCS) based on the pore fluid viscosity and the
permeability of the BCS. The BCS is known to have a permeability of 1 mD to > 1 D.
The viscosity of the fluid was also estimated based on the viscosity of the CO2 and brine
in the temperature and pressure at the depth of BCS (Moradi and Lawton, 2012). The
average viscosity for the mixture of brine and CO2 is approximately 10−5 kg/ms. We also
assumed that the permeability of the porus rock is 1D. Therefore, the estimated value of b
for our model is 107Pa sm−2. In the cases of higher viscosity or lower permeability, the
value of b increases. The issue with larger values of mobility is the stability of the finite
difference algorithm. We have noticed that the larger the value of b, the more unstable the
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Table 1. List of symbols and their definitions

symbol discerption formula

eij solid strain 1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
τij solid stress tensor
~u particle displacement of the solid
~U particle displacement of the fluid
εkk ∇.(~u− ~U)
µ shear modulus of the rock
λc Lame parameter of the saturated rock

α Biot’s coefficient
(
1− KDry

KSolid

)
KSolid bulk modulus of the solid
KDry bulk modulus of the dry rock frame
Kf bulk modulus of the fluid
M coupling modulus
P fluid pressure
Vi particle velocity of the solid ∂ui/∂t
Wi particle velocity of the fluid relative to the solid ∂ (Ui − ui) /∂t
ρf density of the fluid
ρs density of the solid
ρ density of the saturated rock φρf+(1−φ)ρs
φ porosity
m the fluid effective density Tρf/φ
T tortuosity
b fluid mobility η/κ
κ permeability
η fluid viscosity

A
(

m
mρ−ρ2f

)
B Coefficients defined in this paper for simplicity

(
−ρf

mρ−ρ2f

)
C

(
−ρ

mρ−ρ2f

)
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algorithm becomes. Hence, the permeability of 1D was assumed in this study to avoid
unstable results.
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FIG. 1. Vertical particle velocities of the solid (top) and the fluid (bottom) for three different values
of mobility b. By increasing the value of b, the slow P-wave start to become diffusive in the medium.

Figure 1 shows sample snapshots of the vertical particle velocities of the fluid (Wx)
and the solid (Vx) at the time of 0.14 seconds. Two images on the left (top and bottom)
correspond to the model with the mobility of zero. As expected, in the seismic frequency,
for b = 0 the slow P-wave is a traveling wave while for none-zero values of b, it is diffusive.
For the case with b = 105Pa sm−2 which are the two images in the middle (top and
bottom), the slow P-wave seems weaker than the case with b = 0. Therefore, the larger
b value, the more diffusive the slow mode becomes. In the case of b = 107Pa sm−2 the
slow P-wave does not exist in this time because it had been attenuated due to the fluid
effect. Another point that worth mentioning is that in the fluid snapshots (three images on
the bottom), the slow P-wave is larger in amplitude compared to the fast P-wave, which is
probably because this wave is originated from the fluid movement.

In order to see the dissipation of the slow mode more clearly, some traces from the solid
snapshots in Figure 1 are shown in Figure 2. In fact these traces are recorded by receivers in
different distances from the source to represent a wave traveling in 1D case. These traces
are calculated for two cases of b = 0 and b = 105Pa sm−2. Since 105Pa sm−2 is not
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considered as a large value for mobility, the slow P-wave is still detected. However, due
to diffusion, the slow P-wave does not last long. By compering these two traces we see
that when b = 0, the slow P-wave does not dissipate when traveling through medium. In
contrast, in the case of nonzero b, the slow P-wave dies quickly after a relatively short time.
This figure not only shows the diffusion of the slow P-wave in seismic frequencies, but
also the fact that the Biot’s theory ignores the loss mechanism caused by the solid frame.
It is clear that in absence of fluid viscosity (b = 0) neither the fast nor the slow P-waves
go through any attenuation. This is because the Biot’s theory assumes the solid rock frame
is purely elastic. However, this theory could be extended to the poro-viscoelastic case
by adding memory variables to the partial differential equations (Carcione, 1998). The
attenuation in P-wave could be then defined based on the White’s model (White, 1975)
to take the loss mechanism caused by the matrix-fluid interactions into account. This is
accomplished by changing the coupling modulus M to relaxation function with dependency
on time.
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FIG. 2. Traces from the vertical particle velocities of the solid in poroelastic media for two values
of b = 0 and b = 105Pa sm−2. The slow P-wave in the case of non-zero mobility dissipates quickly
while in the case of zero mobility does not change through time.

In Figure 3 we compare the trace generated by an elastic algorithm with the ones gen-
erated in the poroelastic algorithm with two values of b = 0 and b = 105Pa sm−2. There
is a considerable difference between the fast P-waves in the elastic and poroelastic cases.
This is due to the wave conversion to the slow mode in the poroelastic medium. However,
in the poroelastic traces, there is not a noticeable difference between the case with zero
mobility and the one with nonzero mobility. This means that although the slow P-wave
is not noticed as a traveling wave in seismic frequency, it does exist and leads to loss of
energy in the poroelastic medium. It should be noted that these results are from a uniform
homogenous model. In a layered media or a medium with patches of gas or fluid, more
energy would dissipate through conversions to slow mode. As Shapiro and Müller (1999)
showed, the amount of dissipated energy in these cases could be significant even in seismic
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FIG. 3. Traces from an elastic algorithm are compared with the ones from poroelastic case with
zero and non-zero mobility values. Due to conversion to the slow P-wave, the fast P-wave in the
poroelastic case is smaller in magnitude compared to the elastic one.

frequency range.

CONCLUSIONS

The fluid mobility constant was added to a previously developed finite-difference mod-
eling program to simulate the wave propagation in poroelastic media. In seismic frequen-
cies the slow P-wave is a diffusive wave and is not observed as a traveling mode unless
the mobility parameter is zero. In this work we showed that although the diffusive slow
wave is not a traveling mode wave, it causes energy loss that is due to conversion of the fast
P-wave to slow P-wave. It is known that in finely layered poroelastic media, or in a rock
saturated with fluid and patches of gas, the mode conversions could cause a significant loss
in the seismic data. This algorithm could be used for modeling sequestration of CO2, and
any other cases in which the fluid saturation changes through time.

Table 2. Physical properties of the model used in this report

Property The model
ρs 2650 kg/m3

ρf 937 kg/m3

Ksolid 38.00× 109 Pa
Kf 0.25× 109 Pa
VP 3800m/s
VS 2410m/s
φ 16%

zero
b 105Pa sm−2

107Pa sm−2
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Appendix: Biot’s equations for the 2D case

The Equations 1 to 4, in the 2D case become:
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Note that τzx = τxz.
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