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ABSTRACT

Full-waveform inversion (FWI) is a powerful and promising technique for estimating
the subsurface model parameters by minimizing a l-2 norm misfit function which measures
the difference between the modelled data and observed data. While FWI still suffers from
a lot of difficulties, one of which being the lack of source information. The estimation
of source wavelet is important for successful implementation of full-waveform inversion
(FWI). Many FWI algorithms estimate the source signature iteratively in the inversion pro-
cess. In this paper, a source-independent method is adopted with a data calibration process.
Furthermore, the gradient-based methods for FWI suffer from slow local convergence rate.
A Hessian-free (HF) Gauss-Newton method is implemented in this research by solving
the Newton system with a conjugate-gradient (CG) method. The Hessian-free optimiza-
tion method only needs Hessian-vector products instead of constructing the Hessian matrix
explicitly. In this paper, the Hessian operator in HF Gauss-Newton method is modified by
combining with the source-independent strategy. We demonstrate with numerical examples
that the proposed strategies can improve the convergence rate and reduce the computational
burden.

INTRODUCTION

In recent years, full-waveform inversion (FWI) is becoming increasing popular in es-
timating the subsurface parameters by iteratively minimizing a l-2 norm misfit function,
which measures the difference between the modelled data and observed data (Virieux and
Operto, 2009). FWI is exposed to many difficulties, one of which being the lack of in-
formation of the source wavelet. Small perturbations of the source wavelet may result in
large disturbances in inverted models (Sun et al., 2014). Hence, a robust and efficient FWI
algorithm needs the information of source wavelet, which is generally unknown in seismic
exploration (Virieux and Operto, 2009; Fichtner, 2010).

In traditional seismic data processing, the source wavelet is estimated from seismic data
trace. Many FWI algorithms iteratively update the source wavelet estimation in the inver-
sion process (Canadas and Kolb, 1986; Zhou and Greenhalgh, 2003; Wang et al., 2009; Sun
et al., 2014). Zhou and Greenhalgh (2003) consider the source weight as unknown param-
eter and update it iteratively with unknown velocity. Sun et al. (2014) developed a shallow-
response based variable projection type of strategy to estimate the source wavelet alongside
the model parameters during FWI. Another class of approach for handling the source ef-
fects is to make the inverse problem independent of source wavelet (Lee and Kim, 2003;
Li et al., 2013; Kwon et al., 2015). Lee and Kim (2003) developed a source-independent
FWI strategy by normalizing the wavefield in the frequency domain with respect to the
frequency response of a reference trace, in which the source spectrum is eliminated. In this
paper, a variable projection method is used for data calibration in frequency-domain FWI
(Golub and Pereyra, 1973; Rickett, 2013; Li et al., 2013).

CREWES Research Report — Volume 27 (2015) 1



Pan et. al

The traditional optimization methods for FWI in exploration geophysics are gradient-
based methods (e.g., non-linear conjugate-gradient (NCG) method). In NCG method, the
search direction is just the linear combination of the current gradient and previous search
direction (Fletcher and Reeves, 1964; Nocedal and Wright, 2006; Hu et al., 2011). Within
the adjoint-state method, the gradient of the misfit function can be calculated efficiently by
applying a zero-lag cross-correlation between the forward modelled wavefield and back-
propagated data residual wavefield (Pratt et al., 1998; Pan et al., 2014c,a, 2015, 2014b).
Thus, the gradient-based methods are computationally attractive for large-scale inverse
problem but also suffer from slow convergence rate.

The truncated-Newton method employs second-order adjoint-state formulas to com-
pute the Hessian-vector products instead of calculating the Hessian explicitly (Métivier
et al., 2012, 2013). The search direction is obtained by solving the Newton linear system
approximately with a conjugate gradient (CG) algorithm. Quasi-Newton methods do not
construct the Hessian explicitly, but update the inverse Hessian approximations by stor-
ing the information from previous iterations. The BFGS method, due to Broyden (1970),
Fletcher (1970), Goldfarb (1970) and Shanno (1970), is a popular quasi-Newton method to
iteratively approximate the inverse Hessian. The limited-memory BFGS (l-BFGS) method
stores the changes of the gradient and model from a limited number of previous iterations
and uses the stored information to implicitly form an inverse of the approximated Hessian
(Nocedal, 1980; Byrd et al., 1995; Nocedal and Wright, 2006). In this research, the l-
BFGS optimization strategy is implemented with a "two-loop recursion" scheme (Nocedal
and Wright, 2006; Anagaw, 2014; Wu et al., 2015).

In this paper, the NCG, l-BFGS and HF Gauss-Newton methods are implemented with
the source-independent strategy. In particular, the Gauss-Newton Hessian is corrected with
the variable projection strategy, which improves the convergence rate and reduces the com-
putation burden for the Hessian-free Gauss-Newton method.

THEORY AND METHODS

Forward modelling problem in frequency domain

In frequency domain, the forward modelling problem in acoustic medium is governed
by the following equation (Helmholtz equation) (Marfurt, 1984):

∇2u(x, xs, ω) +m (x)ω2u(x, xs, ω) = fs(ω)δ (x− xs) , (1)

where ω is the angular frequency, x = (x, y, z) denotes the subsurface location with Carte-
sian coordinates, ∇2 is the Laplacian operator, m (x) is the model parameter (square of
slowness), u(x, xs, ω) denotes the pressure wavefield at position x, δ (x− xs) is the Dirac
delta function, and fs(ω) means the source signature at position xs. The solution of equa-
tion (1) can be written as the convolution of source fs(ω) with Green’s functionG (x, xs, ω):

u (x, xs, ω) = fs (ω)G (x, xs, ω) , (2)

where the Green’s function is defined as the solution of wave equation due to an impulse
source. A 9-point finite difference scheme is employed to discretize the model (Jo et al.,
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1996) and a Engquist-Majda boundary condition (first-order) is applied on all of the bound-
aries of the model (Engquist and Majda, 1977). Equation (1) can be rewritten in a matrix
form after discretization:

A (m, ω) u(x, xs, ω) = fs(ω)δ (x− xs) , (3)

where m is the square of slowness vector, u(x, xs, ω) and fs(ω) are the discrete pressure
wavefield and source vectors. A (m, ω) is the discretized impedance matrix, which is typ-
ically sparse and symmetric. In this research, the linear equation (equation (3)) is solved
with a direct solver based on multi-frontal Lower Upper (LU) decomposition (Davis and
Duff, 1997), which is efficient for a multi-source problem with forward and backward sub-
stitutions (Hu et al., 2011).

Non-linear least-squares inversion

FWI allows to reconstruct high-resolution velocity models of the subsurface through
the extraction of the full information content of the seismic data. The inversion process
is implemented by minimizing a l-2 norm misfit function, which measures the difference
between the modelled data and observed data:

Φ (m) =
1

2

∑
xs

∑
xg

∑
ω

‖dobs (xs, xg, ω)− dsyn (m, xs, xg, ω) ‖2, (4)

where ω is the angular frequency, m indicates the model parameter vector, xs and xg are the
source and receiver positions, dobs and dsyn = Pu indicate the observed data and synthetic
data respectively, P is the sampling operator, and ‖ · ‖ means the l-2 norm. Here, we
consider to minimize the objective function associated with the source weight:

Φ̃ (m, s) =
1

2

∑
xs

∑
xg

∑
ω

‖dobs (xs, xg, ω)− s (xs, ω) dsyn (m, xs, xg, ω) ‖2, (5)

where s (xs, ω) indicates the source weight vector.

The variable projection method is implemented by minimizing the objective function
(equation (5)) with respect to both m and s. We suppose that dobs and dsyn are known, the
source weight s can be obtained through a least-square approach (Li et al., 2013):

s (xs, ω) =

∑
xg dobs (xs, xg, ω) d∗

syn (xs, xg, ω)∑
xg dsyn (xs, xg, ω) d∗

syn (xs, xg, ω)
, (6)

where the symbol "*" means complex conjugate transpose. The Jacobian matrix is given
as:

J =
∂dsyn

∂m
= PA (m, ω)−1 Am (m, ω) u (7)

where Am (m, ω) = ∂A (m, ω) /∂m. The gradient for minimizing objective function in
equation (4) is obtained as:

g =
∂Φ (m)

∂m
=
∑

xs

∑
xg

∑
ω

u∗ (xs, xg, ω) A∗
m (m, ω) A∗ (m, ω)−1P∗∆d (xs, xg, ω) , (8)
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The approximate Hessian used in Gauss-Newton method is expressible as:

Ha = J∗J = u∗A∗
m (m, ω) A∗ (m, ω)−1P∗PA (m, ω)−1 Am (m, ω) u. (9)

When considering the objective function illustrated in equation (5), the Jacobian matrix
becomes (Li et al., 2013):

J̃ (xs, xg, ω) =
∂s (xs, ω) dsyn (xs, xg, ω)

∂m

= s (xs, ω)
∂dsyn (xs, xg, ω)

∂m
+

∂s
∂m

dsyn (xs, xg, ω)

= s (xs, ω) J (xs, xg, ω) +
∂

∂m

(∑
x′g

dobs
(
xs, x′g, ω

)
d∗syn

(
xs, x′g, ω

)∑
x′g

dsyn
(
xs, x′g, ω

)
d∗syn

(
xs, x′g, ω

))dsyn (xs, xg, ω)

= s (xs, ω) J (xs, xg, ω) +
dsyn (xs, xg, ω)∑

x′g
|dsyn

(
xs, x′g, ω

)
|2

×

∑
x′g

dobs
(
xs, x′g, ω

) ∂d∗syn

(
xs, x′g, ω

)
∂m

− 2s (xs, ω)
∑
x′g

dsyn
(
xs, x′g, ω

)
J
(
xs, x′g, ω

) .

(10)

The corresponding gradient and Gauss-Newton Hessian are expressed as:

g̃ =
∂Φ̃ (m, s)
∂m

=
∑

xs

∑
xg

∑
ω

J̃
∗

(xs, xg, ω) ∆d (xs, xg, ω) . (11)

H̃a = J̃
∗
J̃. (12)

Source-independent Hessian-free Gauss-Newton

Instead of constructing Hessian approximations or approximating inverse Hessian, the Hessian-free (HF)
optimization method (truncated-Newton or inexact-Newton method), obtains the search direction by solving
the Newton linear system approximately using a conjugate-gradient (CG) method with matrix-free fashion
(Saad, 2003; Métivier et al., 2014). The CG method is an optimal algorithm for solving a symmetric positive
definite system and it only requires computing the Hessian-vector products Hυ instead of forming the Hessian
matrix explicitly. The Hessian-vector products can be calculated via finite-difference method (Nocedal and
Wright, 2006) or the second-order adjoint-state method (Métivier et al., 2014). In this paper, the second-
order adjoint method is employed for Hessian-vector products calculation. In the context of HF optimization
method, the Hessian H is always replaced with Gauss-Newton Hessian H̃, which is always symmetric and
positive definite:

Hk
a∆mk = −gk, (13)

where k indicates the iteration index. Thus, the HF Gauss-Newton FWI can be implemented in a double-
iterative scheme: the outer loop is to iteratively update the model parameters for the non-linear optimization
problem, and the inner loop is to solve the linear system (equation(13)) iteratively with the CG algorithm.
The inner iteration is typically stopped or "truncated" before the solution of the Newton equation is obtained.
A Hessian-free optimization method will be more competitive if further enhancements are used, for example,
an effective preconditioner for the linear system and appropriate stopping criteria for the inner iterative algo-
rithm. With these enhancements, Hessian-free optimization method is a powerful tool for large-scale inverse
problem. In this paper, a l-BFGS preconditioning scheme is used for the Hessian-free Gauss-Newton FWI.
The source-independent HF Gauss-Newton FWI is implemented by replacing Hk

a with H̃
k

a and replacing gk

with g̃k:
H̃

k

a∆mk = −g̃k. (14)
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NUMERICAL EXPERIMENTS

In this section, we first apply the source-independent Hessian-free Gauss-Newton (SI-HF-GN) FWI on
a Gaussian-anomaly model in comparison with non-linear conjugate gradient (NCG), l-BFGS and HF-GN
methods. The inversion results verify the effectiveness of the variable projection strategy in improving the
convergence rate and reducing the computation cost.

The Gaussian-anomaly model

In this numerical example, the NCG, l-BFGS and HF Gauss-Newton methods are applied on a Gaussian-
anomaly model. We examine the quadratic convergence rate of the HF Gauss-Newton FWI in reconstructing
the velocity model compared to NCG and l-BFGS methods. We also demonstrate that with the corrected
Gauss-Newton Hessian (equation (14)), the convergence rate of the Hessian-free Gauss-Newton method is
improved and the computation burden is reduced.

The Gaussian-anomaly model consists of 50×100 grid cells with a grid interval of 10 m in both horizontal
and vertical directions. A total of 49 sources are deployed from 20 m to 980 m with a source interval of 20
m and a depth of 20 m. A total of 100 receivers are distributed from 10 m to 1000 m with a receiver interval
of 10 m and a depth of 20 m. A Ricker wavelet with a 30 Hz dominant frequency is used as the source
function. Figure 1 shows the true Gaussian-anomaly P-wave velocity model. The initial velocity model is a
homogeneous model with a constant velocity of 2 km/s.
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FIG. 1. The true Gaussian-anomaly model.

For comparison of different methods, we set the stopping criteria for inversion as: the maximum outer
iteration kmax = 21 and the minimum normalized misfit φmin = 2.0e-5. To illustrate the performances
of different preconditioning strategies, the stopping criteria for the inner CG algorithm is also defined: the
maximum inner iteration k̃max = 50 and the minimum relative residual γmin = 1.0e-2. Figures 2a, 2b, 2c
and 2d show the inversion results by SD, l-BFGS, HF-GN and SI-HF-GN methods respectively. Figures 3a
and 3b show the normalized misfit vs. iteration and RLSE vs. iteration as the iteration proceeds.

As we can see, compared to SD and l-BFGS methods, the HF Gauss-Newton methods can approach
the true model much better. Furthermore, we notice that we the corrected Gauss-Newton Hessian, the
source-independent HF Gauss-Newton method can converge faster. We use both of the misfit and RLSE
ε = ‖mk−m0‖2

‖mtrue−m0‖2 to evaluate the quality of the inversion result.

We then apply the source-independent Hessian-free Gauss-Newton FWI on a modified Marmousi model.
The modified Marmousi model consists of 160×350 grid cells with a grid interval of 10 m in both horizontal
and vertical directions. A total of 34 sources are deployed from 10 m to 340 m with a source interval of 10 m
and a depth of 20 m. A total of 350 receivers are distributed from 10 m to 3500 m with a receiver interval of
10 m and a depth of 20 m. A Ricker wavelet with a 30 Hz dominant frequency is used as the source function.
Figure 4a shows the true P-wave velocity model. The initial velocity model shown in Figure 4a is obtained
by smoothing the true P-wave velocity model with a Gaussian function.

The inversion results by NCG, l-BFGS and HF Gauss-Newton and source-independent HF Gauss-Newton
methods are shown in Figures 5a, 5b, 5c and 5d. Figure 6 show the model differences between the true model
and the inversion results by NCG, l-BFGS and HF Gauss-Newton and source-independent HF Gauss-Newton
methods respectively. We observe that the Gauss-Newton Hessian correction, a better inversion result is
achieved.
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FIG. 2. (a) NCG method; (b) l-BFGS method; (c) HF-GN method; (d) SI-HF-GN method.
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FIG. 3. (a) Normalized misfit (log10) vs. Iteration; (b) RLSE vs. Iteration. The bold-dash-dot,
thin-dash-dot, bold-solid and bold-dahs lines indicate SD, l-BFGS, HF-GN, and SI-HF-GN methods
respectively.
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FIG. 4. (a) The true P-wave velocity model; (b) The initial P-wave velocity model.
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FIG. 5. (a) NCG method; (b) l-BFGS method; (c) Hessian-free GN method (ε = 0.3793); (d) Source-
independent Hessian-free GN method with corrected Gauss-Newton Hessian (ε = 0.3528).
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FIG. 6. The model differences between the true model and the inverted results by (a) NCG method;
(b) l-BFGS method; (c) Hessian-free GN method; (d) Source-independent Hessian-free GN method
with corrected Gauss-Newton Hessian.

CONCLUSIONS

In this paper, we develop a source-independent Hessian-free Gauss-Newton FWI, in which the Gauss-
Newton Hessian is corrected with the source-independent strategy. The numerical examples show that the
proposed method can provides faster convergence rate and better inversion result with reducing the computa-
tional burden.
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