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inhomogeneous TI medium with absorbing boundary conditions 

P.F. Daley and E.S. Krebes 

ABSTRACT 
Finite integral transforms, which are a specific subset of pseudo – spectral methods are 

used to reduce the spatial dimensionality of the coupled VqP qS− wave propagation 
problem in a transversely isotropic ( )TI medium to that in one spatial dimension, usually 
depth, and time. The introduction of an absorbing boundaries, at least at the model 
bottom is useful in the removal of spurious arrivals. The top model boundary is usually 
wanted in the numerical calculations and reflections from the model sides may be 
removed by a judicious choice of model parameters, which does not significantly 
increase the run time.  

In this paper, a method based on that presented in Clayton and Engquist (1977) and is 
employed for the coupled VP S− wave propagation problem in a transversely isotropic 
medium at the model bottom. The medium considered here is assumed to be radially 
symmetric and finite Hankel transforms are used to remove the radial coordinate ( )r . The 
problem that remains is a coupled problem in depth ( )z  and time ( )t . The anisotropic 
parameters may arbitrarily vary with depth.  

INTRODUCTION 
This method is most often referred to as the pseudo-spectral method, but due to the 

extensive work done in this area by B.G. Mikhailenko and A.S. Alekseev it is sometimes 
referred to, in seismic applications, as the Alekseev-Mikhailenko Method (AMM), 
(Alekseev and Mikhailenko, 1980). It falls within the genetic class of pseudo-spectral 
methods, but is possibly more formal and rigorous in its development.  However, much 
of their work is relatively physically inaccessible and a considerable number of the more 
significant contributions are in Russian. Other works of interest in this area are Gazdag 
(1973), Gazdag (1981) and Kosloff and Baysal (1982). 

One numerical advantage of applying finite integral transforms is that the resultant 
FD problem is in one spatial variable and time and there are no cross derivative terms. 
These are differentials of the form ( )1 2 3, , , , 1, 2,3 :i k jx c x x x u x i j k i j ∂ ∂ ∂ ∂ = ≠  . 
Several suggested approaches for dealing with these in a finite difference context may be 
found in Zahradník et al. (1993). 

Apart from a number of other numerical considerations, the removal of spurious 
reflections from the pseudo model bottom is required. This is done here using the method 
described in Clayton and Engquist (1977). There and in other related papers, the 
following statement, or something similar appears: 
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“Paraxial approximations for the elastic wave equation [and elastic TI wave equation 
as well as more complicated wave equations] analogous to those of the scalar wave 
equation can also be found. We cannot, however, perform the analysis by considering 
expansions of the dispersion relation because the differential equations for vector fields 
are not uniquely specified from their dispersion relations. Instead, we use the scalar 
case to provide a hint as to the general form of the paraxial approximation and fit the 
coefficients by matching to the full elastic wave equation.” [Clayton and Engquist (1977)] 

What is being said here is that if paraxial approximations are derived for the two 
coupled equations of particle motion they are a partial solution of the absorbing boundary 
problem. The full solution requires the integration of these scalar equations into a scalar 
equivalent of the two coupled equations of motion. It has been determined that using just 
the first part of the solution produces better than expected results. 

 

THEORETICAL DEVELOPMENT 
General Theory 

Consider the problem of coupled VP S−  wave propagation in a radially symmetric (no 
lateral inhomogeneities), vertically inhomogeneous transversely isotropic half space.  

The equations of motion are defined by the elastodynamic equations (Martynov and 
Mikhailenko, 1984 Mikhailenko and Korneev, 1984, or Mikhailenko,  1985)  
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where the particle displacement vector u  is of the form 

 ( ) ( ) ( )( ), , , , , , ,r z t U r z t V r z t≡ =u u . (3) 

Here ( ), ,U r z t  and ( ), ,V r z t are the radial (horizontal) and vertical components of vector 
particle displacement, the azimuthal component of displacement being zero for the 
coupled VP S−  problem. The coordinates andr z  are the radial and vertical coordinates 
in a cylindrical coordinate system, respectively, t is time In Voigt notation, the ijc are the 
stiffness parameters of the medium and ρ  is the density, all of which may be dependent 
on the vertical ( )z  coordinate. The density normalized anisotropic parameters, 

ij ija c ρ= , having dimensions of velocity squared, may also be used at some points 
within this report. 

The problem is solved subject to the initial conditions 
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and the free surface boundary conditions that are required to be satisfied are 
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σ σ
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That is, the normal stress and shear stress are zero at the free surface. These will be 
defined shortly for a transversely isotropic medium. 

Two typical types of point sources, ( ), ,r z tF , used in seismic applications are 
(Mikhailenko, 1980): 

1. Vertical point force : 

 ( ) ( ) ( ) ( ) ( ), , , s s sx y z t x x y y z z f tδ δ δ= − − − zF n . (6) 

  where zn  is a unit vector in the z (vertical downwards) direction. 

2. Explosive point source of P waves: 

 ( ) ( ) ( ) ( ) ( ), , , s s sx y z t x x y y z z f tδ δ δ = ∇ − − − F . (7) 

In the above, ( )δ ξ  is the Dirac delta function and ( )f t  is some band limited source 
wavelet, about which more will be said later. In what follows, an explosive point source 
of P waves is assumed. The Green’s function solution for this problem would require that, 
( ) ( )0f t t tδ= −  such that ( )0 max0 t t≤ <  for some finite time maxt . 

In terms of  ( ), ,U r z t , ( ), ,V r z t  and the anisotropic stiffness coefficients, ijc , the 
expressions for the normal and shear stresses at the free surface are given by 
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Introducing the finite Hankel integral transforms and the vector designation 

( ) ( ) ( )( ), , , , , , , ,i i i ik k z t S k z t R k z t=G    has 
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where the ik  and ik  are the roots of the transcendental equations 

 ( )0 0iJ k r =  (11) 

and 

 ( )1 0iJ k r = , (12) 

respectively. Using the two formulations of the Hankel transforms discussed in Appendix 
A, it may be shown that both of the inverse series summations may be accomplished 
using only the roots of one of the Bessel function transcendental equation, ( )1 0iJ k r = , so 
that the inverse transforms are defined by 
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Thus both inverse series summations may be taken over the roots of one rather than two 
transcendental equations and as a consequence, ( ) ( ) ( )( ), , , , , , ,i i ik z t S k z t R k z t=G . It is 
shown there that an earlier assumption that the source wavelet be band limited is 
significant in this determination. As the only spatial direction in which a finite difference 
is used is the z direction the most economical manner to introduce a damping conditions 
at the lower z boundary, i.e., ( )z R tγ ∂ ∂  and ( )z S tγ ∂ ∂ . A safe estimate for the length 
of this damping region is of the order of 1 wavelength (WL) but 2WL are commonly used 
(B.G. Mikhailenko, 1980). 

Applying the appropriate Hankel transforms to equations (1) and (2) results in 
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while the transforms of the shear and normal stresses at the free surface, which is 
assumed to be planar, have the form 
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The transformed initial conditions at 0t =  are 
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where ik  are the roots of the transcendental equation ( )1 0iJ k a =  which requires 
additional boundary conditions at r a=  (pseudo boundary such that) 

 0
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=
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The pseudo boundary is placed at some distance r a=  so that no spurious reflections 
from this boundary are present in the synthetic traces. Care is required in choosing this 
distance, as the number of terms in the inverse series summation depends on it in a linear 
fashion.  

If it is assumed that the anisotropic parameters (stiffness coefficients) are spatially 
independent the Hankel transformed equations take on the simplified forms given below. 
For convenience, it is assumed that the first two grid points in ( )0 1andz z z , at the free 
surface are of this form so that equations (15) and (16) may be written there as 

 ( )
2 2

2
55 13 55 112 2 i i

S S Ra k a a k a S
t z z
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∂ ∂ ∂
 (21) 

 ( )
2 2

2
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R R Sa k a a k a R
t z z

∂ ∂ ∂
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∂ ∂ ∂
 (22) 

and the Hankel transformed shear and normal stresses required at the free surface as 
boundary conditions have been given in equations (17) and (18). 

An explicit finite difference scheme can be introduced into the transformed equations 
in depth and time ( )andz t . Equal grid spacing of h  in the z direction and δ  in time so 
that an arbitrary depth and time point are specified by kz nh=  and mt mδ= . The order of 

accuracy of the finite difference process is 2nd order, ( )2 2,O h δ . 

ABSORBING BOUNDARY AT MODEL BOTTOM 
If it is assumed that the anisotropic parameters (stiffness coefficients) are spatially 

independent the Hankel transformed equations take on the simplified forms given 
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previously in equations in equations (21) and (22). With the equivalence of 
pseudodifferential operators assumed, 

 ( ) ( )zi ik
t z

ω∂ ∂
↔ − ↔

∂ ∂
 (24) 

Equations (23) and (24) have the form 

 ( ) ( ) ( )( )2 2 2
55 13 55 11z i z ii S a ik S k a a ik R k a Sω− = − + −  (25) 

 ( ) ( ) ( )( )2 2 2
33 13 55 55z i z ii R a ik R k a a ik S k a Rω− = + + −  (26) 

with ( ), TS T=U , the transformed equations of motion. Combining results in 

 ( ) ( ) ( )2 2 2
1 2z i z ii ik k ik kω− = + −U D U H U D U     (27) 

where the coefficient matrices are defined by 
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Rearranging produces 
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Following the method used in the paper of Clayton and Engquist (1977), two paraxial 
equations of different orders are assumed. The first is of the form 

 ( ) ( )1 1 0zik i
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ω
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As it has been assumed that 0≠U  
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−
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In this paraxial approximation substituted into (29) and ignoring terms of order greater 
than zero in powers of ( )ik iω−  has 
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The second paraxial approximation is given by 
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After replacing the partial derivatives with pseudodifferential operators the following 
results 
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Without any derivation, it may be seen that 1 1=C B . Substitute (35) into (29) to obtain. 
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Retaining only terms in ( )ik iω−  up to order one produces 
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 1 1 2 1 2 1 1 0− − + =D C C D C C HC  (37) 
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Retaining only terms in ( )xik iω−  results after a number of matrix multiplications, 
results in 
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The second term in 2C follows as 
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The following quantity is required later in the derivation of the terms in 3C . 
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In the isotropic limit, ( )22
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Finally it is required determine 3C . As with 2C   the starting equation is (35). Expand 

this equation and retaining only those terms in powers of ( ) ( )2 2
xik iω− and equating 

this quantity to zero has 
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In the isotropic limit, ( )22
3c  
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The term ( )11
3c is obtained in a manner similar to that used for ( )22

3c  
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so that 
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With the relation 
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and using the following sequence of steps 

 ( ) ( )
( )

( )
( )

2 2
11 13 55 13 55

55 3 11 55 2
33 55 3333 55 55 33

2
a a a a

a c a a
a a aa a a a

+ +
= + −

++
 (55) 

 ( ) ( )
( ) ( )

2
11 5513 55

55 3 11
33 55 33 55 33

2 1
aa a

a c a
a a a a a

 +  = − −
 + + 

 (56) 

 ( ) ( )
( ) ( )

2
11 55 33 5513 55

55 3 11
33 55 33 55 33

2
a a aa a

a c a
a a a a a

 + −+  = −
 + + 

 (57) 

the term ( )11
3c has the final form  
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As previously, in the isotropic limit, ( )11
3c becomes 
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NUMERICAL RESULTS 
A simple layered model is used here with the vertical velocities given in Fig. 1. The 

vertical component of the VSP particle displacement is shown in Fig. 2 and Fig. 3. The 
reason for this choice is that the signal at depth is of the same magnitude as are the 
spurious reflected arrivals from the model bottom. It is clear that the formulae derived 
remove unwanted model edge reflections. 

SUMMARY AND CONCLUSIONS 

The theory and development of finite difference analogues for VqP qS−  wave 
propagation in a plane parallel layered transversely isotropic model has been presented. 
The radial coordinate was removed using a finite Hankel transform prior to 
implementation of finite difference process. What results are a coupled system of finite 
difference equations in only depth and time. Both components of particle displacement 
are recovered by applying inverse Hankel transform summations, which although infinite, 
may be truncated if a band limited source wavelet is used. The synthetic traces produced 
using this method have 3D spreading and the amount of computer resources is reduced 
considerably as the vertical and horizontal components of particle displacement as well as 
all required elastic parameters need only to be specified at a sequence of depth points – 
one spatial dimension.  

The finite difference analogues given are accurate to second order in both time and 
space (depth). The analogues for a surface point as well as general points within the 
medium are given. Provisions for either a vertical or explosive point source of P – waves 
are included in the derivations. A number of points regarding this seismic modeling 
process, especially where some mathematical rigor is required are dealt with in the 
Appendix. 

Using the formulae presented here it should be possible write a hybrid finite difference 
– finite integral transform programs for a transversely isotropic medium for a variety of 
source – receiver configurations including AVO and VSP. The Appendix in Clayton and 
Engquist (1977) is quite useful in accomplishing this. 

APPENDIX A: FINITE HANKEL TRANSFORM 
Although the two following finite Hankel transform methods may be found in the 

literature (Sneddon, 1972, for example), it was felt that for completeness they should be 
included here, at least in an abbreviated theorem formulation. The finite Hankel 
transform of the first kind is a direct application of the following theorem. 

Theorem I: If ( )f x  satisfies Dirichlet’s conditions in the interval ( )0, a  and if its Hankel 
transform in that range is defined to be 

  ( ) ( ) ( ) ( ) ( )1
J

0

a

j jH f x f x f x J x dxµ µξ ξ  ≡ =  ∫  (A.1) 

where jξ  is a root of the transcendental equation  
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 ( ) 0jJ aµ ξ =  (A.2) 

then, at any point in the interval ( )0, a  at which the function ( )f x  is continuous , 
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J 22
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1

2 j
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j
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f x f

a J x
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ξ
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∞

=
+

=
  

∑  (A.3) 

where the sum is taken over all the positive roots of equation (A.2). 

The finite Hankel transform and inverse of the second kind used in the text are given 
as follows: 

Theorem II: If ( )f x  satisfies Dirichlet’s conditions in the interval ( )0, a  and if its 
Hankel transform in that range is defined to be 

 ( ) ( ) ( ) ( ) ( )1
J

0

a

j jH f x f x f x J x dxµ µξ ξ  ≡ =  ∫  (A.4) 

in which jξ  is a root of the transcendental equation  

 ( ) ( ) 0j j jJ a h J aµ µξ ξ ξ′ + =  (A.5) 

then, at each point in the interval ( )0, a  at which the function ( )f x  is continuous , 

 ( ) ( )
( )

( )
( )

2
J

22 2 2 2 2
1

2 j j j

j j j

f J x
f x

a h a J x

µ

µ

ξ ξ ξ

ξ µ ξ

∞

=

=
+ −   

∑  (A.6) 

where the sum is taken over all the positive roots of (A.5) and h is determined from a 
boundary operator N at x a=  defined as 

 [ ] ( ) ( ) 0
df a

f h f a
dx

= + =N . (A.7) 
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Fig. 1. Scaled velocity/density depth model used in the computations in this report. 

Fig. 2: The vertical component of the VSP synthetic of the model described in the text. In this 
panel the computations continued to the proper time indicating that spurious reflections from the 
model bottom are included in the traces. 
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Fig. 3: The vertical component of the VSP synthetic of the model described in the text. In this 
panel the computations continued to the proper time indicating that no spurious reflections from 
the model are included in the traces. 
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