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ABSTRACT 
The paper by Clayton and Engquist (1977) is often quoted in the literature, almost exclusively 

when problems involving finite difference methods are being discussed when dealing with 
acoustic wave propagation and coupled P-SV wave propagation in an elastic medium using finite 
differences or related methods. With the recent interest in perfectly matched layers (PML) 
methods it is often used as a bench mark with which to determine the numerical accuracy of this 
relatively new method (for example, Zhu and McMechan, 1991). This attention is for the most 
part based on one page of the 1977 paper. There are some cursory instructions on how to proceed 
to obtain paraxial approximations for the wave equations in the vicinity of finite, usually 
perfectly reflecting, boundaries and how to employ them. As the single page is followed by an 
appendix for its implementation, little thought has been paid to what has been said on that page. 
Here we would like to expand on that page for the information of others who wish to use this 
method for similar, usually more complex, problems and for its possible use in hybrid methods, 
where one or more of the spatial derivatives have been removed by integral transform methods. 
As others have questioned the authors on this topic, it was thought that this mild tutorial could be 
useful. 

INTRODUCTION 
It would probably be useful to begin this with a quote from Clayton and Engquist (1977): 

“Paraxial approximations for the elastic wave equation analogous to those of the scalar wave 
equation can also be found. We cannot, however, perform the analysis by considering 
expansions of the dispersion relation because the differential equations for vector fields are not 
uniquely specified from their dispersion relations. Instead, we use the scalar case to provide a 
hint as to the general form of the paraxial approximation and fit the coefficients by matching to 
the full elastic wave equation.” [Clayton and Engquist (1977)] 

When considering the solution of hyperbolic systems of equations by finite difference 
methods, the problem of minimizing or eliminating reflections from the finite boundaries which 
are required to be introduced, even though the initial problem was infinite in its statement. Over 
several decades the paper by Clayton and Engquist (1977) has been the standard by which most 
other solutions to this are compared. As a consequence of requiring to employ the theory in the 
above paper, some preliminary thoughts that there may be a minor and at the request others using 
this theory, it was thought that a re-derivation of all contained in that paper was in order. The 
only error found was a minor typographic in the Appendix. However, as time was spent doing 
this, it was thought that some gaps in the theory of the paper be set forth. 

THEORY 
In a 2D isotropic homogeneous medium with the source term deleted, the expressions for the 

horizontal (u) and vertical (w) components of displacement have the form 
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where α and β are the compressional (P) and shear (S) velocities. The above may be written in 
matrix – vector form as 

1 2tt xx xz zzD H D= + +u u u u (3) 

with 

[ ], Tu w=u (4) 
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Assume a plane wave solution of equation (3) of the form: 

( )exp x zi t ik x ik zω = − + + u u (6) 

In terms of pseudo differential operators the above results in 
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Substituting these into (3) results in 
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where u is the transform of u , I  is the 2 2×  identity matrix and all other quantities were 
previously defined. 

Zero order paraxial approximation: 

Taking the first and fourth terms of equation (8), under the assumption that u ≠ 0 , results in 
the following condition required to be valid
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Some basic manipulations of the above equation given here as 
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where from prior definitions 
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It follows that 
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Second order paraxial approximation: 

Following Clayton and Engquist (1977) the following higher order paraxial equation may be 
written 

1 2 3 0tz tt tx xxC C C+ + + =u u u u  (15)
It will be required to determine the matrices C2 and C3. The Fourier transform of (15) may be 

found to be 
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The coefficients of the coupled wave equations are required to satisfy 
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Substitute equation (16) into equation (17). 
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Expanding and retaining only terms in ( )xik iω−  results in 

 
 2 1 2 2 2 1 1 0D C C D C C HC− − + =  (19) 

 
plus higher order terms in powers of ( )xik iω− and noticing that from the zero approximation 
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It is not difficult to argue that 2C should be of the form 
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and that higher order terms in powers of ( )xik iω−  should be of no consequence and will be 
ignored. 
After a number of matrix multiplications, which have been deleted here, the following sequence 
of derivations are required to be made. 
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One required quantity is found as: 
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The second term is obtained from the following sequence, 
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so that the matrix is given by 
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The following quantity is required later in the derivation of the terms in 3C . 
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Finally it is required to determine 3C . As with 2C the starting equation is (18) Expand this 

equation and retaining only those terms in powers of ( ) ( )2 2
xik iω− and equating this quantity to 

zero has 
 2 1 3 2 2 2 2 3 1 2 1 0D C C D C C D C C HC D− − − + − = . (31) 

From observation, 3C  should be of the form: 
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After all the matrix multiplications in (31) and collecting terms the following sequence produces 
one of the desired results, 
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which is: 
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The second term is obtained in the a similar manner 
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NUMERICAL RESULTS 
Given the velocity/density versus depth structure shown in Fig.1, VSP synthetics were 

computed for the cases with no damping at the model bottom, Figs. 2 and 4 for the vertical and 
radial components of displacement. The synthetic traces shown in Figs. 3 and 5 employ the 
damping derived here, which appears in the paper of Clayton and Engquist (1977). The finite 
difference analogues appear in the Appendix of that paper. There is one minor typographic error 
in that Appendix, which is left for the reader  to determine. 

CONCLUSIONS 
The paper of Clayton and Engquist (1977) is revisited and some clarifications of the method 

employed there to construct paraxial wave equations approximations. The minor explanatory 
derivations presented here may assist those who wish to use a similar method for more complex 
media types. 

 

 

Fig. 1: The scaled velocity/density depth model used in the computation of the synthetic VSP traces 
computed in this report.  
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Fig. 2: The vertical component of the VSP synthetic of the model described in the text. In this panel the 
computations continued to the proper time indicating that spurious reflections from the model bottom are 
included in the traces. 

 

 

 
Fig. 3: The vertical component of the VSP synthetic of the model described in the text. In this panel the 
computations continued to the proper time indicating that no spurious reflections from the model are 
included in the traces. 
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Fig. 3: The radial component of the VSP synthetic of the model described in the text. In this panel the 
computations continued to the proper time indicating that spurious reflections from the model bottom are 
included in the traces 

 

Fig. 4: The radial component of the VSP synthetic of the model described in the text. In this panel the 
computations continued to the proper time indicating that no spurious reflections from the model are 
included in the traces 
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